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Abstract. Contraction maps on probalistic metric spaces were first defined
and studied by Sehgal [12]. They were subsequently studied by Sherwood [13],
where firstly appeared the fundamental problem of ”bounded orbits”, This
influenced many authors, and, consequently, a number of new results in this
line followed (see, for example [3], [5],).
In the present paper, we give two new results which encompasses most of such
generalization of the Sherwood theorem, further our result also extended many
other results form metric spaces to general probalistic metric spaces. These
results are of interest in view of analogous results in metric spaces (see, for
example [14] and [8]) and in view of recent activity in fixed point theory of
probalistic metric spaces and its applications (see, for example [1], [3-4], [5]
and [6]).
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1. Introduction and Preliminaries

Our terminology and notation for probabilistic metric spaces are the same
as those of Schweizer and Sklar [11]. A nonnegative real function f defined on
�+ ∪ {∞} is called a distance distribution function (briefly, a d.d.f.) if it is
nondecreasing, left continuous on (0,∞), with f(0) = 0 and f(∞) = 1. The
set of all d.d.f’s will be denoted by Δ+; while the set of all f in Δ+ such that
lims→∞ f(s) = 1 is denoted by D+.

Example 1.1. For any a in �+ ∪ {∞} the unit step at a is the function εa

belonging to Δ+ defined by

εa(x) =

{
0, for 0 ≤ x ≤ a,
1, for a < x ≤ ∞,

for 0 ≤ a < ∞. While

ε∞(x) =

{
0, for 0 ≤ x < ∞,
1, for x = ∞.

Definition 1.1. Consider f and g be in Δ+, h ∈ (0, 1], and let (f, g; h) de-
notes the condition

0 ≤ g(x) ≤ f(x + h) + h,

for all x in (0, 1
h
).

The modified Lévy distance is the function dL defined on Δ+ × Δ+ by

dL(f, g) = inf{h : both conditions (f, g; h) and (g, f ; h) hold}.
Note that for any f and g in Δ+, both (f, g; 1) and (g, f ; 1) hold, hence dL

is well-defined and dL(f, g) ≤ 1.
Let us begin by recalling the following definitions and technical results from
[11].

Lemma 1.1. [11] The function dL is a metric on Δ+.

Definition 1.2. A sequence {Fn} of d.d.f ’s is said to converge weakly to a
d.d.f. F if and only if the sequence {Fn(x)} converges to F (x) at each conti-
nuity point x of F .

Lemma 1.2. [11] Let {Fn} be a sequence of functions in Δ+, and let F be in
Δ+ Then {Fn} converges weakly to F if and only if dL(Fn, F ) → 0.

Lemma 1.3. [11] The metric spaces (Δ+, dL) is compact.

Definition 1.3. We say that τ is a triangle function on Δ+ if it assigns a
d.d.f. in Δ+ to every pair of d.d.f ’s in Δ+ × Δ+ and satisfies the following
conditions:

τ(F, G) = τ(G, F ),

τ(F, G) ≤ τ(K, H) whenever F ≤ K, G ≤ H,

τ(F, ε0) = F,

τ(τ(F, G), H) = τ(F, τ(G, H)).
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A commutative, associative and nondecreasing mapping T : [0, 1] × [0, 1] →
[0, 1] is called a t-norm if and only if

(i) T (a, 1) = a for all a ∈ [0, 1],

(ii) T (0, 0) = 0.

Example 1.2. One can easily check that T (a, b) = Min(a, b) is a t-norm,
and that for any t-norm T we have T (a, b) ≤ Min(a, b). Moreover if T is
left-continuous, then the operation τT : Δ+ × Δ+ → Δ+ defined by

τT (F, G)(x) = sup{T (F (u), G(v)) : u + v = x},
is a triangle function.

Lemma 1.4. [11] If T is continuous, then τT is uniformly continuous on
(Δ+, dL).

Definition 1.4. A probabilistic metric space (briefly, a PM space) is a triple
(M, F, τ) where M is a nonempty set, F is a function from M × M into Δ+,
τ is a triangle function, such that the following conditions are satisfied for all
p, q, r in M :
(i) Fpp = ε0,
(ii) Fpq �= ε0 if p �= q,
(iii) Fpq = Fqp,
(iv) Fpr ≥ τ(Fpq, Fqr).
If τ = τT for some t-norm T , then (M, F, τT ) is called a Menger space.

Definition 1.5. Let (M, F ) be a probabilistic semi-metric space (i.e., (i), (ii)
and (iii) of Definition1.4 are satisfied). For p in M and t > 0, the strong
t-neighborhood of p is the set

Np(t) = {q ∈ M : Fpq(t) > 1 − t},
and the strong neighborhood system for M is

{Np(t); p ∈ M, t > 0}.
Lemma 1.5. [11] Let (M, F, τ) be a PM space. If τ is continuous, then the
family 
 consisting of ∅ and all unions of elements of this strong neighborhood
system for M determines a Hausdorff topology for M .

An immediate consequence of Lemma 1.5 is that the family {Np(t) : t > 0}
is a neighborhood system of p for the topology 
.

Lemma 1.6. [11] Let {pn} be a sequence in M . Then

pn → p if and only if dL(Fpnp, ε0) → 0 if and only if δ(pn, p) → 0.

Similarly, {pn} is a strong Cauchy sequence if and only if

lim
n,m→∞

dL(Fpnpm, ε0) = 0.
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Lemma 1.7. [11] If {pn} and {qn} are sequences such that pn → p and qn →
q (resp. are Cauchy sequences in M), then dL(Fpnqn, Fpq) → 0, i.e., Fpnqn

converges weakly to Fpq (resp. {Fpnqn} is a Cauchy sequence in (Δ+, dL)).

Here and in the sequel, when we consider a PM space (M, F, τ), we always
assume that τ is continuous and that M is endowed with the topology 
.
Let us recall the definition of the probabilistic diameter of a nonempty set in
a PM space introduced by Egbert [2].

Definition 1.6. Let (M, F, τ) be a PM space and A a nonempty subset of M .
The probabilistic diameter is the function DA defined on �+ ∪ {∞} by

DA(x) =

{
limt→x− ϕA(t), for 0 ≤ x < ∞
1, for x = ∞,

where
ϕA(s) = inf{Fpq(s) : p, q ∈ A}.

It is immediate that DA is in Δ+ for any A ⊂ M .

Lemma 1.8. [11] The probabilistic diameter DA has the following properties:
(i) DA = ε0 iff A is a singleton set.
(ii) If A ⊂ B, then DA ≥ DB.
(iii) For any p, q ∈ A, Fpq ≥ DA.
(iv) If A = {p, q}, then DA = Fpq.
(v) If A ∩ B is nonempty, then DA∪B ≥ τ(DA, DB).
(vi) DA = DA, where A is the strong closure of A.

The diameter of a nonempty set A in a metric space is either finite or infinite.
Accordingly, A is either bounded or unbounded. In a PM space, on the other
hand, there are three distinct possibilities.

Definition 1.7. [11] A nonempty set A in a PM space is
(i) bounded if limt→∞ DA(t) = 1, i.e., if DA is in D+;
(ii) semibounded if 0 < limt→∞ DA(t) < 1;
(iii) unbounded if limt→∞ DA(t) = 0, i.e., if DA = ε∞.

Example 1.3. Let (M, d) be a metric space. Define F : M × M → Δ+ by

Fpq = εd(p,q).

We can check easily that (M, F, τMin) is a PM (Menger) space, and

Npt = {q ∈ M : d(p, q) < t},
for all t in (0, 1). So, (M, F, τMin) is a complete PM space if and only if (M, d)
is a complete metric space. Moreover, for a nonempty subset A of M, we have

DA = εdiam(A),

where
diam(A) = sup{d(p, q) : p, q ∈ A}.
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2. Main results

In all this note, (M, F, τ) denotes a complete PM space, and T is a map
from M into itself. Powers of T are defined by T 0x = x and T n+1x =
T (T nx) , n ≥ 0. When there is no risk of ambiguity, we will use the notation
xk = T kx, in particular x0 = x, x1 = Tx, for the sake of brevity. The set
O(x) = {T nx : n = 0, 1, 2, ...} is called the orbit (starting at x ), while the
set O(x, y) is the union of two orbits starting at x and y. The letter Φ denotes
the set of functions satisfying:

(A′
1) φ : [0,∞] → [0,∞] is lower semi-continuous from the left,

nondecreasing and φ(0) = 0 ;
(A′

2) For each t ∈ (0,∞), φ(t) > t and φ(+∞) = +∞.

Consider also the assertions:

(FP) T has one and only one fixed point.
(SA) There exists z ∈ M such that T kx → z as k → ∞

for any x ∈ M , i.e., the successive approximations converge.

(C) For x, y ∈ M and s > 0

FTxTy(s) ≥ DO(x,y)(φ(s)).

The following lemma is obvious. We will need it below.

Lemma 2.1. Let φ ∈ Φ. Then we have
(A1) For every s ∈ (0,∞]

lim
n→∞

φn(s) = ∞.

(A2) For any G ∈ D+ and s ∈ (0,∞]

lim
n→∞

G(φn(s)) = 1.

Let us now state our main result.

Theorem 2.1. (C) implies (FP, SA), if for any x, y ∈ M the set O(x, y) is
bounded.

Note that the hypothesis, say (B), ”for any x, y ∈ M the set O(x, y) is
bounded” implies that the PM space (M, F, τ) has the property that RanF ⊂
D+, which is a necessary condition for the uniqueness of fixed points when they
exist. Notice also that by Lemma 1.8-v, we can replace the hypothesis (B) by
”for any x ∈ M the set O(x) is bounded” in the case when D+ is closed under
τ . This is the case if M is a metric space, F and τ are as in Example 1.3.
But in General, even if O(x) and O(y) are bounded, it is not necessary that
O(x, y) is bounded. For example, consider M = {p, q} and Fpq = 1

2
ε0 + 1

2
ε∞,

then the identity function on M satisfies condition (C) with two fixed points
and O(p, q) is only semi-bounded.
Proof. (C) ⇒ (SA) Let x, y ∈ M and s > 0. By (C) and Lemma 1.8 (ii) we
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have

FT ixT jy(t) ≥ DO(T i−1x,T j−1y)(φ(t))

≥ DO(x,y)(φ(t)),

for i, j ≥ 1 and s > t ≥ 0. This means that

Fuv(t) ≥ DO(x,y)(φ(t)), for u, v ∈ O(Tx, Ty).

Taking the infimun over all u, v ∈ O(Tx, Ty), we obtain

ϕO(Tx,T y)(t) ≥ DO(x,y)(φ(t)). (1)

Since DO(x,y) ∈ Δ+ and φ ∈ Φ, as t → s in (1), we obtain

DO(Tx,T y)(s) ≥ DO(x,y)(φ(s)).

It follows that for any k ≥ 1

DO(Tkx,T ky)(s) ≥ DO(x,y)(φ
k(s)). (2)

By Lemma 2.1 (A2), as k → ∞ in (2), we obtain

lim
k→∞

DO(Tkx,T ky)(s) = 1.

This clearly means that DO(Tkx,T ky) ⇀ ε0, since s is an arbitrary positive
number. So, in particular we have

DO(xk) ⇀ ε0,

as k → ∞. And since for any m ≥ k > 0, we have Fxmxk ≥ DO(xk). It follows

that {xk} is a Cauchy sequence in a complete PM space (M, F, τ). Then, there
exists a point z ∈ M such that xn → z as n → ∞. By Lemma 1.8 (ii-vi), we
have

lim
k→∞

Fzyk(s) ≥ lim
k→∞

DO(Tkx,T ky)
(s) = lim

k→∞
DO(Tkx,T ky)(s) = 1,

since s is an arbitrary positive number. Then, it follows from Definition 1.2
that

Fzyk ⇀ ε0.

This means that yk → z as k → ∞, by Lemma 1.2 and Lemma 1.6.
(C) ⇒ (FP) According to (C) ⇒ (SA) there exists z ∈ M such that xk →
z as k → ∞ for all x ∈ M . We want to show that z is a fixed point of T . In
order to do this, we shall show that DO(z) = ε0, i.e., for any α > 0, DO(z)(α) =
1.
Assume that there is α > 0 such that DO(z)(α) < 1. Since φ ∈ Φ, it is easy to
show by contradiction that there exists t > 0 such that

α > t and φ(t) > α.

Next, note that for ε =
1−DO(z)(α)

3
> 0, there is μ > 0 such that for t+μ < t′ < α

1 + 2DO(z)(α)

3
> ϕO(z)(t

′).
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From the definition of ϕO(z)(t
′), then there exist two sequences {p(k)} and {q(k)}

such that 0 ≤ p(k) < q(k) and

Fzp(k)zq(k)(t′) → ϕO(z)(t
′) as k → ∞.

Since lim zk = z, we have that

Fzkzl(t′) >
1 + DO(z)(α)

2
> ϕO(z)(t

′),

for large k, l, say for k, l ≥ p0, and therefore p(k) = p infinitely many values
of k, where 0 ≤ p ≤ p0. Hence there is a subsequence {r(k)} of {q(k)} such
that

Fzpzr(k)(t′) → ϕO(z)(t
′) as k → ∞.

If r(k) = q for infinitely many values of k, then Fzpzq(t′) = ϕO(z)(t
′); if not, a

subsequence {v(k)} of {r(k)} converges to ∞. Since the points of discontinuity
of Fzpz are countable, there is t′′ ∈ (t, t′) a point of continuity of Fzpz. Then,

ϕO(z)(t
′) = lim

k→∞
Fzpzv(k)(t′) ≥ lim

k→∞
Fzpzv(k)(t′′) = Fzpz(t

′′).

In all cases, there exist p, q ≥ 0 and y ∈ (t + μ, α) such that

ϕO(z)(t
′) ≥ Fzpzq(y).

• If p, q ≥ 1, then (C) implies

ϕO(z)(t
′) ≥ Fzpzq(y) ≥ DO(zp−1,zq−1)(φ(y)) ≥ DO(z)(φ(t)).

• If p = 0 ≤ q, for the same reasons as above, there is y′ ∈ (t, y), a point of
continuity of Fzqz. Then,

ϕO(z)(t
′) ≥ Fzzq(y) ≥ Fzzq(y′) = lim

k→∞
Fzkzq(y′) ≥ DO(z)(φ(y′)) ≥ DO(z)(φ(t)).

In both cases, we have

ϕO(z)(t
′) ≥ DO(z)(φ(t)).

As t′ → α, we obtain

DO(z)(α) ≥ DO(z)(φ(t)).

Since for s ∈ (t, α), we have φ(s) > α. A similar argument shows that for
s ∈ (t, α) we have

DO(z)(α) ≥ DO(z)(φ(s)).

As s → α, we obtain

DO(z)(α) ≥ DO(z)(φ(α)),

that is DO(z)(α) = DO(z)(φ(α)) < 1. Continuing in this manner we can con-
struct by induction a sequence {αi} such that

αi = φi(α) and DO(z)(φ
i(α)) = DO(z)(α) < 1,

with α0 = α and α1 = φ(α). But this is impossible since DO(z) ∈ D+ and
φi(α) → ∞ as i → ∞. Hence DO(z)(α) = 1 for α > 0, i.e, DO(z) = ε0. Then
from Lemma 1.8 (i), O(z) is a singleton, that is z is a fixed point of T . Now
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suppose that there is another fixed point y(y �= x), of T . By Lemma 1.8 (iv)
and (C), for s ∈ (0,∞] we have

Fxy(s) ≥ Fxy(φ
n(s)), (3)

for all n ≥ 1. Using Fx,y ∈ D+, as n → ∞ in (3) we get Fxy(s) = 1, then
Fxy = ε0, hence x = y which is a contradiction. This completes the proof of
the Theorem.

2.1. Common Fixed Point Theorem in PM space. Let S be a semigroup
of selfmaps on PM space (M, F, τ). For any x ∈ M , the orbit of x under S
starting at x is the set O(x) defined to be {x} ∪ Sx, where Sx is the set
{g(x) : g ∈ S}. For x, y in M , the set O(x, y) is the union of O(x) and O(y).
Recall that a semigroup S is said to be left reversible if, for any f, g in S, there
are a, b such that fa = gb. It is obvious that left reversibility is equivalent to
the statement that any two right ideals of S have nonempty intersection.

Theorem 2.2. Suppose that S is a left reversible semigroup of selfmaps on a
complete PM space (M, F, τ) such that the following conditions (B′

1) and (B′
1)

are satisfied:

(B′
1) For any x, y in M , the orbit O(x, y) is bounded.

(B′
2) There exists a function φ ∈ Φ such that Ffxfy(s) ≥ DOf (x,y)(φ(s))

for any f in S, x, y in M and s ∈ (0,∞] .

Then, S has a unique common fixed point z and, moreover, for any f ∈ S and
x ∈ M , the sequence of iterates {fn(x)} converges to z.

Proof. It follows from Theorem 2.1 that each f ∈ S has a unique fixed point
zf in M and that for any x ∈ M , the sequence of iterates {fn(x)} converges to
zf . So, to complete the proof it suffices to show that zf = zg for any f, g ∈ S.
Let n be any positive integer. The left reversibility of S shows that there are
an and bn in S such that fnan = gnbn. So,

Fzfzg ≥ τ(Fzf fnan(x), Fgnbn(x)zg). (4)

Also, condition (B′
2) implies that

Ffn(x)fnan(x) ≥ DO(x,an(x))(φ
n(j)) ≥ DO(x)(φ

n(j)),

where j is the identity function on �+.
Letting n → ∞ in the last inequality and using the fact that DO(x) is in D+

we obtain that

Ffn(x)fnan(x) ⇀ ε0. (5)

Since

Fzf fnan(x) ≥ τ(Fzf fn(x), Ffn(x)fnan(x)). (6)

Letting n → ∞ in (6) and using Fzf fn(x) ⇀ ε0, we get

Fzf fnan(x) ⇀ ε0.
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Likewise, we also have Fzggnbn(x) ⇀ ε0, which implies that, as n → ∞ in (4) we
obtain that Fzf zg = ε0. i.e., zf = zg. This completes the proof of the Theorem.

3. Relative Results

Let (M, d) be a complete metric space. Define F : M × M → Δ+ by

Fpq(s) = εd(p,q)(s).

It is easy to see that (M, F, τMin) is a complete PM space and for A ⊂
M, DA = εdiam(A) which implies that if A is bounded in (M, d) then it is
in (M, F, τMin). Let T ( S ) be a self-map of (is a left reversible semigroup
of selfmaps on ) (M, d) and ϕ : [0,∞) → [0,∞) is a gauge function i.e., it is
upper semi-continuous, increasing, ϕ(0) = 0 and ϕ(s) < s for s > 0. Suppose
that T ( S ) satisfies the following condition

d(Tx, Ty) ≤ ϕ(diam(OT (x, y))) x, y ∈ M. (C1)

( d(fx, fy) ≤ ϕ(diam(Of (x, y))) for any f in S and x, y in M. (C2) )

Then, there exists φ : (0,∞] → (0,∞] with the property that T ( S ) sat-
isfies (C) ((B′

2) of Theorem 2.2). Moreover, the function φ is in Φ. In
fact, if ϕ : [0,∞) → [0,∞) is a gauge function, then Chang constructed
[1] a strictly increasing continuous function α : [0,∞) → [0,∞) such that
α(0) = 0 and ϕ(s) ≤ α(s) < s for s > 0. For example, take φ as follows

φ(s) =

{
α−1(s), if 0 ≤ s < limt→∞ α(t),
+∞, if s ≥ limt→∞ α(t).

Define also the condition (C3) by

d(Tx, Ty) ≤ ϕ(diam({x, y, x1, y1}) x, y ∈ M.

Walter [14] has shown that under hypothesis (C3) all orbits are bounded when-
ever ϕ satisfies s − ϕ(s) → ∞ as s → ∞.
Exploiting these observations yields the following results

Corollary 3.1. [14, Thm 2] (C1) implies (FP, SA), if all orbits are bounded.

Corollary 3.2. [8, Thm 2.2] Suppose S is a left reversible semigroup of self-
maps on a complete metric space (M, d) such that the following conditions
(C ′

1) and (C2) are satisfied:

(C ′
1) For any x in M , the orbit O(x) is bounded.

(C2) There exists a gauge function ϕ such that d(fx, fy) ≤ ϕ((diam(Of (x, y)))
for any f in S, and x, y in M .

Then S has a unique common fixed point z. Moreover, for any f ∈ S and
x ∈ M , the sequence of iterates {fn(x)} converges to z.

Corollary 3.3. [14, Thm 4] (C3) implies (FP, SA) whenever ϕ satisfies s −
ϕ(s) → ∞ as s → ∞.
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