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Abstract 
    This paper presents a new mathematical model of a redundancy 
allocation problem with mixing components redundant in subsystems 
of a series-parallel system when the redundancy strategy can be 
chosen for individual subsystems. In practice both active and cold-
standby redundancies are used within a particular system design, and 
the choice of the redundancy strategy becomes an additional decision 
variable. The proposed model selects the best redundancy strategy, 
combination of components, and levels of redundancy for each 
subsystem in order to maximize the system reliability under system-
level constraints. 
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1.   Introduction 
The primary goal of a reliability design is to improve the system reliability. In 

the initial design activity, a redundancy allocation is a direct way of enhancing the 
system reliability. The redundancy allocation problem (RAP) involves in the 
simultaneous selection of components and a system-level design configuration, 
which can collectively meet all design constraints in order to optimize some 
objective functions such as system cost and/or reliability [3]. In this problem, 
there are several different component types with different levels of cost, 
reliability, weight, and other characteristics, and the components redundant within 
the subsystem are the same type. The RAP is an NP-hard problem [2] solved by 
using many difference optimization approaches for different formulations as 
summarized in Kuo, et al. [10] and Gen, et al. [8]. While this problem has been 
studied in great details, one area, which has not been sufficiently analyzed, is the 
use of mixing components redundant in subsystems. This kind of the redundancy 
allocation problem is to select the optimal combination of components and levels 
of redundancy to collectively meet weight and cost constraints, while maximizing 
the system reliability [9].  

Coit and Smith [4] presented a new formulation and solution method for the 
redundancy allocation problem with mixing components redundant in subsystems. 
They used a genetic algorithm (GA) to solve this problem in k-out-of-n:G system. 
Chen and You [1] also presented the use of an immune algorithm to solve such a 
problem in a series system. In general, this reliability design problem has been 
formulated by considering active redundancy. However, the choice of redundancy 
strategies for each subsystem is much more realistic and it provides a better tool 
for the designers. This becomes an additional decision variable in a redundancy 
allocation problem with mixing components redundant in subsystems. 

Coit and Liu [5] presented a new formulation and solution method for the 
RAP when a system design includes multiple subsystems designed with either 
active or cold-standby redundancy. This solution method assumes that the 
redundancy strategy (i.e., active or cold-standby) for each subsystem is 
predetermined. Coit [6] presented a new formulation and solution method to the 
RAP when there are some subsystems using active redundancy and cold-standby  
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redundancy, or selecting the best redundancy strategy. Furthermore, Tavakkoli-
Moghaddam, et al. [11] used the genetic algorithm to solve the above-mentioned 
problem. Unfortunately, the redundancy allocation problem with mixing 
components in subsystems is not considered when the redundancy strategy can be 
chosen for individual subsystems. Thus, the problem is to select the best 
redundancy strategy, combination of components, and redundancy level for each 
subsystem in order to maximize the system reliability under system-level 
constraints. 

The series-parallel system depicted in Figure 1 is a common system structure 
that is used in most system designs. Thus in this paper, the series-parallel 
redundancy allocation problem with mixing components, and the choice of 
redundancy strategies in subsystems is considered. Finally, a new mathematical 
model is presented to this problem. 
 

 
Figure 1. Series-parallel system. 

 
The structure of this paper is organized as follows. Section 2 presents a 

review on the redundancy strategies. In Section 3, the problem formulation is 
presented and proposed for a redundancy allocation problem with mixing 
components in subsystems when either active or cold-standby redundancy can be 
selected for individual subsystems. Finally, Section 4 presents conclusion. 
 



 

2224                                                          R. Tavakkoli-Moghaddam and J. Safari 

 
2.   Redundancy Strategies 

There are two types of redundancy strategies, namely active and standby. If 
all redundant components operate simultaneously from time zero, even though the 
system needs only one at any given time, such an arrangement is called active 
redundancy. There are three variants of the standby redundancy, referred to as 
cold, warm, and hot. In the cold standby redundancy, the component does not fail 
before it operates. In the warm standby redundancy, the component is more prone 
to failure before operation than the cold standby components. In the hot standby 
redundancy, the failure pattern of component does not depend on whether the 
component is idle or in operation. The mathematical models for hot standby and 
active redundancy arrangements are the same. In the standby redundancy 
arrangement, the redundant components are sequentially used in the system at 
component failure times. Each redundant component in the standby arrangement 
can operate only when it is switched on. When the component in operation fails, 
one of the redundant units is switched on to continue the system operation [7]. In 
the standby redundancy, there are two scenarios in first detecting failure and then 
switching to good components. These are classified as Case 1 and Case 2. For the 
Case 1, the failure detection and switching hardware or software continually 
monitors the system performance. When it detects a failure, it activates a 
redundant component. For the Case 2, a failure is only possible when a switch is 
required. At any time the switch is required, there is a constant probability (ρi) 
that the switching will be successful [6]. 

This paper considers redundancy strategies consisting of only active (i.e., hot) 
and cold-standby redundancy. The approach used categorizes all subsystems to 
four sets according to the following definitions: 

 
N: Set of all subsystems with no redundancy. 
A: Set of all subsystems with active redundancy. 
S: Set of all subsystems with cold-standby redundancy. 
A&S: Set of all subsystems with active or cold-standby redundancy. 
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3.   Problem Formulation 
In each subsystem, all assignable component types are sorted in descending 

order by the component reliability and put in a set of component types. From now, 
component types are shown by their rank orders in this set. Therefore, 
components of type 1 are more reliable than components of type 2 and 
components of type 2 are more reliable than components of type 3, and the like. 
For increase the total reliability of a system, components of the first type 1 that are 
more reliable in all component types are used. After all components of type 1 are 
down and failure, components of type 2 that are more reliable in backup 
components are used, and so one. Sequential usage of backup components 
continues until failure of all components.  

The new mathematical model of the redundancy allocation problem with 
mixing components redundant in subsystems for the series-parallel system is 
presented as the following integer nonlinear programming problem when the 
redundancy strategy can be chosen for individual subsystems and two separable 
linear constraints. 
 
3.1. Assumptions 

• Two redundancy strategies (i.e., active redundancy, cold standby) are 
considered. 

• The states of components and the system have only two options: good or 
bad. 

• The component attributes (i.e., reliability, cost, and weight) are known and 
deterministic. 

• There is no component repair or preventive maintenance. 
• Failures of components are independent events. 
• Failed components do not damage the system. 

 
3.2. Indices 

i    Index for subsystems ),...,2,1( si =  

j    Index for component type ),...,2,1( imj =  
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jk    Index for number of failure of type j components in each subsystem 

),...,2,1( ijj nk =  

l    Index for number of the allocated component types 

ilz    Index of component choices used for subsystem i, { }iil mz ,...,2,1∈  

zi   Set of zil , (zi1 , zi2 , ... ), for example (1 , 3 , 4) 
 
3.3. Decision Variables  

iARS      Allocated redundancy strategy in subsystem i  

),...,,( 21 sARSARSARSARS =    Vector of allocated redundancy strategy in 

subsystems 

ijn          Number of components of type j  used in subsystem i , 

{ }ijij nn max,,...,2,1∈  

  
Type of components                         Subsystem

 

s

i

nnnn

nnnn

nnnn
nnnn

n

mj

smsjss

imijii

mj

mj

.

.

.

.

.

.
2
1

......
..........
..........
..........

......
..........
..........
..........

......

......
......21

21

21

222221

111211

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3.4. Parameters  
s   Number of subsystems 
mi    Number of available component choices for subsystem i, (i = 1, 2, …, s) 
m            Upper bound for mi , (m  ≤ mi    ∀i) 
nmax, ij     Upper bound for nij , (nij  ≤ nmax, ij    ∀ij)  
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t     Mission time 
rij (t)   Reliability at time t for the jth available component for subsystem i  
cij , wij   Cost and weight for the jth available component for the subsystem i  
C, W    System-level constraint limits for cost and weight 

S)R(t; n; AR     System reliability at time t for designing matrix n and vector ARS  

ρi (t)    Failure-detection/switching reliability at time t (Case 1) 
ρi     Failure-detection/switching success probability (Case 2) 

( ) )(, tf jk
ji   pdf of the jk th failure times of the type j  components for subsystem i at 

time t 
 

3.5. Mathematical model  
S)R(t; n; ARMax                             (1) 

s.t. 

∑∑
= =

≤
s

i

m

j
ijij Cnc

i

1 1
                     (2) 

∑∑
= =

≤
s

i

m

j
ijij Wnw

i

1 1
                    (3) 

 
With respect to Equation (1), the objective is to determine the redundancy 

strategy, combination of components, and the quantity of components in each 
subsystem to achieve the maximum system reliability. Constraints given in 
Equations (2) and (3) consider the available cost and weight, respectively. To 
calculate ),;( ARSntR , Equations (4) and (5) are presented for the system 

reliability in two cases as follows: 
 
Case 1: Continuous detector/switch operation: 
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Case 2: Switch active only in response to a failure: 
 

( )

( ) ( )
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    (5) 

 
After allocating a redundancy strategy to each subsystem and according to the 

definition of ARS , all subsystems can be classified by the allocated redundancy 
strategy as follows: 

 
N ′ : Set of all subsystems with no redundancy. 
A′ : Set of all subsystems with active redundancy. 
S ′ : Set of all subsystems with cold-standby redundancy. 
 
Therefore, Equation (4) is constructed in three segments. Segments 1, 2, and 

3 calculate the reliability of all subsystems with no redundancy, active 
redundancy, and cold-standby redundancy respectively. In segment 3, the 
reliability of cold-standby subsystem is the summation of the reliability of 
components in operation as well as backup components. According to the 
definition of j, at the beginning operation of a cold-standby subsystem, one 
component of type 1iz  is operating. When a component in operation fails, one of 

the backup components is switched on to continue the system operation. Failure in 

each subsystem is accrued at time u with probability of ( ) )(, uf jk
ji  and then the 

switching will be successful with probability of (ρi(u)), finally one backup 

components with reliability of )( utrij −  is operated. Equation 5 is the same as 

Equation (4). The only difference is in calculating the reliability of detecting 
failure and switching system.  In this equation, the power of  iρ   is the number of 

failure in subsystem i till time t. 
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4.   Conclusion 

This paper proposes a new mathematical model for a redundancy allocation 
problem with mixing components redundant in subsystems for the series-parallel 
system when either active or cold-standby redundancy is selected for individual 
subsystems. Most mathematical models of the general, foregoing problems 
assume that the redundancy strategy for each subsystem is predetermined and 
known. In general, the active redundancy has received more attention in the past. 
The choice of redundancy strategies for each subsystem is much more realistic 
and it provides a better tool for the designers. This problem is formulated as a 
nonlinear mixed-integer programming model under a number of constraints. This 
problem is not easy to solve in real cases, especially for large-sized systems. 
Therefore, the use of heuristic or meta-heuristic methods for solving such a hard 
problem is proposed for future research.  
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