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1 Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting for
model dynamical systems in which uncertainties or vagueness pervades. First
order linear and nonlinear FDEs are one of the simplest FDEs which appear
in many applications.

In the recent years, the topics of FDEs have been investigated extensively.
The concept of a fuzzy derivative was first introduced by S. L. Chang , L. A.
Zadeh in [4]. It was followed up by D. Dubois, H. Prade in[5]. Other methods
in this subject have been studied by R. Goetschel, W. Voxman in[7] and by
M. L. Puri, D. A. Ralescu in [11]. O. Kaleva and S. Seikkala in [8, 12] studied
simultaneously the fuzzy differential equations and initial values problem. O.
Kaleva in [9] has solved FDEs by using the standard Euler method, our main
aim in this paper is study of FDEs by iterative solution of Modified Euler’s
method.

The organized of the paper is as follows. In the first three sections below,
we recall some concepts and introductory materials to deal with the fuzzy
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initial value problem. In section five, we present modified Euler’s method
and it’s iterative solution for solving of Fuzzy differential equations and the
corresponding convergence theorems are presented. The proposed algorithm
is illustrated by some examples in section 6 and conclusion is in section 7.

2 Preliminary Notes

A triangular fuzzy number u is defined by three real number a < b < c
where the base of the triangle is the interval [a, c] and its vertex is at x = b.
We specify u as (a/b/c). The membership function for the triangular fuzzy
number u = (a/b/c) id defined as the following:

u(x) =

{
x−a
b−a

, a ≤ x ≤ b
x−c
b−c

, b ≤ x ≤ c
(1)

we will have : (1) u > 0 if a > 0; (2) u ≥ 0 if a ≥ 0; (3) u < 0 if c < 0; and (4)
u ≤ 0 if c ≤ 0.

Let denote by RF the class of fuzzy set subsets of the real axis (i.e. u :
R → [0, 1]) satisfying the following properties:

(i) ∀u ∈ RF , u is normal, i.e. ∃x0 ∈ R with u(x0) = 1;

(ii) ∀u ∈ RF , u is convex fuzzy set (i.e. u(tx + (1 − t)y) ≥ min{u(x), u(y)},
∀t ∈ [0, 1], x, y ∈ R);

(iii) ∀u ∈ RF , u is upper semicontinuous on R;

(iv) {x ∈ R; u(x) > 0} is compact, where A denotes the closure of A.

Then RF is called the space of fuzzy numbers (see e.g. [9]). Obviously
R ⊂ RF . Here R ⊂ RF is understood as R = {χ{x}; x is usual real number}.
We define the r-level set,

[u]r = {x ∈ R; u(x) ≥ r}, 0 < r ≤ 1;
[u]0 = {x ∈ R; u(x) > 0} is compact.

(2)

Then it is well-known that for each r ∈ [0, 1], [u]r is bounded closed interval.
We denote by [u]r = [u1(r), u2(r)]. It is clear that the following statements are
true.

• u1(r) is a bounded left continuous non decreasing function over [0, 1],

• u2(r)is a bounded right continuous non increasing function over [0, 1],
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• u1(r) ≤ u2(r) for all r ∈ (0, 1],
for more details see [2],[3].
Let D : RF × RF → R+ ∪ {0}, D(u, v) =
supr∈[0,1] max{|u1(r) − v1(r)|, |u2(r) − v2(r)|}, be Hausdorff distance between
fuzzy numbers, where [u]r = [u1(r), u2(r)], [v]r =
[v1(r), v2(r)]. The following properties are well-known (see e.g. [11]):

D(u + w, v + w) = D(u, v), ∀u, v, w ∈ RF ,
D(k.u, k.v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,
D(u + v, w + e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ RF
and (RF ,D) is a complete metric space.

3 Fuzzy Initial Value Problem

Here, we introduce fuzzy initial value problem in the following form:

{
y′(t) = f(t, y(t)) , t ∈ [t0, T ]
y(t0) = y0

(3)

where y is a fuzzy function of t, f(t, y) is a fuzzy function of the crisp variable
t and the fuzzy variable y, y′ is the fuzzy derivative of y and y(t0) = y0 is a
triangular or a triangular shaped fuzzy number. Therefore we have a fuzzy
cauchy problem.
We denote the fuzzy function y by y = [y1, y2]. It means that the r-level set
of y(t) for t ∈ [t0, T ] is

[y(t0)]r = [y1(t0; r), y2(t0; r)], [y(t)]r = [y1(t; r), y2(t; r)] r ∈ (0, 1].

By using the extension principle of Zadeh, we have the membership function

f(t, y(t))(s) = sup{y(t)(τ)|s = f(t, τ)}, s ∈ R (4)

so f(t, y(t)) is a fuzzy number. From this it follows that

[f(t, y(t))]r = [f1(t, y(t); r), f2(t, y(t); r)], r ∈ (0, 1] (5)

where
f1(t, y(t); r) = min{f(t, u)|u ∈ [y1(t; r), y2(t; r)]},
f2(t, y(t); r) = max{f(t, u)|u ∈ [y1(t; r), y2(t; r)]}. (6)

We define
f1(t, y(t); r) = F [t, y1(t; r), y2(t; r)],
f2(t, y(t); r) = G[t, y1(t; r), y2(t; r)].

(7)
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Definition 3.1 A function f : R → RF is called a fuzzy function. If for
arbitrary fixed t0 ∈ R and ε > 0, a δ > 0 such that

|t − t0| < δ ⇒ D[f(t), f(t0)] < ε

exist, is said to be continuous.

Throughout this work we also consider fuzzy functions which are continuous
in metric D. Then the continuity of f(t, y(t); r) guarantees the existence of
the Definitionnite of f(t, y(t); r) for t ∈ [t0, T ] and r ∈ [0, 1], [6].
Therefore the functions G and F can be definite too.

4 Modified Euler’s Method

Consider the initial value problem

{
y′(t) = f(t, y(t)) , t ∈ [t0, T ]
y(t0) = y0

(8)

It is known that, the sufficient conditions for the existence of a unique
solution to (8) are that f to be continuous function satisfying the Lipschitz
condition of the following form:

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, L > 0.

We replace the interval [t0, T ] by a set of discrete equally spaced grid points

t0 < t1 < t2 < . . . < tN = T, h =
T − t0

N
, ti = t0 + ih, i = 0, 1, . . . , N.

to obtain the Euler method for the system (8), we apply Trapezoidal
numerical integration method. Integrate the differential equation
y′(t) = f(t, y(t)) over [tn, tn+1] to obtain

∫ tn+1

tn

y′(t) dt =

∫ tn+1

tn

f(t, y(t)) dt.

Therefore

y(tn+1) = y(tn) + h
2

[
f(tn, y(tn)) + f(tn+1, y(tn+1))

]
−h3

12
f (2)(ξ1, y(ξ1))

(9)

for some tn ≤ ξ1 ≤ tn+1. Equation (9) is an implicit equation in term of
y(tn+1). To avoid of solving such implicit equation we will substitute y(tn+1)
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by y(tn) + hf(tn, y(tn)) + h2

2
f ′(ξ2, y(ξ2)) in right hand of (9), where

ξ2 ∈ [tn, tn+1]. Therefore,

y(tn+1)

= y(tn) + h
2
f(tn, y(tn)) + h

2
f

(
tn+1, y(tn) + hf(tn, y(tn)) + h2

2
f ′(ξ2, y(ξ2))

)
−h3

12
f (2)(ξ1, y(ξ1)), tn ≤ ξ1 ≤ tn+1, tn ≤ ξ2 ≤ tn+1.

(10)
But we have

f
(
tn+1, y(tn) + hf(tn, y(tn)) + h2

2
f ′(ξ2, y(ξ2))

)
= f

(
tn+1, y(tn) + hf(tn, y(tn))

)
+ h2

2
f ′(ξ2, y(ξ2))fy(tn+1, ξ3)

(11)

where ξ3 is in between y(tn) + hf(tn, y(tn)) and
y(tn) + hf(tn, y(tn)) + h2

2
f ′(ξ2, y(ξ2)).

As the result of above we will have

y(tn+1) = y(tn) + h
2

[
f(tn, y(tn)) + f(tn+1, y(tn) + hf(tn, y(tn))

]
+h3

4
f ′(ξ2, y(ξ2))fy(tn+1, ξ3) − h3

12
f ′′(ξ1, y(ξ1))

(12)

Thus we have the following one-step explicit equation for calculation y(tn+1)
using y(tn):

y(tn+1) = y(tn) +
h

2

[
f(tn, y(tn)) + f(tn+1, y(tn) + hf(tn, y(tn))

]
(13)

with initial value y0 = y(t0).
By dropping the remainder term in (9), we obtain an equivalent equation

with (13), modified Euler’s method as following,

y(tn+1) = y(tn) +
h

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] n ≥ 0. (14)

Let y(0)(tn+1) = y(tn) + hf(tn, y(tn)) be a good initial guess of the solution
y(tn+1), and define

y(j+1)(tn+1) = y(tn) +
h

2
[f(tn, y(tn)) + f(tn+1, y

(j)(tn+1))], j = 0, 1, . . . (15)

which (15) is known as iterative solution of modified Euler’s method relation.
To analyze the iteration and to determine conditions under which it will
converge, subtract (15) from (14) to obtain

y(tn+1) − y(j+1)(tn+1) =
h

2
[f(tn, y(tn)) + f(tn+1, y

(j)(tn+1))]. (16)
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Use the Lipschitz condition in problem (8) to bound this with

|y(tn+1) − y(j+1)(tn+1)| ≤ hK

2
|y(tn+1) − y(j)(tn+1)| j ≥ 0, (17)

thus

|y(tn+1) − y(j+1)(tn+1)| ≤
(hK

2

)j+1

|y(tn+1) − y(0)(tn+1)|. (18)

If
hK

2
≤ 1

then the iterates y(j)(tn+1) will converge to y(tn+1) as j → ∞, and the
computation of yn+1 from yn contains a truncation error of O(h3), for more
details see [1].

5 Modified Euler’s Method for Numerical

Solution of FDEs

Let Y = [Y1, Y2] be the exact solution and y = [y1, y2] be the approximated
solution of the initial value equation(3) by using the one-step modified
method. Let,

[Y (t)]r = [Y1(t; r), Y2(t; r)] , [y(t)]r = [y1(t; r), y2(t; r)].

Also we note that throughout each integration step, the value of r is
unchanged. The exact and approximated solution at tn are denoted by

[Y (tn)]r = [Y1(tn; r), Y2(tn; r)] , [y(tn)]r = [y1(tn; r), y2(tn; r)] (0 ≤ n ≤ N),

respectively. The grid points at which the solution is calculated are

h =
T − t0

N
, ti = t0 + ih 0 ≤ i ≤ N.

By using the modified Euler method we obtain:

Y1(tn+1; r) = Y1(tn; r) + h
2
F [tn, Y1(tn; r), Y2(tn; r)]

+h
2
F

[
tn+1, Y1(tn; r) + hF [tn, Y1(tn; r), Y2(tn; r)]

, Y2(tn; r) + hG[tn, Y1(tn; r), Y2(tn; r)]
]

+h3A1(r)

(19)

and
Y2(tn+1; r) = Y2(tn; r) + h

2
G[tn, Y1(tn; r), Y2(tn; r)]

+h
2
G

[
tn+1, Y1(tn) + hF [tn, Y1(tn; r), Y2(tn; r)]

, Y2(tn; r) + hG[tn, Y1(tn; r), Y2(tn; r)]
]

+h3A2(r)

(20)
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where A = [A1, A2], [A]r = [A1(r), A2(r)] and

[A]r = [
1

4
f ′(ξ2, Y (ξ2)).fy(tn+1, ξ3) − 1

12
f ′′(ξ1, Y (ξ1)]r. (21)

Also we have

y1(tn+1; r) = y1(tn; r) + h
2
F [tn, y1(tn; r), y2(tn; r)]

+h
2
F

[
tn+1, y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)]

, y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]
] (22)

and
y2(tn+1; r) = y2(tn; r) + h

2
G[tn, y1(tn; r), y2(tn; r)]

+h
2
G

[
tn+1, y1(tn) + hF [tn, y1(tn; r), y2(tn; r)]

, y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]
] (23)

Next, we will show that y1(t; r) and y2(t; r) mentioned in the previous
method converge to Y1(t; r) and Y2(t; r), respectively whenever h → 0. In
order to prove these assertions, we first recall the following lemmas.

Lemma 5.1 Let the sequence of numbers {Wn}N
n=0 satisfy

|Wn+1| ≤ A|Wn| + B, 0 ≤ n ≤ N − 1,

for the given positive constants A and B. Then

|Wn| ≤ An|W0| + B
An − 1

A − 1
, 0 ≤ n ≤ N.

Proof. See[10]. �

Lemma 5.2 Let the sequence of numbers {Wn}N
n=0, {Vn}N

n=0 satisfy

|Wn+1| ≤ |Wn| + A max{|Wn|, |Vn|} + B,

|Vn+1| ≤ |Vn| + A max{|Wn|, |Vn|} + B,

for the given positive constants A and B. Then, denoting

Un = |Wn| + |Vn|, 0 ≤ n ≤ N,

we have

Un ≤ ĀnU0 + B̄
Ān − 1

Ā − 1
, 0 ≤ n ≤ N,

where Ā = 1 + 2A and B̄ = 2B.
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Proof. See[10]. �

Our next result determined the point wise convergence of the modified Euler
approximations to the exact solution. Let F [t, u, v] and G[t, u, v] be the
functions which are given by the equations (6), (7) where u and v are
constants and u ≤ v. Thus the domain of F and G are defined as the
following:

K = {(t, u, v)|t0 ≤ t ≤ T,−∞ < u ≤ v,−∞ < v < ∞}.
With the above notations in the following we will present the convergence
theorem.

Theorem 5.3 Let F (t, u, v) and G(t, u, v) belong to C1(RF) and the
partial derivatives of F and G be bounded over RF . Then for arbitrarily fixed
r, 0 ≤ r ≤ 1, the numerical solutions of (22) and (23) converge to the exact
solutions Y1(t; r) and Y2(t; r) uniformly in t.

Proof. It is sufficient to show

lim
h→0

y1(tN ; r) = Y1(tN ; r), lim
h→0

y2(tN ; r) = Y2(tN ; r)

where tN = T . Let Wn = Y1(tn; r) − y1(tn; r), Vn = Y2(tn; r) − y2(tn; r), by
using the equations (19), (20), (22) and (23), we get:

|Wn+1| ≤ |Wn|+Lhmax{|Wn|, |Vn|}+Lh[2Lhmax{|Wn|, |Vn|}+max{|Wn|, |Vn|}]+h3M1,

|Vn+1| ≤ |Vn|+Lhmax{|Wn|, |Vn|}+Lh[2Lhmax{|Wn|, |Vn|}+max{|Wn|, |Vn|}]+h3M2,

where M1, M2 are upper bound for A1(r), A2(r) respectively. Hence,

|Wn+1| ≤ |Wn| + Lh{1 + (1 + 2Lh)}max{|Wn|, |Vn|} + h3M,

|Vn+1| ≤ |Vn| + Lh{1 + (1 + 2Lh)}max{|Wn|, |Vn|} + h3M,

where M = max{M1, M2}, and L > 0 is a bound for the partial derivatives of
F and G. Therefore from Lemma 5.2, we obtain

|Wn| ≤ (1 + 2Lh)2n|U0| + 2h3M
(1 + 2Lh)2n − 1

(1 + 2Lh)2 − 1
,

|Vn| ≤ (1 + 2Lh)2n|U0| + 2h3M
(1 + 2Lh)2n − 1

(1 + 2Lh)2 − 1
,

where |U0| = |W0| + |V0|. In particular,

|WN | ≤ (1 + 2Lh)2N |U0| + 2h3M
(1 + 2Lh)

2(T−t0)
h − 1

(1 + 2Lh)2 − 1
,
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|VN | ≤ (1 + 2Lh)2N |U0| + 2h3M
(1 + 2Lh)

2(T−t0)
h − 1

(1 + 2Lh)2 − 1
,

since W0 = V0 = 0, we have

|WN | ≤ M
e4L(T−t0) − 1

2L(1 + hL)
h2, |VN | ≤ M

e4L(T−t0) − 1

2L(1 + hL)
h2,

Thus, if h → 0, we conclude WN → 0 and VN → 0, which completes the
proof.�

By using modified Euler method (14), we obtain:

y1(tn+1; r)

= y1(tn; r) + h
2

[
F (tn, y1(tn; r), y2(tn; r)) + F (tn+1, y1(tn+1; r), y2(tn+1; r))

]
,

y2(tn+1; r)

= y2(tn; r) + h
2

[
G(tn, y1(tn; r), y2(tn; r)) + G(tn+1, y1(tn+1; r), y2(tn+1; r))

]
,

(24)
and from (13), we have y1(tn+1; r) and y2(tn+1; r) in right side of above
equations as follows:

y1(tn+1; r) = y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)],
y2(tn+1; r) = y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)].

(25)

From section 5, we consider initial guesses,

y
(0)
1 (tn+1; r) = y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)],

y
(0)
2 (tn+1; r) = y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)],

(26)

for the iterative solutions below, respectively:

y
(j+1)
1 (tn+1; r)

= y1(tn; r) + h
2

[
F (tn, y1(tn; r), y2(tn; r)) + F (tn+1, y

(j)
1 (tn+1; r), y

(j)
2 (tn+1; r))

]
,

y
(j+1)
2 (tn+1; r)

= y2(tn; r) + h
2

[
G(tn, y1(tn; r), y2(tn; r)) + G(tn+1, y

(j)
1 (tn+1; r), y

(j)
2 (tn+1; r))

]
.

(27)
Following lemma is needed to prove next important theorem.

Lemma 5.4 Let F (t, u, v) and G(t, u, v) belong to C1(RF) and the partial
derivatives of F and G be bounded over RF . Then for arbitrarily fixed r,
0 ≤ r ≤ 1,

D(y(tn+1), y
(0)(tn+1)) ≤ h2L(1 + 2C),

where L is a bound of partial derivatives of F and G, and
C = max{|G[tN , y1(tN ; r), y2(tN−1; r)]|r ∈ [0, 1]} < ∞.
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Proof. By substituting (25) in (24) and subtraction obtained equation from
(26), we get,

y1(tn+1; r) − y
(0)
1 (tn+1; r)

= h
2

{
F

[
tn+1, y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r)

+hG[tn, y1(tn; r), y2(tn; r)]
]
− F [tn, y1(tn; r), y2(tn; r)]

}
,

y2(tn+1; r) − y
(0)
2 (tn+1; r)

= h
2

{
G

[
tn+1, y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r)

+hG[tn, y1(tn; r), y2(tn; r)]
]
− G[tn, y1(tn; r), y2(tn; r)]

}
,

and from those, we can get,

y1(tn+1; r) − y
(0)
1 (tn+1; r)

= h
2

{
F

[
tn+1, y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r)

+hG[tn, y1(tn; r), y2(tn; r)]
]

−F
[
tn, y1(tn; r) + hF [tn, y1(t;r), y2(tn; r)], y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]

]

+F
[
tn, y1(tn; r) + hF [tn, y1(t;r), y2(tn; r)], y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]

]
−F [tn, y1(tn; r), y2(tn; r)]

}
,

(28)

y2(tn+1; r) − y
(0)
2 (tn+1; r)

= h
2

{
G

[
tn+1, y1(tn; r) + hF [tn, y1(tn; r), y2(tn; r)], y2(tn; r)

+hG[tn, y1(tn; r), y2(tn; r)]
]

−G
[
tn, y1(tn; r) + hF [tn, y1(t;r), y2(tn; r)], y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]

]

+G
[
tn, y1(tn; r) + hF [tn, y1(t;r), y2(tn; r)], y2(tn; r) + hG[tn, y1(tn; r), y2(tn; r)]

]
−G[tn, y1(tn; r), y2(tn; r)]

}
.

(29)

Let L > 0 is a bound for the partial derivatives of F and G, following
relations are obtained from applying the mean value theorem to (28) and
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(29):

|y1(tn+1; r) − y
(0)
1 (tn+1; r)|

≤ h2L
2

{
1 + |F [tn, y(tn; r), y2(tn; r)]| + |G[tn, y1(tn; r), y2(tn; r)]|

}
≤ h2L

2
{1 + 2|G(tn, y1(tn; r), y2(tn; r)]|},

|y2(tn+1; r) − y
(0)
2 (tn+1; r)|

≤ h2L
2

{
1 + |F [tn, y(tn; r), y2(tn; r)]| + |G[tn, y1(tn; r), y2(tn; r)]|

}
≤ h2L

2
{1 + 2|G(tn, y1(tn; r), y2(tn; r)]|}.

(30)

In particular,

|y1(tN); r) − y
(0)
1 (tN ; r)| ≤ h2L

2
(1 + 2C),

|y2(tN ; r) − y
(0)
2 (tN ; r)| ≤ h2L

2
(1 + 2C),

by adding two inequalities, one obtains,

|y1(tN ); r) − y
(0)
1 (tN ; r)| + |y2(tN ; r) − y

(0)
2 (tN ; r)| ≤ h2L(1 + 2C).

Hence

D(y(tN), y(0)(tN)) ≤ h2L(1 + 2C), (31)

This completes the proof. �

Theorem 5.5 Let F (t, u, v) and G(t, u, v) belong to C1(RF) and the
partial derivatives of F and G be bounded over RF and 2Lh < 1. Then for
arbitrarily fixed 0 ≤ r ≤ 1, the iterative numerical solutions of y

(j)
1 (tn; r) and

y
(j)
2 (tn; r) converge to the numerical solutions y1(tn; r) and y2(tn; r) in

t0 ≤ tn ≤ tN , when j → ∞.

Proof. It is sufficient to show

lim
j→∞

y
(j)
1 (tN ; r) = y1(tN ; r), lim

j→∞
y

(j)
2 (tN ; r) = y2(tN ; r)

where tN = T . For n = 0, 1, . . . , N − 1, By using the equations (24) and (27),
we get:

y1(tn+1; r) − y
(j+1)
1 (tn+1; r)

= h
2
{F [tn+1, y1(tn+1; r), y2(tn+1; r)] − F [tn+1, y

(j)
1 (tn+1; r), y

(j)
2 (tn+1; r)]},

y2(tn+1; r) − y
(j+1)
2 (tn+1; r)

= h
2
{G[tn+1, y1(tn+1; r), y2(tn+1; r)] − G[tn+1, y

(j)
1 (tn+1; r), y

(j)
2 (tn+1; r)]}.

(32)
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Let L > 0 is a bound for the partial derivatives of F and G, following
relations are obtained from applying the mean value theorem to (32):

|y1(tn+1; r) − y
(j+1)
1 (tn+1; r)|

≤ Lh
2
{|y1(tn+1; r) − y

(j)
1 (tn+1; r)| + |y2(tn+1; r) − y

(j)
2 (tn+1; r)|},

|y1(tn+1; r) − y
(j+1)
1 (tn+1; r)|

≤ Lh
2
{|y1(tn+1; r) − y

(j)
1 (tn+1; r)| + |y2(tn+1; r) − y

(j)
2 (tn+1; r)|}.

(33)

Thus, from Definition D, Hausdroff distance, in section 2, we will have:

|y1(tn+1; r) − y
(j+1)
1 (tn+1; r)| ≤ LhD(y(tn+1), y

(j)(tn+1)),

|y2(tn+1; r) − y
(j+1)
2 (tn+1; r)| ≤ LhD(y(tn+1), y

(j)(tn+1)).

Hence, adding two inequalities gives,

D(y(tn+1), y
(j+1)(tn+1)) ≤ 2LhD(y(tn+1), y

(j)(tn+1))
...

D(y(tn+1), y
(j+1)(tn+1)) ≤ (2Lh)j+1D(y(tn+1), y

(0)(tn+1)).

Using lemma 5.4 in special case, we get:

D(y(tN), y(j+1)(tN)) ≤ 1

2
(2Lh)j+2h(1 + 2C).

The desired result finally follows from condition 2Lh ≤ 1,

lim
j→∞

D([y(tN)]r, [y
(j)(tN)]r) = 0.

The proof is complete. �

6 Numerical Results

In this section we present two numerical examples. In order to see the rate of
accuracy between theoretical exact solution and our numerical solution we
have devoted error table for each of examples, the errors are obtained from
D[Y (t; r), y(t; r)] for t = tN , r ∈ [0, 1].

As well as the convergence theorem shows, the numerical results also show
that for smaller stepsize h we obtain smaller errors. The exact solutions and
approximated solutions by Euler method and presented method(Mod.Euler
method) are plotted in figure 1 and figure 2 respectively for example 1 and
example 2.
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Figure 1: h=0.2

Example 6.1 Consider the initial value problem [10]

{
y′(t) = y(t), t ∈ [0, 1]
y(0) = (0.75 + 0.25r, 1.125 − 0.125r)

The exact solution at t = 1 is given by

Y (1; r) = [(0.75 + 0.25 r)e, (1.125 − 0.125 r)e], 0 ≤ r ≤ 1.

Using iterative solution of modified Euler’s method, we have

y1(0; r) = 0.25 + 0.25 r, y2(0; r) = 1.125 − 0.125 r,

and by

y
(0)
1 (ti+1; r) = y1(ti; r) + hy1(ti; r),

y
(0)
2 (ti+1; r) = y2(ti; r) + hy2(ti; r),

where i = 0, 1, . . . , N − 1 and h = 1
N

. Now, using these equations as an initial
guess for following iterative solutions, respectively,

y
(j)
1 (ti+1; r) = y1(ti; r) + h

2
[y1(ti; r) + y

(j−1)
1 (ti+1; r)],

y
(j)
2 (ti+1; r) = y2(ti; r) + h

2
[y2(ti; r) + y

(j−1)
2 (ti+1; r)],

where j = 1, 2, 3. Thus we have y1(ti; r) = y
(3)
1 (ti; r) and y2(ti; r) = y

(3)
2 (ti; r),

for i = 1, . . . , N .
Therefore, Y1(1; r) ≈ y

(3)
1 (1; r) and Y2(1; r) ≈ y

(3)
2 (1; r) are obtained. Table 1

shows estimation of error for different values of r ∈ [0, 1] and h.
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Table 1

h 0.1 0.01 0.001 .0001
r
0 0.0025350660 0.0000254824 0.0000002548 0.0000000025

0.2 0.0024787331 0.0000249162 0.0000002491 0.0000000024
0.4 0.0024223964 0.0000243499 0.0000002435 0.0000000024
0.6 0.0023660616 0.0000237836 0.0000002378 0.0000000023
0.8 0.0023097268 0.0000232173 0.0000002321 0.0000000023
1 0.0022533920 0.0000226510 0.0000002265 0.0000000022

Example 6.2 Consider the fuzzy initial value problem

y′(t) = k1y
2(t) + k2, y(0) = 0,

where kj > 0(j = 1, 2) are triangular fuzzy numbers.

The exact solution is given by

Y1(t; r) = l1(r) tan(w1(r)t),
Y2(t; r) = l2(r) tan(w2(r)t),

with
l1(r) =

√
k2,1(r)/k1,1(r), l2(r) =

√
k2,2(r)/k1,2(r),

w1(r) =
√

k1,1(r)k2,1(r), w2(r) =
√

k1,2(r)k2,2(r),

where
[k1]r = [k1,1(r), k1,2(r)] and [k2]r = [k2,1(r), k2,2(r)],

k1,1(r) = 0.5 + 0.5r, k1,2(r) = 1.5 − 0.5r,
k2,1(r) = 0.75 + 0.25r, k2,2(r) = 1.25 − 0.25r.

Now by using equations below

y1(0; r) = y2(0; r) = 0,

y
(0)
1 (ti+1; r) = y1(ti; r) + h(k11y

2
1(ti; r) + k21),

y
(0)
2 (ti+1; r) = y2(ti; r) + h(k12y

2
2(ti; r) + k22),

for i = 0, 1, . . . , N − 1 and h = 1
N

, as an initial guess for following iterative
solutions, respectively,

y
(j)
1 (ti+1; r) = y1(ti; r) + h

2
[k11y

2
1(ti; r) + k11(y

(j−1)
1 (ti+1; r))

2 + 2k21]

y
(j)
2 (ti+1; r) = y2(ti; r) + h

2
[k12y

2
2(ti; r) + k12(y

(j−1)
2 (ti+1; r))

2 + 2k22]

where j = 1, 2, 3. Similar to example 6.1,we have y1(ti; r) = y
(3)
1 (ti; r) and

y2(ti; r) = y
(3)
2 (ti; r), for i = 1, . . . , N .



Fuzzy Differential Equations 2245

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

. Euler 
Mod.Euler º 

Exact 

Figure 2: h=0.1

Therefore,Y1(1; r) ≈ y
(3)
1 (1; r) and Y2(1; r) ≈ y

(3)
2 (1; r). Table 2 shows

estimation of error for different values of r ∈ [0, 1] and h.

Table 2

h 0.1 0.01 0.001 .0001
r
0 0.4417099428 0.0079388827 0.0000845005 0.0000008504

0.2 0.18106314062 0.0027073124 0.0000282513 0.0000001172
0.4 0.0847937757 0.0011335243 0.0000116861 0.0000001172
0.6 0.0433920492 0.0005375096 0.0000054962 0.0000000550
0.8 0.0235983073 0.0002766096 0.0000028118 0.0000000281
1 0.0133874352 0.0001505383 0.0000015235 0.0000000152
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7 Conclusion

In this work we have applied iterative solution of modified Euler’s method for
numerical solution of fuzzy differential equations. It is obvious that the
method introduced in this paper with O(h3) performs better than Euler’s
method with O(h) in [10].
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