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Abstract. By the methods of the theory of complex functions, dynamic 
propagation problems concerning mode Ⅲ  crack were investigated. Analytical 
solutions can be obtained by the approaches of self-similar functions. The 
problems dealt with can be readily transformed into Riemann-Hilbert problems 
and their closed solutions are attained rather straightforward by this technique. By 
application of the gained those solutions and superposition theorem, the solutions 
of discretionary complex problems can be acquired. 
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Introduction 
   In a few decades, many researchers studied statics problems on mode III 
crack[1-4]. Because of the difficulty in mathematics, researches concerning 
dynamics problems are not enough thoroughly[5-9]. In this paper fracture dynamics 
problems on mode propagation crack are lucubrated, a general expression of  
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solution is represented by the methods of the theory of complex functions. The 
problems discussed can be facilely transformed into a Riemann-Hilbert problem 
which is very readily resolved by the usual Muskhelishvili’s measure[10-11]. 
Analytical solution of propagation crack problems under the different loading 
conditions such as center, concentration, unit step etc., was given in this article.  
 
 

1. Anti-plane Problem on Elastodynamics for An Orthotropic 
Anisotropic Body  
 

 For an orthotropic body, let the Cartesian co-ordinates be accordant with the 
axes of elastic symmetry. The anti-plane equation of motion for an orthotropic 
anisotropic body is given as:    

            2222
44

22
55 /// twywCxwC ∂∂=∂∂+∂∂ ρ        （1） 

where 44C , 55C  are the elastic constants, ρ  is the mass density and w  is the 

displacement component along z . Applying Atkinson transform[12], it is found 
that  
                yTtx +−= ηξ                                        （2） 
where η  is to be understood as a complex variable and T  is a function of η . 

A solution of equation of motion can be written as follows 
                 ⎥⎦

⎤
⎢⎣
⎡= ∫

∞

∞−
ηξφ dw )(Re                                 （3） 

where the integral is the real part of η -axis.  
Now substituting Eq. (3) into (1), there results    

                022
4455 =−+ ρηTCC                                    （4） 

    Eq.(1) will become identical equation, hence )(ξφ  is an arbitrary function to 
be determined from the boundary conditions. 
   Assuming that Eq. (4) has two complex roots, then we only take the imaginary 
part with positive sign, i. e. positive square root. The result is:  
                 44

2
55 )()( CCiT ρηη −=                               （5） 

    Then putting Eq. (3) into Eq.(1) for an orthotropic body, the results are 

∫
∞

∞− ∂
∂

= η
ξ
ξφτ dTCyz

)(Re 44 ，    ∫
∞

∞− ∂
∂

= η
ξ
ξφτ dCxz

)(Re 55         
（6） 

At 0=y , Eq.(2) will become: 

                                   tx ηξ −=                            （7） 
1.1 Displacements are homogeneous functions 
    When the displacements are homogeneous function (in the following, 
homogeneous functions of zeroth dimension are called homogeneous), take 

                   ξηξφ /)()( f=′                          （8） 
Put it into Eqs. (3) and (6), and apply Cauchy’s theorem for 0=y , there gives  



 

Dynamic propagation problems                                2813 
 
 

    )]()(2Re[ 44

t
xf

t
xT

t
Ciyz ⋅−= πτ ，  )](2Re[ 55

t
xf

t
Cixz ⋅−= πτ   

)](2Re[ 2 t
xf

t
xi

t
w

⋅=
∂
∂ π                          （9） 

    In terms of self- similar methods[7，12-13] with tx /=τ , it is found that 

      =)(τF )()(2 44 ττπ fTiC−                                      
Eq. (9) can thus be rewritten as follows: 
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1.2 Stresses are homogeneous functions 
    When stresses are homogeneous functions, take 
                 ξηξφ /)()( f=′′                                (11) 

Substitute Eq. (11) into Eqs. (3) and (6) and apply Cauchy’s theorem for 0=y , 
it is found that  

)]()(2Re[ 44 τττπ
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t
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This suggests that 
=)(τF )()(2 44 τττπ fTCi                         

    Using Eq. (12), the results are  
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1.3 The problem with arbitrary self-similarity index 
    Postulate an infinite elastic semi-space 0=y  initially at rest. It has any 
number of loaded segments as well as displacement segments, the ends of these 
segments are propagating with the unlike constant velocity. The loads and 
displacements on these sections are arbitrary linear combinations of the following 
functions: 

        ⋅k
k

k

dx
xfd )(

1

s
s

s

dt
tfd )(

1  ,     
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⎨
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=
for
for

f ii ξ
ξ

0
)(    

0
0

>
<

ξ
ξ

    (14) 

Here k , 1k , s  and 1s  are arbitrary integer positive numbers. A discretionary 
sequential function of two variables x  and t  may be expressed as a linear 
superposition of Eq.(14). If a solution on load and displacement problems with the 
modality of Eq.(14) can be found, the solution of intricate problem is obtained by  
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superposition. Let’s introduce the linear differential operator as well as inverse: 

  nm

nm

tx
L

∂∂
∂

=
+

 ,    inverse     nm

nm

tx
L

−−

−−
−

∂∂
∂

=       (15) 

where +m+n, -m-n and 0 represent the (m+n)th order derivative, the (m+n)th 
order integral and function’s self, respectively. It is easy to prove that there exist 
constants m  and n . When putting L  into Eq.(14); one will gain functions that 
are homogeneous functions of x and t  of zeroth dimension (homogeneous), the 
couple m , n  will be called an index of self-similarity[3，14]. Utilizing the same 
methods as the above, one can attain:  

The function Lw  is homogeneous. In this case, Eqs.(8)—(10) will 

apparently hold, in these relationships one must substitute Lw  , xzLτ  and yzLτ  

instead of displacements w  and stresses xzτ , yzτ  respectively. 

    The functions xzLτ  and yzLτ are homogeneous. In this case Eqs. (11)—(13) 

will be still hold in which Lw , xzLτ  and yzLτ  instead of displacements w  and 

stresses xzτ , yzτ  respectively. 

At 0=y , one attains the universal conclusions[14，7]:  
When functions Lw  is homogeneous, there results 
          Lww =0 ，    =0

xzτ xzLτ ，    =0
yzτ yzLτ        （16） 

    When xzLτ  and yzLτ are homogeneous, there results 

          Lw
t

w
∂
∂

=0 ， =0
xzτ xzL

t
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∂
∂ ， =0

yzτ
t∂
∂

yzLτ          （17） 

With the help of the notation introduced all the general representations can be 
written in the following modality: 
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Presuming )(/)()( τττ TFf = , Eq. (18) can be rewritten [6] as   
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2. Illustration of A Dynamic Model of Mode Ⅲ  Crack 

 
The crack is presumed to nucleate from an infinitesimally small micro-crack 

which runs with high speed along the −x axis in the manner of self-similarity, 
that is to say, it moves symmetrically in the positive and negative −x axis from 
initial zero length with the constant velocity V . The sketch of a dynamic model 
of mode Ⅲ  crack of anti-plane problem is depicted in Fig.1. The model is 
symmetry both in geometry and mechanics with respect to −x axis and −y axis. 
As displayed in Fig.1, the crack lies in the realm of 0=y , tVxVt <<−  in the 
matrix; moreover closed force acts on this interval, whose magnitude is P . The 
force shows shear stress τ  locating in the segment of the crack. When the crack 
extends with high speed, its dimension must correlate to variables x  and t , then 
the edges of the crack subjected to loads also have relation to variables x  and t . 

y

x

Pyz −=τ

Pyz −=τ

Vt− tV

 
Fig.1. Sketch of dynamic model of mode Ⅲ  crack of anti-plane problem 

 

3. Frondose Solutions of Some Problems 

    In order to settle effectually fracture dynamics problems concerning an 
orthotropic anisotropic body, analytic solutions will be found under the action of 
point loads for mode Ⅲ  moving crack. According to the theorem of generalized 
functions, the unlike boundary condition problems studied will be changed into 
Keldysh-Sedov mixed boundary value problem by the approaches of self-similar 
functions, and the reciprocal solutions will be acquired. Supposing at 0<t , the 
half-plane was at rest. Let at the initial moment t=0 a cut occur at the origin of 
coordinates and let it begin spreading in both directions of x-axis with a constant 
velocity V (subsonic velocity) under the state of anti-plane.  
3.1 Stresses are homogeneous 
3.1.1 Assuming at the initial moment 0=t  a crack appears at the origin of the 
coordinates and spreads symmetrically in both directions of −x axis with a 
constant velocity V (subsonic velocity); moreover the central zone of the edges 
of the crack is subjected to homogeneous loads P  propagating at velocity 

V<α . At the half-plane of 0=y , the boundary conditions can be stated as: 
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        Pyz −=τ ,               tx α<≤0  

        0=yzτ ,                Vtxt <≤α   

0=w ,                  Vtx >                      (20) 

In the light of the theory of generalized functions[15-16], the boundary 
conditions Eq. (20) can be rewritten as follows: 

      )]()([ txHtxHPyz αατ −−+−= ,         Vtx <  

      0=w ,                                Vtx >         (21) 

In which 1=L ，applying Eqs. (17) and (19), the first of Eq. (21) will be 
written as: 

=)]()(Re[ ττ fT )([ txtP αδα +− + )]()([)]( αδαδααδ −+−−=− xxPtx  
       V<τ         (22) 

The behavior of δ (Dirac) functions[15-16] gives:  

             )( ατδ + + )( ατδ − ⎥
⎦

⎤
⎢
⎣

⎡
−

=
)(

2Re 22 ατπ
τ i              (23) 

Because )(τT  is purely imaginary for the subsonic speeds, )(τf  of Eq. (22) 
must be purely real in the domain of V<τ , just αα Pf −=)( . At Vtx < , yzτ  
takes two different values, consequently )(τf  must have two unknown real 
constants. Moreover, the displacements are bound at the origin of the coordinates, 
i.e. 0→τ ， )1()( of =τ . In terms of symmetry and conditions of the infinite point 

of the plane as well as singularities of the stress at the crack tip[17-19], the unique 
solution of )(τf  ascertained must content the following shape: 

2/322 )()( −−= τττ Vf n { })]([2 22 ατπ −+ BA                  (24) 
where A  and B  are unknown constants with n  being an unknown index.  

Substituting Eq. (24) into (20), 1=n  is determined: 
At ατ → , from Eqs. (22), (23), (24) and (5) constant B  will be confirmed:    

    
44

2
55

2/322

/)(
)(
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VPB
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αα

−

−−
=                           （25） 

Then Eq. (24) may be inserted into Eqs. (19) and (17) for 0=y , the stress 

yzτ  and the stress intensity factor )(3 tK are found, respectively: 
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    The limit of the above belongs to the type of ∞⋅0 , which should be changed 
into the format of ∞∞ / , then its limiting value is derived by the method of 
L’Hospital theorem[20]. 

In an orthotropic isotropic body, the disturbance range of elastic wave can be 
represented by the circular area of radius tc1  and tc2 . Where 1c  and 2c  are 
the velocities of longitudinal and transverse waves ( 21 cc > ) of elastic body 
respectively. In an orthotropic anisotropic body, the disturbance range of elastic 
wave is not the circular area and can not surpass threshold value ρ/55CCd =  
(sonic velocity) of elastic body, here 55C  is elastic constant of the material. At 

tCx d> , with 0)](Im[ =τT , thus the stresses and the displacements are zero , 

which are coincident with the initial conditions; and this illuminates that at 0=y  
disturbance of elastic wave cannot overrun tCd .  

Then substituting Eq. (26) into (20), the constant A  is ascertained: 
               12

1 /2 JJBA −−= π                                         
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where VM <<α . The integral is carried out in the sense of principal value. 
Then putting Eq. (24) into (19), 0w can be gained by literature [21]: 
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The crack runs along the x-axis, therefore 0w  can be computed in the 
definite integral, we take constant 0=C . Then substituting Eq. (29) into (17), 
the displacement w  on the upper edge of the crack is acquired by literature [21]: 
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3.1.2  With all conditions remaining the same as that considered in the previous 
example except that the applied loads become a unit step load Pt .The boundary 
conditions will be as follows:  

)(xPHzy −=τ ,                    Vtx <  

               0=w ,                           Vtx >        (31) 
where )(xH  is a unit step (Heavyside) function, with )()( xxH δ=′ . 

In which 1=L . By application of Eqs. (17) and (19), the first of Eq. (31) can 
be rewritten as: 

)()()]()(Re[ τδττ PxHPtfT =′−= ，        V<τ            (32) 
From the above formula, a unique solution of )(τf  can be deduced in the 

following form[7]:  

       2/322 )()( −−= τττ VAf n                              (33) 
 

where A  is an unknown constant with n  being an unknown index. 
Putting Eq. (33) into (32), 1−=n  is determined: 
At 0→τ , from Eqs. (32), (33) and (5) constant A  will be determined:    

              
4455

3

/ CC
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π

−
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   (34) 

Substituting Eq. (33) into (19) and (17) for 0=y  to render the stress yzτ , the 
displacement w  and dynamic stress intensity factor )(3 tK , respectively. 
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The limiting value of the above is also be gained by means of literature[20]. 
3.2 Displacements are homogeneous  
3.2.1 Postulating at the initial moment 0=t , a crack abruptly occurs under the 
action of concentrated load P  situating at the origin of the coordinates and 
begins to propagate symmetrically in both directions of −x axis with a constant 
velocity V . At the half-plane of 0=y , the boundary conditions are given by  

 )(xPyz δτ −= ,              tVx <  

             0=w ,                     Vtx >             (38) 

In which 1=L ，utilizing Eqs. (16) and (19), the first of the boundary 
conditions can be rewritten as follows: 

=)]()(Re[ ττ fT )()( τδδ PxtP −=−            V<τ         (39) 
In terms of the above formula a unique solution of )(τf  can be deducted as:  

                            2/122
1 )()( −−= τττ VAf n             （40） 

where 1A  is an unknown constant, and n  is an unknown index.  
Substituting Eq. (40) into (39), the constant 1−=n  can be ensured. 
At 0→τ , applying Eqs. (39), (40) and (5) the constant 1A  is also found as:    
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Putting Eq (40) into Eqs.(19) and (16) for 0=y , there results the stress yzτ , 
the displacement w  and dynamic stress intensity factor )(3 tK  respectively. 
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                           (44) 

3.2.2  With all conditions remaining the same as that considered in the previous 
example, the point load P  which extends with a constant velocity V<β  along 
the positive directions of −x axis.The boundary conditions will be as follows: 

       
             )( txPyz βδτ −−= ,              tVx <  

            0=w ,                        Vtx >           (45) 

In which 1=L ，using Eqs. (16) and (19), the first formula of Eq. (45) can be 
rewritten as: 

=)]()(Re[ ττ fT )()( βτδβδ −−=−− PtxtP ,         V<τ       (46) 
From the above formula a unique solution of )(τf  must suffice the 

following modality: 
          2/1221

1 )()()( −− −−= τβτττ VAf n                      (47) 
where 1A  is an unknown constant and n  is an unknown index.  

Now substituting Eq. (47) into (46), the constant 0=n  is ascertained  
    At βτ → , utilizing Eqs. (39), (40) and (5) the constant 1A  will be gained: 
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Then substituting Eq (40) into Eqs.(19) and (16) for 0=y , the stress yzτ , 
displacement w  and the stress intensity factor )(3 tK  are obtained, respectively: 
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4.  Conclusion 

 Applying the relevant representation: )/,/(),,( tytxfttyxf n= ，just n  is 
an integer number; the problem dealt with will be transformed into homogeneous 
functions of zeroth dimension, i.e. homogeneous functions. All satisfying this 
function relationship are settled by Eqs. (16), (17) and (19) according to the type 
of homogeneous functions corresponding to variable τ . This method is not only 
utilized in elastodynamics, but also in elastostatics, so much as in the else domain.  

The concrete solutions of dynamic propagation problems concerning mode Ⅲ  
crack were attained by the approaches of the self-similar functions. This is 
regarded as the analogous class of dynamic problem of the elasticity theory. The 
method of solution is based exclusively on techniques of analytical-function 
theory and is straightforward and compendious. This has comparatively reduced 
the amount of the calculative work needed to resolve such a crack problem.  
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