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Abstract

In this paper, we present the global analysis of a HCV model with CTL
and Antibody Responses. We prove that the solutions with positive initial
values are all positive, bounded and not display periodic orbits. In addition,
we show that the model is globally asymptotically stable, by using appropriate
Lyapunov functions.
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1 Introduction

Hepatitis C virus (HCV) infects liver cells (hepatocytes). Approximately 200 million
people worldwide are persistently infected with the HCV and are at risk of devel-
oping chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV infection
therefore represents a significant global public health problem. HCV establishes
chronic hepatitis in 60% — 80% of infected adults [6].

In literature, several mathematical models have been introduced for understand-
ing HCV dynamics [1, 5, 9].

In this article, we consider the basic model presented by Wodarz in [9], this
model contains five variables, that is, uninfected cells (z), infected cells (y), free
virus (v), an antibody response (w) and a CTL response (z). The model is given by
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the following nonlinear system of differential equations

T =\—dr— fux

y = Pvr —ay — pyz

0= ky —uv — quw (1)
w = gvw — hw

Z=cyz — bz

where z(0) = zq, y(0) = yo, v(0) = vy, w(0) = wy and z(0) = 2z, are given.
Susceptible host cells (z) are produced at a rate A, die at a rate dr and become
infected by virus at a rate Sxv. Infected cells die at a rate ay and are killed by
the CTL response at a rate pyz. Free virus is produced by infected cells at a rate
ky, decays at a rate uv and is neutralized by antibodies at a rate quw. Antibodies
develop in response to free virus at a rate gvw and decay at a rate hw. CTLs expand
in response to viral antigen derived from infected cells at a rate cyz and decay in
the absence of antigenic stimulation at a rate bz.

Clearly, the system (1) has a basic infection reproductive number of

A

- dau

Ry

In this work, we give a rigorous global analysis of HCV model presented by
system (1).

The paper is organized as follows. In Section 2, we give some properties of
solutions. The analysis of the model is presented in section 3. Finally, the conclusion
are summarized in Section 4.

2 Some properties of solutions

In this section, we give some properties of solutions of system (1).

2.1 Positivity

Proposition 2.1. Let X : [0, +oo[— I, X(t) = (x(t),y(t), o(t), w(t), (1)), be a
solution of system (1). If X(0) € IR, then X(t) € IR, for all t € [0, +o0|.

Proof. Simple application of proposition A.1. (see [8]). |

2.2 Boundedness

We denote by Cy(I) the set of continuous and bounded functions defined on the
interval I and taking values in IR

Proposition 2.2. Let X : [0, +oo[— IR’ be a solution of system (1). If X(0) € IR’,
then X € Cy([0,4+00]). Moreover we have
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i) z(t) < xo+ 3,

ii) y(t) < yo+ max(1,2 — g)xo + max(%, 3),

i) 0(t) < vo + 2yl

iv) w(t) <wy+ %[max(l, 2— v + max(%, %)Hy“oo],

v) 2(t) < 20 + £[max(1,2 — Do + yo + max(3, 3) + max(0, 1 — £)|yloo)-

Proof. From Proposition 2.1, we have X (¢) € IR’,.
As & = X — dz — bvz, we deduce that & + dz < A, then £ (ze™) < e
Hence,

A
x(t) < woe™ ™ + 3(1 —e ),

since 0 < e~ < 1, thus ).
From
y+ay =bvr —pyz < bve =\ —dr — 1z,

we have that
U+ ay <A — (& +dx).

Thus,
y(t)e™ —yo <

t
d
(e —1) — /0 e(“’d)sg(x(s)eds)ds.

Using the integration by parts, we get

/o e(a_d)sdi(x(s)eds)ds = [z(s)e*] — (a — d)/o x(s)e*ds.

S

Hence,

y(t) < (w0 +yo)e™™ + 2(1 —e™ ) —x(t) + (a — d) /0 ()¢,

If a—d <0, then

A
y(t)§370+yo+a

If a—d>0, then

)\ t
y(t) <zo+yo+ —+ (a—d) / x(s)ea(s*t)ds
a 0
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According to i), we have

A —d A
y(t) S o+ g0+ -+ (a0 + )L - ™),
Hence,
d A
y(t) <yo+ (2 — a)%‘i‘g- (5)

From (4) and (5), we deduce 7).
Now, we show iii). The equation © = ky — uv — quz, and (v(t), 2(t)) € R%, implies
that

t
v(t) < voe ™ + k/o y(s)e* s, (6)

Then,
k —tu
0(t) < vo + —lylloo (1 — ™).

Since 1 — e~ < 1, we deduce iii).
Using a same technic to show (3), we get

t
w(t) = woe™™ + g{/ [ky(s) + (h — w)v(s)]e"Dds — v(t) +ve ™). (7)
0
If h—u <0, then
g k
w(t) < wo +=(+[|ylle + o). (8)
q h
If h —u > 0, using éi7), we have
h

wt) < u+ S e+ 2= ool )

From (8) and (9), we deduce iv).
Finally, we show v). The equation Z = cyz — bz implies that

Z—i—bz:cyz:f?[)\—(:i:—i-dx)—(y'+@y)].

Using the same technic to show (3) and (7), we get

() = Can+ 10— )+l + 515+ [ 10— d)als) + (0= ay()e*~ds —a(t) = y(0)).
(10)
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Ifb—d<0and b—a <0, we have
c, A
Ifb—d<0andb—a>0, we have

c.\ a
2(t) < 2o + ];[g +xo+yo+ (1 - E)H?JHoo] (12)

Ifb—d>0and b—a <0, we have

) < 20+ 5[5+ (2= Do+ uil (13)

Ifb—d>0and b—a >0, we have

A0 < 20+ S5+ 2= Dot o+ (1= Pyl (14)

From (10)-(14), we deduce v). =

2.3 Nonperiodicity and Limiting Behavior

Proposition 2.3. Let X be a solution of system (1). If X(0) € IR’ then, the limit
of X(t) exists when t — +oo. In particular, X is periodic if and only if X is
stationary. Moreover we have

i o) < 5 (15)
Jim () = = d T () —a limy(r) (16)
Jim o) < - lim (), (17)
Jim w(t) = bk lim y(t) —u Jim ()] (18)

Proof. From (10) and according to Lemma 7 (see [4]), if max(a, b, d) = b, we have

limsup z(t) < £[)\ — dlimsup z(t) — alimsup y(t)],
t——+o00 pb t——+00 t——+00
c
o > S atmi o '
I%Tﬁgof z(t) > 5 A—d I%E}j&?of x(t) —a I%E}j&?of y(t)]

If max(a,b,d) = a, using the same technic for to obtain (10), we have

y(t) = (x0+y0+§zo)e“t+2(1—e“t)—x(t)—§z(t)+/o [(a—d)x(s)—f—]g(a—b)z(s)]e“(sft)ds'
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then

1
limsupy(t) <
t——+o00 a

liminfy(t) >
) 2 g

t——+00

t——+o0
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—[A —dlimsup z(t) — pb lim sup z(t)],

C t—+co

1
—[A = dliminf z(t) — pb liminf z(t)].

C t—+o

In the same way we show that, if max(a, b, d) = d, we have

p

o(t) = (fvo+yo+§Zo)edt+5(1—edt)—y(t)——z(t)+ /O [(d—a)y(s)+§(d—b>z(s>]ed(5*t>ds.

d

then

1

limsupz(t) < -
t——+o00 d
. 1
liminf z(t) >

t——+o00

c

t——+o00

t——+00

b
(A —alimsupy(t) — P2 Yim sup z(t)],

C t—+co

b
a[)\ —aliminf y(t) — P2 Yim inf z(t)].

C t—+o

So, for every parameters a > 0, b > 0 and d > 0, we have

: c

limsup z(t) < —
t—+oo P t—+o00

c

o S5 <
1%Ln+1glof Z(t) — pb t——+o00

Hence,

b[)\ — dlimsup z(t) — alimsup y(t)],

t——+o0

(A — dliminf z(t) — aliminf y(t)].

t——+o0

lim sup z(t)—liminf z(t) < ib [d(lim inf 2(¢)—lim sup z(t))+a(lim inf y(¢)—lim sup y())].

t—4o00 t—o0 p

Thus,

limsupz(t) =
t—-+o00

limsupy(t) =
t—-+oo

limsup z(t) =
t—-+o00

lim z2(t) =

t—4o0

t——+o00

im inf 2 (2),

lim inf y(¢),

t——+o0

im inf 2(2),
c
pb

t——+o0

t——+o0

t—o0 t—+o00

A —d lim z(t) —a lim y(t)].

t——+o0

From (2) we have lim,_ o z(¢) < 4, thus (15) and (16).

From (7) and Lemma 7, if h > u,

limsupw(t) <

t——+00

liminfw(t) >

t——+o0

we have

ih (klimsup y(t) — ulimsup v(t)),

C] t——+o0
g

L
q t——+o0

t——+00

Eliminf y(t) — uliminf v(t)).

t—4o0



Analysis of a HCV model with CTL and antibody responses

If h < u, using the same technic for to obtain (7), we have
¢ . ] ,
v(t) = voe ™ + / ky(s) + L(u — h)w(s)]e"cds — Luw(t) + Lwge .
0 g g g
Then

k h
limsupv(t) < —limsupy(t) — 9% Yy sup w(t),
t——+o00 U t—+oo gu t—+o0o

liminfo(t) > k liminf y(t) — ah lim inf w(t).

t——+o0 Uu t—+oo gu t——+4o0

So, for every parameters h > 0 and u > 0, we have

limsupw(t) < ih (klimsup y(t) — ulimsup v(t)),

t—+oo q t—+o00 t—+o00
> L _
I%erlIlf w(t) " (k 1%m+1nf y(t) —u liermf v(t)).

Since limit y(t) exists, we have

lim sup w(t) — liminf w(t) < e (liminfv(¢) — limsup v(t)).
t——+o0 t—+o0 q t—+o0 t——+o0
Thus,
limsupo(t) = liminfo(t),
t——+00 t—+o0
limsup z(t) = liminf 2(¢),
t——+o0 t—+o0

then limits v(¢) and w(t) exist. Moreover

lim w(t) = i[k lim y(t) —u lim o(t)].

t—4o0 q t——+o0 t—4o0

Finally, from (6) we have
lim o(f) <~ Tim ()
im v — lim :
t——+o00 —u t—>+ooy

In particular, X is periodic if and only if X is stationary. m

3 Analysis of the model

In this section, we shall study the global asymptotic stability of system (1).
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The system (1) always has disease free equilibria of the form E, = (%, 0,0,0,0)
and four endemic equilibrium points:
o (ﬂ MGk — dau A\Bk — dau
TGk ek T afu
Auc b kb kBAc— a(duc + ﬁkb)>
duc + kb’ ¢’ uc’ p(duc + Gkb) ’
Ag BhA b kBAg — au(dg + Bh)
dg + Bh’ a(dg+Bh)" g"  aq(dg+ Bh)
Ag b h kbg —uhc hcBA — ab(dg + Bh)

707 0)7

Ey = (

Egz(

70)7

Ey = s Ty T 9 )
! (dg+ﬁh ¢ g cqh pb(dg + h) )
We put
Akg 1
Dy = — H =——, 19
0 auh 0 RLO + Dlg’ ( )
Ac 1
Dy = —, Hj=———. (20)
ab RLO%—DLS

Then, these equilibria we can be written:

A A d U a
Ei: 3 :'Ea_ ya_ 1‘}7_ 1'1]7_ 270<<4
(d Va Tt g sz) ==

where
0 = 1L, Q=Qy=0Q)=0;=0,
x 1 1 v w z
Ql = Ea@%zl_ﬁoanzRO_laQ1:Q1:07

T Hg 1 v R w z z
QQ pr— RE’ Qg pr— ﬁ’ Q2 pr— D_(i” QQ == O, Q2 = HO - 1,
0 0
HY Hy R
&G = T A= Q=g QY= HY -1 @5 =0,
0 0
oy 1 Ry Dy Dg
Qw - —07Qy:_Z7QU:—w7sz z_]"QZ: wHw_]“
4 RO 4 DO 4 DO 4 DO 4 D() 0

It easy to remark that
Remark 3.1.

1. If Ry < 1, then E; does not exists and Fy = Ey when Ry = 1.

2. If Hy < 1, then E5 does not exists and Ey = Ey when Hf = 1.
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3. If HY < 1, then E5 does not exists and E5 = Ey, when H) =

4. If Dy < D§ or D—gH“’ < 1, then E, does not exists. Moreover Ey = Ey when
Dy = D; andE4—E3 when OH“’ =1.

The number D’ represents the basic defence rate by antibody response, D
represents the basic defence rate by CTL response, H{’ is the half harmonic mean
of Ry and Dy and Hj is the half harmonic mean of Ry and Dj.

We put
_ Hy'Dg
= "pr
We remark that HY = Hy"" and Hi = H;”. The importance of these parameters
is related in the following result.

w,z
HO

Theorem 3.2.

i) If Ry <1, then Ey is globally asymptotically stable.

ii) If Ro > 1,Hy <1 and Hf <1, then E\ is globally asymptotically stable.
iii) If H; > 1 and D§ > D, then Ey is globally asymptotically stable.

iv) If HY > 1 and Hy"* <1, then Ej5 is globally asymptotically stable.

v) If DY > D§ and Hy"* > 1, then Ey4 is globally asymptotically stable.

Proof. Using the same technic given in [2| and [7], we consider the following Lya-
punov function in ]R‘j’r:

x x Y Y Bx* v v
1% = (= —ln— (= —In= (——In—
@) = (-2 + S - ) (- )
Tt e P2 2
+gw (w* w*)] * c (z* nz*)’

where E* = (z*,y*, v*, w*, 2*) is an equilibrium of system (1) and when .* is zero for
some equilibrium coordinate, the corresponding log term will be absent. It easy to
verifies that

. RnO* v w z A2 Y

Viogows) = ML+ Q7+ Q!+ g (G + B0)+ ] = (do + Q7 = !
Aky Q7 QY RoQf oy, WA QY v T
_W1+Qw+&y(1+Q;ﬂ_ ST T e Y T By
p)\z

—(Qi - —)
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For 7+ = 0 we have that

: A2 ANuw Ry  phz 1
Vo= 2\ — (dr+ Ry—1)— 24w 7o PAZ 2
(et ) Tt =) == B ~ = s

Since
2

A
dr + — > 2\,
dx

then V < 0 and E, is globally asymptotically stable, if Ry < 1.
For ¢+ = 1 we have that

: 1 A2 BAzv 1 \ky 1
V = \3——=—)—(d — l—=)— —2(1—-—
( Ro) (dz + Rodx) ay ( Ry uv ( RO)
Aquw 1 PAZ 1
i St I DI il
(1= )+ B0 )
1 2 A2 A2 1 BAxv 1 \ky
= \31l——=—)+—=—]—(d — e 1——)——=(1
3( Ro) + Ro] (du + R(Q)dx) Rodx( Ry ay Ry uv
Aqu 1 PAZ 1
AT oy
20— )+ R )
Using the arithmetic-geometric inequality, if Ry > 1, we have that
A2 1 BAxv 1 Aky 1 1
— 1——)— 1——)— —(1——=—) <=3\1—-—).
Rod(L’ RO ay Ro uv Ro) o ( Ro)
Since
dr + A2 2\
x —_
R(Q)dflf o }%o7

then V < 0 and E is globally asymptotically stable, if Ry > 1, HY <1land Hf <1.
For ¢ = 2 we have that

: H? N HE  Bhxxv 1 Ney HE  Aquw 1 1
V o= A3-30) —(de+ =) — Sl S R el £ T (e
( Ro) (x+de0) ay D§ wv D§+ U O(DS Dg])
H¢ HZ A2 Hf A2 HE HZ Azv 1 Aky HE
_ el oy g X Hiy AN Hey Hiy PAve L Aky Hy
Dj Ry dx " Ry dx Ry Ry ay Dj uv Dj
Aquw 1 1
—H{(— — —

Using the arithmetic-geometric inequality, we have that

_/\_QHS(l_Hg _ BAzv 1 Aky H §—3)\HS,

dzr Ry Ry ay Di  wv Dj D;
Since 2 i
dr + 2= (=2)2 > 2\ 20
R PR
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then V < 0 and F, is globally asymptotically stable, if H; > 1 and D§ > D

For 7 = 3 we have that

. e Y N OHY N HY HY e HY
Vo= ABEL 470 (e (P 2o g Moy 0
Bpe T2, "t R @ m YR T T Dy

PAZ
1

Using the arithmetic-geometric inequality, we have that

NHy | HY o eHy by L Hy
dx Ry Ry ay Dy uv Dy Dy
Since 2 i
do + 2= (=2)2 > o =0
TR 2P Ry

then V < 0 and Fj is globally asymptotically stable, if H¥ > 1 and HY”* < 1.

For i = 4 we have that

2845

: HY NHY  Blxv 1 Ney HY?
Vo= M3-"2)— (do+ 522 — — -
( Ro) (x+de0> ay D wv DY’
HY A2 HY A2 HY HY  [Blxxv 1 Xky Hy”
o3 Moy g Moy A Hoy o pArv 1 ARy Hy T
(8 Ro) [x+dx(R0 ] dz RO( Ry ay D wv Dy

Using the arithmetic-geometric inequality, we have that

NHPHp o Bev 1 A HYT o Hy
dx Ry Ry ay D wv DY Dy
Since 2 g T
de + - (=2)? > 20 =L
v d(lf( Ro ) - Ro '
then V < 0.
The equality holds if and only if
. v kDj v

r=2" and - )
y ubi oy
Let
S ={(z,y,v,w,2) € RL : V(z,y,v,w,2) = 0}.
Trajectory (x(t),y(t), v(t),w(t), 2(t)) € S imply that

y=y", v=0v", w=w" and z=2z"

From LaSalle’s invariance principle [3], we conclude that £, is globally asymptoti-

cally stable, if DY > D¢ and Hy™* > 1.
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4 Conclusion

In this work, we give the global analysis of a HCV with CTL and antibody responses.
The disease free equilibrium is global attractor if the basic infection reproduction
number satisfies Ry < 1. In addition, the stability of the four endemic equilibrium
points is dependent upon both the basic defence rate by antibody response and the
basic defence rate by CTL response. These parameters play a crucial role, in order
to characterize the stable equilibrium points.

Moreover, we prove that the solutions of this model with positive initial condi-
tions are all positive, bounded and do not admit periodic solutions.
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