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Abstract. Let K be a nonempty closed convex subset of a real Hilbert space
H, and assume that T; : K — H,7 = 1,2...N be a finite family of k;-strictly
pseudo-contractive mappings for some 0 < k; < 1such that Y, F(T}) = {z €
K :x="Tux,i=1,2..N} # 0. For the following iterative algorithm in K, for
xy, 0y € K and u € K,

{ Yo = Prclkan + (1 — k)N N T,

and
Y = Prloga, + (1= af )55 N T
{ Ty = Bpu+ (1 =06,y

Py is the metric projection of H onto K, {a/} and {f]} are sequences in
(0,1) satisfying appropriate conditions, we proved that {x,} and {z/,} respec-
tively converges strongly to a common fixed point of {T;}¥,. Our results im-
prove and extend the results announced by Genaro L.A.and H.K.Xu [Iterative
methods for strict pseudo-contractions in Hilbert spaces, Nonl.Anal.67(2007)
2258-2271], T.H.Kim and H.K.Xu [Strong convergence of modified Mann iter-
ations, Nonlinear Anal.61(2005)51-60] and G.Marino and H.K.Xu [Weak and
strong convergence theorems for strict pseudo-contractions in Hilbert spaces,
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1. INTRODUCTION

Let K be a nonempty closed convex subset of a Hilbert space H. We use
F(T) to denote the fixed point set of T and Pk to denote the metric projection
of H onto K. Recall that a mapping 7' : K — H is said to be a k-strictly
pseudo-contractive if there exists a constant k € [0, 1) such that

1Tz = Ty|l* < o —ylI* + k(I = T)z — (I =Tyl Yo,y e K& (L1)

Note that the class of k-strictly pseudo-contractions includes strictly the class
of nonexpansive mappings which are mappings 7" on K such that

1Tz =Tyl <[l —yl,Vz,y € K.

When k£ = 0, T is said to be nonexpansive, and it is said to be pseudo-
contractive if k = 1. T is said to be strongly pseudo-contractive if there exist
a positive constant A € (0,1) such taht 7" — A is pseudo-contractive. Clearly,
the class of k strict pseudo-contraction falls into the one between classes of
nonexpansive mappings and pseudo-contractions. We remark also that the class
of strongly pseudo-contractive mappings is independent of the class of k strict
pseudo-contraction (see[2, 3, 5]).
It is very clear that, in a real Hilbert space H, (1.1) is equivalent to

1—k
(T =Ty, 2 —y) < o —yl? = — =@ = T2)  (y = Ty)|P, Yoy € K. (1.2)
T is pseudo-contractive if and only if
(Tw = Ty,x —y) < |z -yl (1.3)

T is strongly pseudo-contractive if and only if there exists a positive constant
A € (0,1) such that

Recall that the normal Mann’s iterative algorithm was introduced by Mann
(see[1]) in 1953. Since then, construction of fixed points for nonexpansive
mapping have been extensively investigated (see[4, 8, 9, 12, 14, 17, 18, 19, 20,
21]) and k strict pseudo-contractions via the normal Mann’s iterative algorithm
has been extensively investigated by many authors (see[l, 7, 13, 15, 16, 22, 23]).

The normal Mann’s iterative algorithm generates a sequence {z,} in the
following manner:

Vo, € Koo = (1 — o)z, + o T, n > 1 (1.5)
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In 1967,Browder and Petryshyn [5] established the first convergence result
for k-pseudo-contractive self mappings in real Hilbert spaces. They prove weak
and strong convergence theorems by using algorithm (1.5) with a constant
control sequence {a,,} = a for all n. Afterward, Rhoades [6] generalized in part
the corresponding results in [5] in the sense that a variable control sequence
{a,,} was taken into consideration. Under the assumption that the domain of
mapping 7' is compact convex, he established a strong convergence theorem by
using algorithm (1.5) with a control sequence {a,} satisfying the conditions
o =1,0< o, < 1,2°,0,, = 00 and the limsup,_, o, = o < 1 — k.
However, without the compact assumption on the domain of mapping 7', in
general, one cannot expect to infer any weak convergence results from Rhoades’
convergence theorem.

Very recently, G.L.Acedo and Xu [24] have proved a weak convergence the-
orem by using algorithm

Tp41 = Qpdy + (]- - an)Ezj\Ll)‘zﬂxn (16>

with certain control conditions.
In this paper, motivated by G.L.Acedo and Xu [24] and the above results,
we study the following iteration process (1.7) and (1.8), for z; € K,

{ Yn = Prlka, + (1 — k)X N T, (1.7)
Tnit = Bottn + (1= B, un
and
{ Y, = Pglala! + (1 — o)) SN N\ Tl (1.8)
iy = B+ (1= 3y,

Py is the metric projection of H onto K, {«/, } and {f],} are sequences in (0,1)
satisfying appropriate conditions, we proved that {z,} and {z]} respectively
converges strongly to a common fixed point of {T;},. Our results extend and
improve the corresponding results in [19, 23, 24].

We will use the following notation:

1. — for weak convergence and — for strong convergence.

2. wy(2,) = {x : x,, — v} denotes the weak w-limit set of {z,}.

2. PRELIMINARIES

We need some Lemmas and Propositions in real Hilbert space H, which are
listed as follow:

Lemma 2.1. (Marino and Xu [23]) Let H be a real Hilbert space, there
hold the following identities.

() [z £yl = ll=l* + 2z, y) + y|* Yo,y € H

(i) [tz +(1=)y|* = tllz*+1A-t) [y —t(1-t) |z —y[* Vt € [0,1], Yo,y € H
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Lemma 2.2. (Demiclosedness Principle). If T'is k-strict pseudo-contraction
on closed convex subset K of a real Hilbert space H, then I — T is demiclosed
at any point y € H.

Lemma 2.3. (Xu [23]). Let C' be a nonempty closed convex subset of a
Hilbert space H. Given z € H and y € C. Then y = Pex if and only if there
satisfies (x —y,y —2) > 0Vz € C.

Lemma 2.4. (see,e.g. Liu [11]).Let {a,} be a sequence of nonnegative real
numbers that satisfies the condition

Ap+1 S (1 - tn)&n + bn + O(tn)an 2 17

where {t,} satisfies the restrictions:

(i) tn — O(n — o0);

(i) 39,0, < o0;

(iif) £ ¢, = oo.

then a,, — 0 as n — oo.

Proposition 2.5. Assume K is closed convex subset of Hilbert space H.

(i) Given an integer N > 1, assume, for each 1 <i < N, T;: K — H is a
k;-strict pseudo-contraction for some 0 < k; < 1. Assume {);}, is a positive
sequence such that XY \; = 1 .Then XY, \;T; is a k-strict pseudo-contraction,
with k = max{k; : 1 <i < N}.

(ii) Let {T;}Y, and {\;}¥, be given as in (i) above. Suppose that {T;}¥,
has a common fixed point. Then

Fiz(SN NT) ﬂFm

Proof. To prove (i), we only need to consider the case of N = 2. the general
case can be proved by induction. Set A = (1 — AT} + ATy, where A € (0,1)
and for i = 1,2, T; is a k;-strict pseudo-contraction. Set k = max{ky, ko}. We
now to prove that A is a k-strict pseudo-contraction, by lemma 2.1(ii) we have

(1 = Az — (I = A)yll*

=[|(1 = N[ = T1)z — (I = Tyl + AN = To)z — (I = o)yl
=1 =N =Tz - (I =Tyl + A(] = Tz)z — (I = Tr)y|?
“AL =N =T)x = (I =Ty - [(I = T)z = (I = Ta)y|?

and observe that T': K — H is a k-strict pseudo-contraction if and only if
there holds the following

(2.1)

(o=, (I =T)r — (I =T)y) > 751 =Ty — (I =Tyl? (22)

Indeed, putting V = I — T, we see that (1.1) holds if and only if
(= V)e— (L= V)P < o — gl + K[V - V|2 Voy e K (23)
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But by lemma 2.1(i) we have
(I =V)z — (I =V)ylI* = llz = ylI* = 2{z —y, Vo = Vy) + [Vz - Vy|* (24)
substituting (2.4) into (2.3), we obtain (2.2). Noticing (2.1), we have

(x—y,(I = Az — (I - Ay)

(I=MN( -y, (I -=T)r— (I -T)y) + Mz —y,[ = Ta)x — (I = Ta)y)
LA =N =Tz = (I = T)yll? + AT = To)z — (I = Ty)yll’]
LA = Az — (I = A)yl?

Hence A is a k-strict pseudo-contraction

To prove (ii), we can assume N = 2. It suffices to prove that Fixz(A) C
Fix(Ty)NFiz(Ty), where A = (1-=AN)T1+AT5,with 0 < A < 1. Let x € Fiz(A)
and write Ay =1 — T and Ay =1 — T5.

Take z € Fiz(T1) N Fixz(Ty) to deduce that

Iz —zl” = [[(1=XN(z—Tiz) + Mz — Tor)]|]?
= (1=N|z—Tiz|)* + M|z — Tox||* = M1 = N)||Thx — Torx|]?
< (L=N(lz = 2| + K[|z — Thz|]?)
FA(lz = 2l + kllz — Tox|?) — A1 = M) ||The — Tox|]?
|2 = ||* + K[(1 = N)[[ Az ]| + Al Aoz [|!] = M1 = N)[[ A1z — Agz|?.

AVARAVAR

It follows that
AL =N Az — Asz|* < k[(1 = N[ Arz||* + A Az]|”] (2.5)
Since (1 — A\) Az + Az = 0, we have
(1= N[[Aw]? + MAsz[* = A1 = N)[[ Az — Asz®
This together with (2.5) implies that
(1= KA1 =N[4z — Ayz||* <0
Since 0 < A < 1 and k < 1, we get ||Ajz — Asz|| = 0 which implies Tiz = Thx
which in turns implies that Tiz = Tox = x since (1 — A\)Tiz + AXTox = z, Thus,
x € Fixz(Ty) N Fiz(Ty). The general case can be proved by induction, this
completes the proof.
Proposition 2.6. If T': K — H is a k-strict pseudo-contraction, then T is
L-Lipschitzian mapping.
Proof. By (1.2), for all z,y € K, we have that
ST =Tz = (I =Twyl* < (I-T)z—(I-T)y,z~y)
< N0 =Tz — (I =Tyllllz -yl
it follows that
[Tz =Tyl — |z -yl Hgl—T)x— (I =Tyl

ﬂHx_yH,

IAIA
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ie.,
72~ Tyl < Lle —fl, L=,

Proposition 2.7. If T is a k-strict pseudo-contraction on a closed convex
subset K of a real Hilbert space H, then the fixed point set F'(T") of T is closed
convex so that the projection Pp(ry is well defined.

Proof. Since T': K — H is Lipschitzian, we see that F'(T) is closed. Thus,
we only need to see that F/(T') is convex,take p,q € F(T), and t € (0,1). Put
z = (1 —1t)p+tq. by using (1.2) we have

1—-k

(ze = Tz, 2 — p) > lz: — Tz ||? (2.6)

and
1—k

(zt — Tz, 20 — q) > 2 — Tz|? (2.7)

Noting that z; — p = t(¢ — p) and 2z, — g = (1 — t)(p — ¢q), substituting these
equalities into (2.6) and (2.7), respectively, we get

t(zy — Tz,q — p) > 2z — Tz||? (2.8)

and

(1 —=t)(ze — Tz,p—q) > 2 — Tz|? (2.9)

Multiplied by (1 —t) and ¢, and added up on the both sides of (2.8) and (2.9),
respectively, we have
1—k
2

which implies that z; € F(T'). This completes the proof.

Proposition 2.8. Let T': K — H be a k-strict pseudo-contraction with
F(T) # (. Then, F(PxT) = F(T).

Proof. Clearly, F'(T) C F(PxT). Thus, we only need to show the converse
inclusion. Assume that x = PgTx; then, by lemma 2.1 and lemma 2.3, we
have for p € F(T') that

1Tz — pl|?

||Zt — YWZtH2 S O,

1Tz — 2 + 2 — p|?

Tz — || + 2(Tx — z,x — p) + || — p||?

Tz — ||? + 2(T% — PxTx, PxTx — p) + ||z — p||?
[Tz — x||* + ||z — p>.

On the other hand, by (1.1), we have
1Tz —p||* < llz — pl|* + kllz — T|*. (2.11)
Combining (2.10) and (2.11) yields
(1= kK)o —Tz|* <0

(2.10)

(AVAN
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Therefore, x € F(T). This completes the proof.

Proposition 2.9. Let T : K — H be k-strict pseudo-contraction. Define
S:K — Hby St =ax+ (1 —«a)Tx for each z € K. Then, as a € [k, 1), S is
nonexpansive such that F(S) = F(T).

Proof. For all z,y € K, by lemma2.1(ii) and (1.1) we have

ISz = SylI* = ez —y) + (1 = a)(Tx = Ty)|*
= allz —y*+ (1 - a)||Tz — Ty|*
—a(l—a)|[(z —y) — (Tz = Ty)|

< allz =yl + 1 = a)llz =yl + k(1 - a)[(x —y) — (Tz - Ty)|
—a(l = a)|[(z —y) — (Tz — Ty)|]

= o=yl = (a =k -a)ll(z—y) - (Tz—Ty)|?

<l =yl

which proves that S : K — H is nonexpansive. By the definition of S, we have
x—Sx = (1 —a)(x —Tx), and this means that p = Sp if and only if p = Tp.
This completes the proof.

3. MAIN RESULTS

Theorem 3.1. Let K be a nonempty closed convex subset of a Hilbert
space H and T; : K — H be a k;-strictly pseudo-contractive non-self mapping,
for some 0 < k; < 1, k = max{k; : 1 < i < N}. Assume the common fixed
point set ()., Fiz(T;) is nonempty. Let {x,} be generated by (1.7), i.e.,

Tpi1 = Buzn + (1 — Bo)Prlkz, + (1 — k)XY \Tx,]

where (3, = aln__kk, {\}Y, is a finite sequence of positive numbers, such that
YN N =1foralll <i < N. If {a,} is chosen so that «,, € [k,1] and
Y2 (o — k)(1 — ) = 00, then {z,} converges weakly to a common fixed
point of {T;}Y ;.

Proof. Let T be defined by T' = XY, \;T;, by proposition 2.5 (i),(ii) we
know that Fiz(T) = ., Fiz(T;) and T is a k-strict pseudo-contraction on
K, with £k = max{k; : 1 <i < N, define S : K — H by Sx = kx + (1 — k)Tx.

By proposition 2.9, we know that S : K — H is nonexpansive and F(S) =
F(T). By our assumption on T', we know F(T') # () and hence F(S) # 0.

Since S : K — H is nonexpansive, then S : K — H is k-strict pseudo-
contraction on K, where k = 0. By proposition 2.8, we see that F(PxS) =
F(S) #0.

Since P : H — K is nonexpansive, we conclude that PxS : K — K is

nonexpansive.
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From the control condition on {a,}, we have

1 o0
mznzl(an - k)(l - an) = OQ.

Then, by Theorem 2 given by Reich in [7] to deduce that {z,} converges
weakly to a fixed point of PgS.

Notice that F(PgS) = F(S) = F(T'), we have the conclusion.

The proof is completed.

Ezozlﬁn(l — Bn) =

From Theorem 3.1, we can deduce Theorem 3.2 of Marino and Xu [24].

Corollary 3.2.(Xu [24]) Let K be a nonempty closed convex subset of a
real Hilbert space H. Let N > 1 be an integer. Let, for each 1 < i < N,
T, : K — K, be a k;-strict pseudo-contraction for some 0 < k; < 1. Let
k = max{k; : 1 <i < N}. Assume the common fixed point set (), Fiz(T})
is nonempty. Assume also {\;}Y, is a finite sequence of positive numbers,
such that XY \; = 1. Given zy € K, let {z,,}5° be the sequence generated by
Mann’s algorithm:

Tyl = @y + (1 — ozn)Efil)\iTixn

Assume the control sequence {a,, }&° is chosen so that k < a,, < 1 for all n
and

Y (an —k)(1 — ay) = oo.

Then {z,} converges weakly to a common fixed point {7;}¥.
Proof. We observe first that, for all x € K.

Pylkl + (1 — B)SY NTi)w = [kI + (1 — B) XX N Tz

Since T} : K — K, thus kI + (1 — k)XY \T; : K — K is a self-mapping.
For given {«,}, by the choice of {3,}, we get

Tpr1 = Ty + (1 — ) B NTix,
= [k+ (1 —Fk)Bu]zn+ (1 —k)(1 - ﬁn)zfil)\iTixn
= Bprn + (1= Bn)[kr, + (1 — k>zi]\;1Aiﬂxn]
= Bpwn + (1= 3,)Pxlkz, + (1 — k)ZX \Tix,]

Consequently, we conclude that {z,} converges weakly to a common fixed
point of {T;} by Theorem 3.1.
The proof is completed.

Remark 3.3. Theorem 3.1 and its Corollary mainly improves Xu [24] in
the following senses:

(i) relaxing the restriction on {«,} from (k,1) to [k, 1];

(ii) from k-strict pseudo-contraction self-mapping to non-self mapping.
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In order to get a strong convergence theorem, we modify the iterative algo-
rithm for k-strict pseudo-contraction. We have the following theorem.

Theorem 3.4. Let K be a nonempty closed convex subset of a Hilbert
space H and T} : K — H be a k;-strictly pseudo-contractive nonself-mapping,
for some 0 < k; < 1, let & = max{k; : 1 < i < N}. Assume the common
fixed point set (), Fiz(T}) is nonempty. Assume also for each n, {\}Y, is
a finite sequence of positive numbers, such that XY \; = 1 for all 1 < i <
N. Given v € K and sequences {a/,} and {3} in (0,1), satisfying control
conditions: (1)X22 .6, = o0; B, — 0, (i) k < o), <b < 1foralln>1,and
(1ii) 302 Jag, — ol | < 00, X224 |f) . — 5] < 00, or T 1 asn — oo, let

the sequence {z] } be generated by (1.8), i.e

$;z+1 = ﬁrlzu +(1— @JPK[O‘:#U; + (1 - O‘:z)zfiﬂ\iTif;z]

Then, {2/} converges strongly to a common fixed point z of {T;}¥,, where
z = PF(T)U and T = Efil)‘zﬂ

Proof. 1. {2/} is bounded. By Proposition 2.5, we know that Fixz(XZN,\T;)
NY, Fiz(T;) # 0, take p € (Y, Fiz(T;), from (1.8), we have

2, —pll < Billu—pll+ (1= 8)|Pxlegz, + (1 — a),)T] — pl|

< Billu—pll+ Q= g)la,z, + (1 —ap,) Tz, — p|?

= ﬂ;Hu—pHHl n>[ nllzr, = pll? + (1 = ap)|| T, — p||?
—ay,(1 =)z, — T, |?]
Brllu = pll + 1 = )|, — plI?
—(1 —ap) (g, = k)||2;, — Ty, |I?]

< Bllw—=pll+ 1 = 8))lla;, — pl>

< max{|ju—pl|, |z}, — p}

By induction, |z, — p|| < max{|u — pl, |z} —pll}, n > 0, ie., {,} is
bounded.

2. limsup,,_, (v — Prryu, y;, — Pperyu) < 0.

By Proposition 2.5, we also have T' is a k-strict pseudo-contraction on K
with & = max{k; : 1 < i < N}. Proposition 2.6 ensures that Prryu is well
defined.

Pilal I+ (1—al,)T] : K — K is a nonexpansive mapping. Indeed, by using
Lemma 2.1, the definition of strictly pseudocontraction and condition (ii), we
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have for all z,y € K that

[1Prlond + (1 = af)T]w — Plag I + (1= o) Ty

n

< lap(@—y) + (1= ap)(Tz = Ty)|?

= apllz —yl? + (1 - a))[[ Tz — Tyl
—ap(L—ap)||lz =T — (y = Ty)|*

< apllz—ylP+ A= ap)llle — yl? + kllo = Ta — (y = Ty)|?
—ap (L —ap)||z =T — (y — Ty)|?

= |z =yl = A =)o) = B)llz = Tz — (y = Ty)|?

< lz =yl

which imply that Pglol, I + (1 — a,)T] is nonexpansive.

Next we prove that ||z}, ., — )| — 0 as n — oo.

To this end, we first estimate ||y), —y,,_,||. Set My = sup{||x,, —Tz,_||} and
My = ||u|| + sup{||y.|l}, then, by (1.8) and noting that Px[al, I+ (1 — o/ )T] is
nonexpansive, we have

190 — vl = NPxlond + (1 —ap)Tla,
—Prclag I+ (1= o, )Tz, ||

n—1

= ||Pxlal I+ (1 —a))T)2!, — Pxlal I + (1 —a))T)x!,_,

+Pglal I+ (1 —a)Tx!,_ — Pxlal, 41
+(1 = ag_y) Ty, ||

< o = 2l + ([ Prlegd + (1 — o) T2,
—Prlag, 11+ (1 — 1)1z, ||

< g, — 2l [l + Mileg, — o,

(3.1)
then, from (3.1), we get
771 = 2l < (0= By = ynall + Ma| B, — B4
< (=B lw, = 2l + Mifoy, — i, 4) (3.2)
+ M|, — B
By Lemma 2.4, we conclude that ||z}, — ] ;|| — 0 as n — oo.
Noting that ||z}, ., — v, || = B,||v — y,|| — 0 as n — oo, combining this and

(3.2), we have ||z}, — y.|| — 0 as n — oo.

On the other hand, by condition (ii) and (iii), we have o/, — o as n — oo,
where a € [k, 1). Define S: K — H by Sz =ax + (1 — a)T'z.

Then, S is nonexpansive mapping with F'(S) = F(T) by proposition 2.9, it
follows from proposition 2.7 that F/(PgS) = F(S) = F(T).

Set M3 = sup{||«}|| + || T« : n > 1}. Since

l
n

|1Pre Sy, = ypll < Mslaj, — af, 4| = 0, as n — oo,
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then we have
a7, — PreSan|l < llay, — vl + v — PrSai |l — 0, as n— oo.
We now prove that limsup,, (v — Prryu, y,, — Ppryu) < 0.
To see this, assume that

lim sup<u — PF(T)“? y; — PF(T)u> = lim <'LL — PF(T)u, y,’lj - PF(T)U>.

n—00 Jj—00

Without loss of generality, assume that y;j —pasj— 00,
then x;  — p and ||z}, — PrSx;, || — 0 as j — oo.

By Lemma 2.2 we have p € F(PgS) = F(T).

By lemma 2.3, we have that

(u— Pperyu, p — Preryu)y < 0.

Hence,
limsup(u — Ppryu, y,, — Prryu) < 0.

3. we prove that z], — Ppryu as n — o0.
Putting v,, = maz{(u — Pp(ryu,y,, — Preryu), 0}, then v, — 0 as n — oo.
By lemma 2.1, we have

2ty = Preoyull? = (1= 8)%yh — Prearyull® + 8% |lu — Preryul?
+206,(1 = B,)(u — Prryu, Yy, — Prru)
< (1—=8)|lz), — Preryull* + o(5),)

which leads to x], — Pp(r)u as n — oo, by virtue of lemma 2.4.
This completes the proof.
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