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1 Introduction

Marshall and Olkin (1997) introduced an interesting method of adding a new
parameter to an existing distribution. The resulting new distribution, known
as the Marshall-Olkin extended distribution. Suppose we have a given distri-
bution with survival function (SF) F̄ (x), −∞ < x < ∞. The Marshall-Olkin
extended distribution is defined in the form of SF is given by

Ḡ(x) =
αF̄ (x)

1 − ᾱF̄ (x)
, −∞ < x < ∞, α > 0, ᾱ = 1 − α. (1.1)
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If we take the SF of the exponential distribution, i.e. F̄ (x) = e−x/σ, where
x > 0, σ > 0, in equation (1.1), we obtain the SF as

Ḡ(x) =
αe−x/σ

1 − ᾱe−x/σ
, x > 0, σ, α > 0, ᾱ = 1 − α. (1.2)

The distribution with SF (1.2) is called Marshall-Olkin extended exponen-
tial distribution with parameters α and σ. The probability density function
(p.d.f.) and cumulative distribution function (c.d.f) of the Marshall-Olkin ex-
tended exponential distribution with SF (1.2), respectively, are given by

g(x; α, σ) =
α
σ
e−x/σ

(1 − ᾱe−x/σ)2 , x > 0, α, σ > 0, ᾱ = 1 − α, (1.3)

and

G(x; α, σ) =
1 − e−x/σ

1 − ᾱe−x/σ
, x > 0, α, σ > 0, ᾱ = 1 − α. (1.4)

When α = 1, the SF (1.2) and p.d.f. (1.3) reduce to those of the exponential
distribution. In this aper we present a reliability test plan for the extended
exponential model.

Acceptance sampling plans in statistical quality control concern with ac-
cepting or rejecting a submitted lot of a large size of products on the basis
of the quality of products inspected in a sample taken from the lot. If the
quality of the product that is inspected is the lifetime of the product that is
put for testing, after the completion of sampling inspection what we have is a
sample of life times of the sampled products. If a decision to accept or reject
the lot subject to the risks associated with the two types of errors (rejecting a
good lot/accepting a bad lot) is possible, such a procedure may be termed as
’Acceptance sampling based on life tests’ or ’Reliability test plans’. Such a pro-
cedure obviously requires the specification of the probability model governing
the life of the products.

In this paper we develop a reliability test plans to decide whether to accept
or reject a submitted lot of products whose lifetime is governed by a Marshall-
Olkin extended exponential distribution, derive its operating characteristic
function and give the corresponding decision rule. Similar plans were developed
by Gupta and Groll (1961), Goode and Kao (1961), Kantam and Rosaiah
(1998), Kantam et al. (2001), Rosaiah and Kantam (2005) and Rosaiah et al.
(2006). The proposed sampling plan, along with the operating characteristic,
is given in Section 2. The description of tables is given in Section 3. The
results are explained by an example in Section 4.
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2 Reliability Test Plan

We assume that the lifetime of a product follows a Marshall-Olkin extended
exponential distribution with scale parameter σ, defined by (1.3). A common
practice in life testing is to terminate the life test by a pre-determined time’t’
and note the number of failures (assuming that a failure is well defined). One
of the objectives of these experiments is to set a lower confidence limit on
the average life. It is then to establish a specified average life with a given
probability of at least p∗. The decision to accept the specified average life
occurs if and only if the number of observed failures at the end of the fixed
time ’t’ does not exceed a given number ’c’- called the acceptance number.
The test may get terminated before the time ’t’ is reached when the number
of failures exceeds ’c’ in which case the decision is to reject the lot. For such
a truncated life test and the associated decision rule; we are interested in
obtaining the smallest sample size to arrive at a decision.

In the following it is assumed that the distribution parameter α is known,
while σ is unknown. In this case the average lifetime of the product depends
only on σ and it is easily seen that the average lifetime is monotonically in-
creasing in σ. Let σ0 represent the required minimum average lifetime, then,
for given value of α, the following holds:

G(x; α, σ) = G(x; α, σ0) ⇔ σ ≥ σ0. (2.1)

A sampling plan consists of the following quantities:

• The number of units ’n’ on test,

• The acceptance number ’c’,

• The maximum test duration ’t’, and

• The ratio t/σ0, where σ0 is the specified average life.

The consumer’s Risk, i.e., the probability of accepting a bad lot (the one
for which the true average life is below the specified average life σ0) not to
exceed 1 − p∗, so that p∗ is a minimum confidence level with which a lot of
true average life below σ0 is rejected, by the sampling plan. For a fixed p∗

our sampling plan is characterized by (n, c, t/σ0). Here we consider sufficiently
large sized lots so that the binomial distribution can be applied. The problem
is to determine for given values of p∗ (0 < p∗ < 1), σ0 and c, the smallest
positive integer ′n′ such that

L(p0) =
c∑

i=0

(
n

i

)
pi

0 (1 − p0)
n−i ≤ 1 − p∗, (2.2)
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where p0 = G(t; α, σ0) is given by (1.4) indicates the failure probability before
time ’t’ which depends only on the ratio t/σ0. The function L(p) is the operat-
ing characteristic function of the sampling plan, i.e. the acceptance probability
of the lot as function of the failure probability p(σ) = G(t; α, σ). The average
lifetime of the products is increasing in σ and, therefore, the failure probability
p(σ) = G(t; α, σ) is decreasing function in σ which implies that the operating
characteristic function is increasing in σ.

The minimum values of n satisfying the inequality (2.2) are obtained and
displayed in Table 1 for p∗ = 0.75, 0.90, 0.95, 0.99 and t/σ0 = 0.241, 0.361,
0.482, 0.602, 0.903, 1.204, 0.505, 1.806 for α = 2.

If p = G(t; α, σ) is small and n is large, the binomial probability may be
approximated by Poisson probability with parameter λ = np so that the left
side of (2.2) can be written as

L∗(p) =
c∑

i=0

λi

i!
e−λ ≤ 1 − p∗, (2.3)

where λ = n G(t; α, σ0). The minimum values of ’n’ satisfying (2.3) are ob-
tained for the same combination of p∗ and t/σ0 values as those used for (2.1).
The results are given in Table 2.

For a given value of p∗ and t/σ0, the values of n and c are determined by
means of the operating characteristic function. For some sampling plans, the
values of the operating characteristic function depending on σ/σ0 are displayed
in Table 3. The producer’s risk is the probability of rejecting a lot although
σ ≥ σ0 holds. It is obtained by the operating characteristic function:

L[p(σ)] = L[G(t;α, σ)]. (2.4)

For a specified value of the producer’s risk, say 0.05, one may be interested
in knowing what value of σ or σ/σ0 will ensure a producer’s risk less than or
equal to 0.05 for a given sampling plan. The value of σ and, hence, the value of
σ/σ0, is the smallest positive number for which the following inequality holds:

c∑
i=0

(
n

i

)
p(σ)i [1 − p(σ)]n−i ≥ 0.95. (2.5)

For some sampling plan (n, c, t/σ0) and values of p∗, minimum values of σ/σ0

satisfying (2.5) are given in Table 4.
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3 Description of the Tables

Assume that the lifetime distribution is Marshall-Olkin extended exponential
distribution with α = 2 and that the experimenter is interested in establishing
that the true unknown average life is at least 1000 hours with confidence
p∗ = 0.75. It is desired to stop the experiment at t = 241 hours. Then, for
an acceptance number c = 2, the required n in Table 1 is 32. If, during 241
hours, no more than 2 failures out of 32 are observed, then the experimenter
can assert, with a confidence level of 0.75 that the average life is at least 1000
hours. If the Poisson approximation to binomial probability is used, the value
of n = 32 is obtained from Table 2 for the same situation.

If the life distribution is assumed to be a gamma distribution with shape
parameter 2 (an IFR model), the value of n from Table IB of Gupta and Groll
(1961) is 63 using binomial probabilities and it is 64 using Poisson approxima-
tion. In general, all the values of n tabulated by us are found to be less than
the corresponding values of n tabulated in Kantam and Rosaiah (1998) for a
half logistic distribution, Rosaiah et al. (2006) for exponentiated log-logistic
distribution, which in turn are less than those tabulated by Gupta and Groll
(1961) with a gamma model as the lifetime distribution. For the sampling plan
(n = 32, c = 2, = 0.241) and confidence level p∗ = 0.75 under Marshall-Olkin
extended exponential distribution with α = 2, the values of the operating
characteristic function from Table 3 is as follows:

σ/σ0 2 4 6 8 10 12
L(p) 0.6975 0.9291 0.9740 0.9878 0.9933 0.9960

The above values show that if the true mean lifetime is twice the required
mean lifetime (σ/σ0 = 2) the producer’s risk is approximately 0.3025.

From Table 4, we can get the values of the ratio σ/σ0 for various choices of
(c, t/σ0) in order that the producer’s risk may not exceed 0.05. For example if
p∗ = 0.75, t/σ0 = 0.241, c = 2, Table 4 gives a reading of 4.64. This means the
product can have an average life of 4.64 times the required average lifetime in
order that under the above acceptance sampling plan the product is accepted
with probability of at least 0.95. The actual average lifetime necessary to
accept 95 percent of the lots is provided in Table 4.
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4 Numerical Example

Consider the following ordered failure times of the release of a software given
in terms of hours from starting of the execution of the software up to the time
at which a failure of the software is occurred (Wood, 1996). This data can be
regarded as an ordered sample of size n = 9 with observations:

{xi : i = 1, 2, . . . 9} = {254, 788, 1054, 1393, 2216, 2880, 3593, 4281, 5180}.

Let the required average lifetime be 1000 hours and the testing time be
t = 602 hours, this leads to ratio of t/σ0 = 0.602 with a corresponding sample
size n = 9 and an acceptance number c = 1, which are obtained from Table 1
for p∗ = 0.75. Therefore, the sampling plan for the above sample data is (n =
9, c = 1, t/σ0 = 0.602). Based on the observations, we have to decide whether
to accept the product or reject it. We accept the product only if the number of
failures before 602 hours is less than or equal to 1. However, the confidence level
is assured by the sampling plan only if the given life times follow Marshall-Olkin
extended exponential distribution. In order to confirm that the given sample
is generated by lifetimes following at least approximately the Marshall-Olkin
extended exponential distribution, we have compared the sample quantiles and
the corresponding population quantiles and found a satisfactory agreement.
Thus, the adoption of the decision rule of the sampling plan seems to be
justified. In the sample of 9 units, there is a 1 failure at 254 hours before
t = 602 hours. Therefore we accept the product.
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Table 1. Minimum sample size for the specified ratio t/σ0, confidence level p∗,
acceptance number c, α = 2 using binomial approximation.

t/σ0

p∗ c 0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806
0.75 0 11 8 6 5 3 2 2 2
0.75 1 22 15 11 9 6 5 4 3
0.75 2 32 21 16 13 9 7 6 5
0.75 3 42 28 21 17 11 9 7 6
0.75 4 52 34 26 21 14 11 9 8
0.75 5 61 41 31 25 17 13 11 9
0.75 6 71 47 35 28 19 15 12 11
0.75 7 80 53 40 32 22 17 14 12
0.75 8 89 60 45 36 24 19 16 14
0.75 9 98 66 49 40 27 21 17 15
0.75 10 108 72 54 43 30 23 19 17
0.90 0 19 12 9 7 5 3 3 2
0.90 1 31 21 15 12 8 6 5 4
0.90 2 43 29 21 17 11 8 7 6
0.90 3 54 36 27 21 14 11 9 8
0.90 4 65 43 32 26 17 13 11 9
0.90 5 76 50 38 30 20 15 13 11
0.90 6 86 57 43 34 23 17 14 12
0.90 7 96 64 48 38 26 20 16 14
0.90 8 106 71 53 42 28 22 18 16
0.90 9 116 77 58 46 31 24 20 17
0.90 10 126 84 63 50 34 26 21 19
0.95 0 24 16 12 9 6 4 3 3
0.95 1 38 25 19 15 10 7 6 5
0.95 2 51 34 25 20 13 10 8 7
0.95 3 63 41 31 25 16 12 10 8
0.95 4 74 49 37 29 19 15 12 10
0.95 5 85 56 42 34 22 17 14 12
0.95 6 96 64 48 38 25 19 16 13
0.95 7 107 71 53 42 28 21 17 15
0.95 8 118 78 58 46 31 24 19 17
0.95 9 128 85 63 51 34 26 21 18
0.95 10 138 92 69 55 37 28 23 20
0.99 0 37 24 18 14 9 6 5 4
0.99 1 53 35 26 20 13 10 8 6
0.99 2 67 44 33 26 17 12 10 8
0.99 3 81 53 39 31 20 15 12 10
0.99 4 93 62 46 36 24 18 14 12
0.99 5 106 70 52 41 27 20 16 14
0.99 6 118 78 58 46 30 23 18 15
0.99 7 129 85 63 50 33 25 20 17
0.99 8 141 93 69 55 36 27 22 19
0.99 9 152 101 75 60 39 30 24 21
0.99 10 163 108 80 64 42 32 26 22
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Table 2. Minimum sample size for the specified ratio t/σ0, confidence level p∗,
acceptance number c, α = 2 using Poisson approximation.

t/σ0

p∗ c 0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806
0.75 0 12 8 6 5 4 3 3 2
0.75 1 19 13 10 8 6 5 4 4
0.75 2 32 22 16 13 9 8 6 6
0.75 3 43 29 22 18 12 10 8 8
0.75 4 53 36 27 22 15 12 10 9
0.75 5 62 42 32 26 18 14 12 11
0.75 6 72 48 37 30 21 16 14 12
0.75 7 81 55 41 34 23 18 16 14
0.75 8 91 61 46 37 26 21 17 16
0.75 9 100 67 51 41 29 23 19 17
0.75 10 109 73 56 45 31 25 21 19
0.90 0 20 13 10 8 6 5 4 4
0.90 1 30 21 16 13 9 7 6 5
0.90 2 44 30 23 18 13 10 9 8
0.90 3 56 38 29 23 16 13 11 10
0.90 4 67 45 34 28 19 15 13 12
0.90 5 78 52 40 32 22 18 15 13
0.90 6 88 59 45 37 25 20 17 15
0.90 7 99 66 50 41 28 22 19 17
0.90 8 109 73 55 45 31 25 21 19
0.90 9 119 80 61 49 34 27 23 20
0.90 10 129 87 66 53 37 29 25 22
0.95 0 25 17 13 11 8 6 5 5
0.95 1 38 26 20 16 11 9 8 7
0.95 2 53 35 27 22 15 12 10 9
0.95 3 65 44 33 27 19 15 13 11
0.95 4 77 52 39 32 22 17 15 13
0.95 5 88 59 45 36 25 20 17 15
0.95 6 99 67 51 41 28 22 19 17
0.95 7 110 74 56 45 32 25 21 19
0.95 8 121 81 62 50 35 27 23 21
0.95 9 132 88 67 54 38 30 25 22
0.95 10 142 95 72 59 41 32 27 24
0.99 0 39 26 20 16 11 9 8 7
0.99 1 55 37 28 23 16 13 11 10
0.99 2 70 47 36 29 20 16 14 12
0.99 3 84 57 43 35 24 19 16 14
0.99 4 97 65 50 40 28 22 19 17
0.99 5 110 74 56 45 31 25 21 19
0.99 6 122 82 62 50 35 28 23 21
0.99 7 134 90 68 55 38 30 26 23
0.99 8 146 98 74 60 42 33 28 25
0.99 9 157 106 80 65 45 35 30 27
0.99 10 169 113 86 69 48 38 32 29
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Table 3. Values of the operating characteristic function of the sampling plan
(n, c, t/σ0) for given confidence level p∗ with α = 2.

σ/σ0

p∗ n c t/σ0 2 4 6 8 10 12
0.75 22 2 0.241 0.6975 0.9291 0.9740 0.9878 0.9933 0.9960
0.75 11 2 0.361 0.7080 0.9335 0.9759 0.9887 0.9939 0.9963
0.75 7 2 0.482 0.7005 0.9322 0.9755 0.9886 0.9938 0.9963
0.75 6 2 0.602 0.6943 0.9314 0.9753 0.9885 0.9938 0.9963
0.75 4 2 0.903 0.6787 0.9291 0.9748 0.9884 0.9937 0.9962
0.75 3 2 1.204 0.6646 0.9270 0.9743 0.9882 0.9937 0.9962
0.75 3 2 1.505 0.6279 0.9176 0.9710 0.9867 0.9929 0.9957
0.75 3 2 1.806 0.6419 0.9238 0.9737 0.9881 0.9936 0.9962
0.90 30 2 0.241 0.5170 0.8608 0.9448 0.9730 0.9849 0.9907
0.90 15 2 0.361 0.5087 0.8591 0.9444 0.9729 0.9849 0.9907
0.90 10 2 0.482 0.5307 0.8707 0.9499 0.9758 0.9866 0.9918
0.90 7 2 0.602 0.5227 0.8691 0.9494 0.9756 0.9865 0.9918
0.90 5 2 0.903 0.5447 0.8823 0.9557 0.9790 0.9885 0.9930
0.90 4 2 1.204 0.5716 0.8958 0.9619 0.9822 0.9903 0.9942
0.90 4 2 1.505 0.5106 0.8753 0.9539 0.9784 0.9882 0.9929
0.90 3 2 1.806 0.4964 0.8723 0.9532 0.9782 0.9881 0.9929
0.95 35 2 0.241 0.4006 0.8016 0.9171 0.9583 0.9763 0.9853
0.95 17 2 0.361 0.3988 0.8033 0.9184 0.9591 0.9768 0.9856
0.95 11 2 0.482 0.4093 0.8118 0.9229 0.9617 0.9783 0.9866
0.95 8 2 0.602 0.4079 0.8134 0.9241 0.9624 0.9788 0.9869
0.95 5 2 0.903 0.4232 0.8271 0.9314 0.9665 0.9813 0.9885
0.95 4 2 1.204 0.4038 0.8218 0.9298 0.9659 0.9811 0.9884
0.95 4 2 1.505 0.4055 0.8270 0.9330 0.9678 0.9822 0.9892
0.95 4 2 1.806 0.3706 0.8122 0.9270 0.9649 0.9806 0.9882
0.99 46 2 0.241 0.2244 0.6718 0.8481 0.9194 0.9526 0.9699
0.99 22 2 0.361 0.2303 0.6811 0.8542 0.9232 0.9550 0.9715
0.99 14 2 0.482 0.2259 0.6807 0.8547 0.9237 0.9554 0.9718
0.99 10 2 0.602 0.2323 0.6901 0.8606 0.9273 0.9577 0.9733
0.99 7 2 0.903 0.2373 0.7026 0.8691 0.9326 0.9611 0.9756
0.99 5 2 1.204 0.2719 0.7380 0.8891 0.9442 0.9683 0.9803
0.99 5 2 1.505 0.2417 0.7198 0.8810 0.9401 0.9659 0.9789
0.99 4 2 1.806 0.2690 0.7467 0.8958 0.9485 0.9711 0.9822
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Table 4. Minimum ratio of true σ and required σ0 for the acceptability of a
lot with producer’s risk of 0.05 for α = 2.

t/σ0

p∗ c 0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806
0.75 0 25.91 28.25 28.34 29.53 26.67 23.81 29.73 35.68
0.75 1 7.40 7.46 7.28 7.34 7.23 7.92 7.72 6.64
0.75 2 4.64 4.50 4.55 4.57 4.62 4.67 4.89 4.71
0.75 3 3.64 3.60 3.55 3.55 3.33 3.54 3.28 3.25
0.75 4 3.13 3.02 3.05 3.04 2.93 2.98 2.93 3.04
0.75 5 2.76 2.75 2.74 2.73 2.69 2.64 2.71 2.51
0.75 6 2.55 2.51 2.46 2.43 2.38 2.43 2.31 2.48
0.75 7 2.37 2.33 2.32 2.29 2.28 2.26 2.23 2.19
0.75 8 2.24 2.24 2.21 2.19 2.11 2.15 2.18 2.19
0.75 9 2.13 2.13 2.09 2.10 2.05 2.05 1.97 2.00
0.75 10 2.07 2.04 2.03 1.99 2.01 1.97 1.95 2.02
0.9 0 44.82 42.32 42.52 41.36 44.39 35.54 44.39 35.68
0.9 1 10.47 10.59 10.01 9.90 9.79 9.59 9.90 9.29
0.9 2 6.28 6.28 6.03 6.03 5.72 5.42 5.83 5.87
0.9 3 4.69 4.67 4.62 4.44 4.33 4.44 4.42 4.64
0.9 4 3.92 3.86 3.79 3.81 3.64 3.61 3.73 3.53
0.9 5 3.46 3.37 3.39 3.31 3.21 3.13 3.31 3.25
0.9 6 3.10 3.05 3.05 2.98 2.94 2.80 2.79 2.77
0.9 7 2.86 2.83 2.81 2.75 2.75 2.73 2.64 2.68
0.9 8 2.68 2.67 2.63 2.58 2.50 2.54 2.51 2.61
0.9 9 2.54 2.50 2.49 2.44 2.39 2.39 2.42 2.37
0.9 10 2.43 2.40 2.38 2.33 2.31 2.28 2.21 2.34
0.95 0 56.53 56.53 56.53 53.22 53.22 47.39 44.39 53.53
0.95 1 12.84 12.66 12.84 12.48 12.32 11.39 11.99 11.83
0.95 2 7.46 7.40 7.23 7.17 6.84 6.90 6.79 7.00
0.95 3 5.48 5.32 5.32 5.32 5.00 4.89 5.00 4.64
0.95 4 4.48 4.40 4.40 4.27 4.10 4.23 4.12 4.01
0.95 5 3.87 3.79 3.76 3.78 3.57 3.60 3.61 3.61
0.95 6 3.47 3.45 3.42 3.34 3.23 3.18 3.27 3.06
0.95 7 3.19 3.15 3.12 3.05 2.97 2.89 2.83 2.92
0.95 8 2.99 2.93 2.89 2.83 2.79 2.81 2.68 2.82
0.95 9 2.81 2.76 2.72 2.72 2.65 2.63 2.56 2.55
0.95 10 2.66 2.64 2.61 2.58 2.53 2.48 2.47 2.50
0.99 0 87.57 85.11 85.11 82.78 79.87 71.12 74.02 71.12
0.99 1 17.89 17.89 17.54 16.89 16.29 16.58 16.29 14.47
0.99 2 9.79 9.59 9.59 9.39 9.11 8.43 8.67 8.13
0.99 3 7.11 6.90 6.74 6.64 6.32 6.23 6.11 5.99
0.99 4 5.65 5.62 5.52 5.35 5.26 5.17 4.89 4.95
0.99 5 4.84 4.76 4.69 4.60 4.44 4.29 4.19 4.33
0.99 6 4.29 4.21 4.15 4.08 3.92 3.92 3.74 3.64
0.99 7 3.87 3.79 3.73 3.67 3.55 3.51 3.42 3.39
0.99 8 3.58 3.51 3.46 3.42 3.28 3.20 3.18 3.21
0.99 9 3.34 3.31 3.25 3.23 3.07 3.08 2.99 3.07
0.99 10 3.15 3.10 3.04 3.02 2.91 2.88 2.85 2.81
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