
Applied Mathematical Sciences, Vol. 1, 2007, no. 44, 2153 - 2161 

 

Two Dimensional Free Surface Flow Computation  
 

F. Guechi, H. Mekias and A. Merzougui 
 

Department of Mathematics 
Ferhat Abbas University, Setif 19000, Algeria 

f_guechi@yahoo.fr 
 

Abstract 
 

A two-dimensional free surface potential flow of a liquid poured from a container 
is calculated when the liquid runs along the underside of the spout. The effect of 
surface tension is taken into consideration and gravity is neglected. We computed 
numerically the solutions for the free-surface profiles using boundary–integral 
equation. The numerical computation shows that the solutions are found for 
different values of α  and a train of capillary waves in the far field 
for 10164 <≤α. . No solutions were found for α  < 4.16. 
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1. Introduction 
 
Free surface flows of liquid poured from a container runs along the underside of 
the spout have been studied by many authors [1-4]. Scheidegger [1] took the idea 
of the teapot effect and explained the formation of hoodoos and made interesting 
calculation considering that the fluid is water. Keller [2] showed that it is 
explained by the Bernoulli principle and that the pressure is low where the 
velocity is high, so that the atmospheric pressure pushes the flowing fluid against 
the bottom of the spout. Keller gave an exact solution of the problem when 
neglecting gravity and surface tension. Vanden-Broeck and Keller [3] calculated 
the flow numerically for various configuration of the lip of the container.  
In this paper, we approximate this natural phenomenon by considering a two-
dimensional flow over a semi infinite horizontal plate. We neglect gravity and 
take into consideration the effect of surface tension. The fluid is assumed to be 
inviscid, incompressible and the flow is irrotational. The flow is bounded by the 
free surface ICJ  and the horizontal wall IOI (see Fig.1). Far downstream the  
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flow is uniform with a constant velocity U and a constant depth H and we define 
the Weber number by  

T
HU 2ρ

α =                                         (1) 

 Where T  is the surface tension and ρ  is the density of the fluid.  
We compute accurate numerical solutions for the fully nonlinear problem via a 
boundary-integral procedure. This technique has been used successfully by many 
authors [6-11] where the mesh points are only on the free surface. The problem is 
first formulated as an integral equation for the unknown shape of the free surfaces 
then it is transformed to solve an algebraic non linear system. This algebraic 
system is solved by Newton's method [6-9]. Our results show that there is a 
unique solution for each value 0αα ≥ . When the effects of surface tension and 
gravity are neglected, the classical exact solution can be found via  the  hodograph  
transformation .   
The problem is formulated in section 2, the numerical procedure is described in 
section 3 and we conclude this work by a discussion of the results in section 4.  
 
2. Mathematical formulation   
 
Consider the steady two-dimensional flow over a semi infinite horizontal wall IOI 
and bounded by a free surface ICJ (see Fig.1a).  
We choose cartesian coordinates with the origin at the edge of the plate, the x axis 
along the horizontal plate IO and the y axis perpendicularly to the x axis through 
the edge of the plate. Far downstream, as −∞→x , the flow approaches a uniform 
stream with a constant velocity U and a constant depth D . Here, we neglect 
gravity and study the effect of surface tension on the flow.  
We choose the unit length and the unit velocity so that H =1. The fluid is assumed 
to be inviscid and incompressible, and the flow is irrotational. Therefore the 
velocity potential φ  must satisfy Laplace’s equation. We introduce the complex 
potential ψφ if += , which is a function of the complex variable iyxz += .The 
function ψ  is the stream function. We denote by ivu −   the complex velocity. 
The function ivu −  is an analytic function of z  everywhere in the fluid domain 
except at the origin. 
We define the function    
 

         1−−= ivuξ                                                                     (2) 
 
which vanishes as  →x -∞  since in the far field  u→1  and  v→0 
Using Cauchy integral formula, we obtain 
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Here the point z is on the free surface. The positively oriented contour consists of 
the free surface with the point z bypassed by a semicircle of vanishingly small 
radius and a vertical line joining the two branches of  the free surface at x = -∞  
(Fig.1b). Following Forbes [9], we choose the arc length t along the free surface 
as the variable of integration. We denote by s the intrinseque coordinate 
corresponding to the point z. The contribution to the integral from the vertical line 
is 0. The contribution from the semicircle of the vanishingly small radius is 

)(ziπξ− . Consequently, eq. (3) becomes 
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Here, the integrals are in the Cauchy principal value sense. To compute the 
residues, we evaluate the behaviour of )(zξ in the neighbourhood of the simple 

pole.  
z

z
π

ξ 1)( ≈ ,      as 0→z , consequently    Residu ( )(zξ , 0) = 0. Therefore, 

   1−= )s(x)s())s(z( ssφξ                                                                    (5) 
Taking the imaginary part of eq. (4) we obtain the integro-differential equation. 
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Using the arc length, we rewrite Bernoulli’s equation as: 
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φ                (7) 

The condition far downstream can be written as  
 

1=sφ       as −∞→s                                                          (8) 
 
Finally, we must satisfy the arclength condition  
 

     122 =+ ss yx                                                                               (9) 
 
This completes the formulation of the problem. We seek functions x(s), y(s) and 
φ (s) satisfying eqs. (6)- (9). 
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3. Numerical method 
 
The numerical procedure we use in this section essentially follows the procedure 
used by Forbes [9]. To solve the system of equations (6)-(9), we truncate the 
domain of integration in (6) at a finite value M and introduce the N mesh points: 
                                               si   =  (i-1) M/ N,  I = 1,….,N.                 
The values of the flow variables x(s), y(s), x’(s), y’(s) and φ ’(s) at the mesh point 
si are denoted by xi, yi, x’i, y’i, and φ ’i . We satisfy eq. (6) at all (N-1) midpoints,   
                                         shi   =  (si - si-1) / 2,       I = 2,…, N                         
We use the trapezoidal rule with summation over the points si to approximate the 
integral. 
We use Newton’s method to solve for the unknowns y1’,…,  yn’. We express the 
remaining flow variables in terms of y2’,…, yn’. Using the Bernoulli equation (7) 
we evaluate nφφ ′′ ,....,2 , and we calculate ix′  from the arclength condition (9).  
Next, we use the trapezoidal rule to evaluate y2,., yn, and  we use it again  to 
compute x1,., xn. Finally, the values of variables at the midpoints shi are obtained 
in terms of the values at the points si by linear interpolation from the values at the 
whole-mesh points. The singularities in the Cauchy principal value integrals can 
now be ignored since they occur symmetrically between mesh points. 
All the remaining flow variables in the integral equation (6) can be determined 
from the y derivation. 
Now the integral equation (6) is evaluated at the N-1 mesh midpoints shi. This 
gives us a system of N-1 equations for the N-1 unknowns (y’2,…, y’N). The system 
is solved using Newton’s method. We start the calculation with a large value ofα . 
For large α (α = 1000) the initial guess is chosen as the exact solution in the 
absence of surface tension and gravity. Once a solution is obtained, it is used as an 
initial guess for a smaller value of α and so on. 
Typically 200 points are used on the free surface. Usually five to nine iterations 
are required to get the maximum residual error less than 10-8. 
 
4. Results and discussion 
 
In the absence of gravity and surface tension, the problem has an exact solution 
that can be computed using the hodograph transformation and the free stream line 
theory due to Birkhoff [5]. The turning point of the free surface (y = 0) is at the 
ordinate x = b =0.429 (Fig. 2).  
In presence of surface tension and (or) force of gravity, there is no exact known 
solution. In our paper we only consider the surface tension to evaluate its effect on 
the flow. Applying the numerical procedure described in section 3, we compute 
solution for various values of the surface tension. We note that the surface tension 
is evaluated through the dimensionless parameter α  (the Weber number). 
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When the effect of surface tension is included in the free surface condition, the 
numerical computation shows that there exists a critical value 16,40 == αα  
under which no solution exists. 
Fig. 3a shows the free surface shapes for different values of Weber number 

.),( 10≥αα  
For *αα ≥  )150( * =α , all free surfaces for different values of *αα ≥ are the 
same within graphical accuracy, and coincide with the graph of the exact solution 
without surface tension (Fig. 3b). This suggests that the surface tension can be 
neglected if *αα ≥ . 
Fig. 2 shows that the free surface coincide with the graph of the exact solution for 

+∞→α . 
The effect of the surface tension is more apparent on the position of the turning 
point  C(b ,0) as shown in Fig. 5. 
Typical free surface profiles are shown in Fig. 4. It is observed that there is a train 
of waves in the far field for .10<α  We define the amplitude Am of the waves as 
the difference elevation between crests and troughs in the far field.  Fig. 6, shows 
that the amplitude Am increases as α  decreases. As one expects with nonlinear 
waves, the troughs get broader and the crests get narrower.  
We could not obtain solutions for all 16.40 =< αα , this is probably due to the 
fact that the surface tension tends to strengthen the surface as for the teapot effect 
tends to bend it at the turning point. Hence, there must be a value of the surface 
tension (the Weber number) where the two effects are of the same importance. 
This may explain the fact that the scheme diverges.  
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Figure 1:  a- Sketch of the flow and of the system of coordinates. 

b- Sketch of the flow and the contour of integration for the integral 
equation.  
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Figure 2:   Free surface configuration without surface tension  

▼ Via analytical computation by free streamline theory.  
⎯ Via   boundary–integral equation method 
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 (Figure 3: a- Free surface shapes for different values of the Weber number               
(g 20=α , ⎯ 100=α , ▼ +∞=α ). 
                    b- Free surface flow for 150≥α (g 150=α , ★ 500=α , ⎯ 800=α ) 
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Figure 4:   Free surface shapes, (a) for 16.4=α , (b) for 7=α . 
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Figure 5:  The position of the turning point "C" versus Weber number α  
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Figure 6:  The amplitude of the waves versusα . 


