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Abstract. Let K be a nonempty closed convex subset of a real Hilbert space

H , and assume that Ti : K → H, i = 1, 2...N be a finite family of ki-strictly

pseudo-contractive mappings for some 0 ≤ ki ≤ 1 such that
⋂N

i=1 F (Ti) = {x ∈
K : x = Tix, i = 1, 2...N} �= ∅. For the following iterative algorithm in K, for

x1, x
′
1 ∈ K and u ∈ K,

{
yn = PK [kxn + (1 − k)ΣN

i=1λiTixn]

xn+1 = βnxn + (1 − βn)yn

and {
y′

n = PK [α′
nx′

n + (1 − α′
n)ΣN

i=1λiTix
′
n]

x′
n+1 = β ′

nu + (1 − β ′
n)y′

n

PK is the metric projection of H onto K, {α′
n} and {β ′

n} are sequences in

(0,1) satisfying appropriate conditions, we proved that {xn} and {x′
n} respec-

tively converges strongly to a common fixed point of {Ti}N
i=1. Our results im-

prove and extend the results announced by Genaro L.A.and H.K.Xu [Iterative

methods for strict pseudo-contractions in Hilbert spaces, Nonl.Anal.67(2007)

2258-2271], T.H.Kim and H.K.Xu [Strong convergence of modified Mann iter-

ations, Nonlinear Anal.61(2005)51-60] and G.Marino and H.K.Xu [Weak and

strong convergence theorems for strict pseudo-contractions in Hilbert spaces,

J.Math.Anal.Appl.329(2007)336-346].
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1. Introduction

Let K be a nonempty closed convex subset of a Hilbert space H . We use

F (T ) to denote the fixed point set of T and PK to denote the metric projection

of H onto K. Recall that a mapping T : K → H is said to be a k-strictly

pseudo-contractive if there exists a constant k ∈ [0, 1) such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2, ∀x, y ∈ K (1.1)

Note that the class of k-strictly pseudo-contractions includes strictly the class

of nonexpansive mappings which are mappings T on K such that

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ K.

When k = 0, T is said to be nonexpansive, and it is said to be pseudo-

contractive if k = 1. T is said to be strongly pseudo-contractive if there exist

a positive constant λ ∈ (0, 1) such taht T − λI is pseudo-contractive. Clearly,

the class of k strict pseudo-contraction falls into the one between classes of

nonexpansive mappings and pseudo-contractions.We remark also that the class

of strongly pseudo-contractive mappings is independent of the class of k strict

pseudo-contraction (see[2, 3, 5]).

It is very clear that, in a real Hilbert space H , (1.1) is equivalent to

〈Tx−Ty, x− y〉 ≤ ‖x− y‖2 − 1 − k

2
‖(x−Tx)− (y−Ty)‖2, ∀x, y ∈ K. (1.2)

T is pseudo-contractive if and only if

〈Tx − Ty, x− y〉 ≤ ‖x − y‖2 (1.3)

T is strongly pseudo-contractive if and only if there exists a positive constant

λ ∈ (0, 1) such that

〈Tx − Ty, x− y〉 ≤ (1 − λ)‖x − y‖2, ∀x, y ∈ K. (1.4)

Recall that the normal Mann’s iterative algorithm was introduced by Mann

(see[1]) in 1953. Since then, construction of fixed points for nonexpansive

mapping have been extensively investigated (see[4, 8, 9, 12, 14, 17, 18, 19, 20,

21]) and k strict pseudo-contractions via the normal Mann’s iterative algorithm

has been extensively investigated by many authors (see[1, 7, 13, 15, 16, 22, 23]).

The normal Mann’s iterative algorithm generates a sequence {xn} in the

following manner:

∀x1 ∈ K, xn+1 = (1 − αn)xn + αnTxn, n ≥ 1 (1.5)
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In 1967,Browder and Petryshyn [5] established the first convergence result

for k-pseudo-contractive self mappings in real Hilbert spaces. They prove weak

and strong convergence theorems by using algorithm (1.5) with a constant

control sequence {αn} ≡ α for all n. Afterward, Rhoades [6] generalized in part

the corresponding results in [5] in the sense that a variable control sequence

{αn} was taken into consideration. Under the assumption that the domain of

mapping T is compact convex, he established a strong convergence theorem by

using algorithm (1.5) with a control sequence {αn} satisfying the conditions

α1 = 1, 0 < αn < 1, Σ∞
n=1αn = ∞ and the lim supn→∞ αn = α < 1 − k.

However, without the compact assumption on the domain of mapping T , in

general, one cannot expect to infer any weak convergence results from Rhoades’

convergence theorem.

Very recently, G.L.Acedo and Xu [24] have proved a weak convergence the-

orem by using algorithm

xn+1 = αnxn + (1 − αn)ΣN
i=1λiTixn (1.6)

with certain control conditions.

In this paper, motivated by G.L.Acedo and Xu [24] and the above results,

we study the following iteration process (1.7) and (1.8), for x1 ∈ K,{
yn = PK [kxn + (1 − k)ΣN

i=1λiTixn]

xn+1 = βnxn + (1 − βn)yn
(1.7)

and {
y′

n = PK [α′
nx′

n + (1 − α′
n)ΣN

i=1λiTix
′
n]

x′
n+1 = β ′

nu + (1 − β ′
n)y′

n

(1.8)

PK is the metric projection of H onto K, {α′
n} and {β ′

n} are sequences in (0,1)

satisfying appropriate conditions, we proved that {xn} and {x′
n} respectively

converges strongly to a common fixed point of {Ti}N
i=1. Our results extend and

improve the corresponding results in [19, 23, 24].

We will use the following notation:

1. ⇀ for weak convergence and → for strong convergence.

2. ωω(xn) = {x : ∃xnj
⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

We need some Lemmas and Propositions in real Hilbert space H , which are

listed as follow:

Lemma 2.1. (Marino and Xu [23]) Let H be a real Hilbert space, there

hold the following identities.

(i) ‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H

(ii)‖tx+(1−t)y‖2 = t‖x‖2+(1−t)‖y‖2−t(1−t)‖x−y‖2, ∀t ∈ [0, 1], ∀x, y ∈ H
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Lemma 2.2. (Demiclosedness Principle). If T is k-strict pseudo-contraction

on closed convex subset K of a real Hilbert space H , then I −T is demiclosed

at any point y ∈ H .

Lemma 2.3. (Xu [23]). Let C be a nonempty closed convex subset of a

Hilbert space H . Given x ∈ H and y ∈ C. Then y = PCx if and only if there

satisfies 〈x − y, y − z〉 ≥ 0 ∀z ∈ C.

Lemma 2.4. (see,e.g. Liu [11]).Let {an} be a sequence of nonnegative real

numbers that satisfies the condition

an+1 ≤ (1 − tn)an + bn + 0(tn), n ≥ 1,

where {tn} satisfies the restrictions:

(i) tn → 0(n → ∞);

(ii) Σ∞
n=1bn < ∞;

(iii) Σ∞
n=1tn = ∞.

then an → 0 as n → ∞.

Proposition 2.5. Assume K is closed convex subset of Hilbert space H .

(i) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N , Ti : K → H is a

ki-strict pseudo-contraction for some 0 ≤ ki < 1. Assume {λi}N
i=1 is a positive

sequence such that ΣN
i=1λi = 1 .Then ΣN

i=1λiTi is a k-strict pseudo-contraction,

with k = max{ki : 1 ≤ i ≤ N}.
(ii) Let {Ti}N

i=1 and {λi}N
i=1 be given as in (i) above. Suppose that {Ti}N

i=1

has a common fixed point. Then

Fix(ΣN
i=1λiTi) =

N⋂
i=1

Fix(Ti).

Proof. To prove (i), we only need to consider the case of N = 2. the general

case can be proved by induction. Set A = (1 − λ)T1 + λT2, where λ ∈ (0, 1)

and for i = 1, 2, Ti is a ki-strict pseudo-contraction. Set k = max{k1, k2}. We

now to prove that A is a k-strict pseudo-contraction, by lemma 2.1(ii) we have

‖(I − A)x − (I − A)y‖2

= ‖(1 − λ)[(I − T1)x − (I − T1)y] + λ[(I − T2)x − (I − T2)y]‖2

= (1 − λ)‖(I − T1)x − (I − T1)y‖2 + λ‖(I − T2)x − (I − T2)y‖2

−λ(1 − λ)‖[(I − T1)x − (I − T1)y] − [(I − T2)x − (I − T2)y‖2

(2.1)

and observe that T : K → H is a k-strict pseudo-contraction if and only if

there holds the following

〈x − y, (I − T )x − (I − T )y〉 ≥ 1 − k

2
‖(I − T )x − (I − T )y‖2 (2.2)

Indeed, putting V = I − T , we see that (1.1) holds if and only if

‖(I − V )x − (I − V )y‖2 ≤ ‖x − y‖2 + k‖V x − V y‖2, ∀x, y ∈ K (2.3)
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But by lemma 2.1(i) we have

‖(I − V )x− (I − V )y‖2 = ‖x− y‖2 − 2〈x− y, V x− V y〉+ ‖V x− V y‖2 (2.4)

substituting (2.4) into (2.3), we obtain (2.2). Noticing (2.1), we have

〈x − y, (I − A)x − (I − A)y〉
= (1 − λ)〈x − y, (I − T1)x − (I − T1)y〉 + λ〈x − y, (I − T2)x − (I − T2)y〉
≥ 1−k

2
[(1 − λ)‖(I − T1)x − (I − T1)y‖2 + λ‖(I − T2)x − (I − T2)y‖2]

≥ 1−k
2
‖(I − A)x − (I − A)y‖2

Hence A is a k-strict pseudo-contraction

To prove (ii), we can assume N = 2. It suffices to prove that Fix(A) ⊂
Fix(T1)∩Fix(T2), where A = (1−λ)T1 +λT2,with 0 < λ < 1. Let x ∈ Fix(A)

and write A1 = I − T1 and A2 = I − T2.

Take z ∈ Fix(T1) ∩ Fix(T2) to deduce that

‖z − x‖2 = ‖(1 − λ)(z − T1x) + λ(z − T2x)‖2

= (1 − λ)‖z − T1x‖2 + λ‖z − T2x‖2 − λ(1 − λ)‖T1x − T2x‖2

≤ (1 − λ)(‖z − x‖2 + k‖x − T1x‖2)

+λ(‖z − x‖2 + k‖x − T2x‖2) − λ(1 − λ)‖T1x − T2x‖2

= ‖z − x‖2 + k[(1 − λ)‖A1x‖2 + λ‖A2x‖2] − λ(1 − λ)‖A1x − A2x‖2.

It follows that

λ(1 − λ)‖A1x − A2x‖2 ≤ k[(1 − λ)‖A1x‖2 + λ‖A2x‖2] (2.5)

Since (1 − λ)A1x + λA2x = 0, we have

(1 − λ)‖A1x‖2 + λ‖A2x‖2 = λ(1 − λ)‖A1x − A2x‖2

This together with (2.5) implies that

(1 − k)λ(1 − λ)‖A1x − A2x‖2 ≤ 0

Since 0 < λ < 1 and k < 1, we get ‖A1x − A2x‖ = 0 which implies T1x = T2x

which in turns implies that T1x = T2x = x since (1−λ)T1x+λT2x = x, Thus,

x ∈ Fix(T1) ∩ Fix(T2). The general case can be proved by induction, this

completes the proof.

Proposition 2.6. If T : K → H is a k-strict pseudo-contraction, then T is

L-Lipschitzian mapping.

Proof. By (1.2), for all x, y ∈ K, we have that

1−k
2
‖(I − T )x − (I − T )y‖2 ≤ 〈(I − T )x − (I − T )y, x− y〉

≤ ‖(I − T )x − (I − T )y‖‖x − y‖
it follows that

‖Tx − Ty‖ − ‖x − y‖ ≤ ‖(I − T )x − (I − T )y‖
≤ 2

1−k
‖x − y‖,
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i.e.,

‖Tx − Ty‖ ≤ L‖x − y‖, L =
3 − k

1 − k
.

Proposition 2.7. If T is a k-strict pseudo-contraction on a closed convex

subset K of a real Hilbert space H , then the fixed point set F (T ) of T is closed

convex so that the projection PF (T ) is well defined.

Proof. Since T : K → H is Lipschitzian, we see that F (T ) is closed. Thus,

we only need to see that F (T ) is convex,take p, q ∈ F (T ), and t ∈ (0, 1). Put

z = (1 − t)p + tq. by using (1.2) we have

〈zt − Tzt, zt − p〉 ≥ 1 − k

2
‖zt − Tzt‖2 (2.6)

and

〈zt − Tzt, zt − q〉 ≥ 1 − k

2
‖zt − Tzt‖2 (2.7)

Noting that zt − p = t(q − p) and zt − q = (1 − t)(p − q), substituting these

equalities into (2.6) and (2.7), respectively, we get

t〈zt − Tzt, q − p〉 ≥ 1 − k

2
‖zt − Tzt‖2 (2.8)

and

(1 − t)〈zt − Tzt, p − q〉 ≥ 1 − k

2
‖zt − Tzt‖2 (2.9)

Multiplied by (1− t) and t, and added up on the both sides of (2.8) and (2.9),

respectively, we have
1 − k

2
‖zt − Tzt‖2 ≤ 0,

which implies that zt ∈ F (T ). This completes the proof.

Proposition 2.8. Let T : K → H be a k-strict pseudo-contraction with

F (T ) �= ∅. Then, F (PKT ) = F (T ).

Proof. Clearly, F (T ) ⊂ F (PKT ). Thus, we only need to show the converse

inclusion. Assume that x = PKTx; then, by lemma 2.1 and lemma 2.3, we

have for p ∈ F (T ) that

‖Tx − p‖2 = ‖Tx − x + x − p‖2

= ‖Tx − x‖2 + 2〈Tx − x, x − p〉 + ‖x − p‖2

= ‖Tx − x‖2 + 2〈Tx − PKTx, PKTx − p〉 + ‖x − p‖2

≥ ‖Tx − x‖2 + ‖x − p‖2.

(2.10)

On the other hand, by (1.1), we have

‖Tx − p‖2 ≤ ‖x − p‖2 + k‖x − Tx‖2. (2.11)

Combining (2.10) and (2.11) yields

(1 − k)‖x − Tx‖2 ≤ 0
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Therefore, x ∈ F (T ). This completes the proof.

Proposition 2.9. Let T : K → H be k-strict pseudo-contraction. Define

S : K → H by Sx = αx + (1−α)Tx for each x ∈ K. Then, as α ∈ [k, 1), S is

nonexpansive such that F (S) = F (T ).

Proof. For all x, y ∈ K, by lemma2.1(ii) and (1.1) we have

‖Sx − Sy‖2 = ‖α(x − y) + (1 − α)(Tx− Ty)‖2

= α‖x − y‖2 + (1 − α)‖Tx − Ty‖2

−α(1 − α)‖(x − y) − (Tx − Ty)‖2

≤ α‖x − y‖2 + (1 − α)‖x − y‖2 + k(1 − α)‖(x − y) − (Tx − Ty)‖2

−α(1 − α)‖(x − y) − (Tx − Ty)‖2

= ‖x − y‖2 − (α − k)(1 − α)‖(x − y) − (Tx − Ty)‖2

≤ ‖x − y‖2

which proves that S : K → H is nonexpansive. By the definition of S, we have

x − Sx = (1 − α)(x − Tx), and this means that p = Sp if and only if p = Tp.

This completes the proof.

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a Hilbert

space H and Ti : K → H be a ki-strictly pseudo-contractive non-self mapping,

for some 0 ≤ ki < 1, k = max{ki : 1 ≤ i ≤ N}. Assume the common fixed

point set
⋂N

i=1 Fix(Ti) is nonempty. Let {xn} be generated by (1.7), i.e.,

xn+1 = βnxn + (1 − βn)PK [kxn + (1 − k)ΣN
i=1λiTixn]

where βn = αn−k
1−k

, {λi}N
i=1 is a finite sequence of positive numbers, such that

ΣN
i=1λi = 1 for all 1 ≤ i ≤ N . If {αn} is chosen so that αn ∈ [k, 1] and

Σ∞
n=1(αn − k)(1 − αn) = ∞, then {xn} converges weakly to a common fixed

point of {Ti}N
i=1.

Proof. Let T be defined by T = ΣN
i=1λiTi, by proposition 2.5 (i),(ii) we

know that Fix(T ) =
⋂N

i=1 Fix(Ti) and T is a k-strict pseudo-contraction on

K, with k = max{ki : 1 ≤ i ≤ N , define S : K → H by Sx = kx + (1 − k)Tx.

By proposition 2.9, we know that S : K → H is nonexpansive and F (S) =

F (T ). By our assumption on T , we know F (T ) �= ∅ and hence F (S) �= ∅.
Since S : K → H is nonexpansive, then S : K → H is k-strict pseudo-

contraction on K, where k = 0. By proposition 2.8, we see that F (PKS) =

F (S) �= ∅.
Since PK : H → K is nonexpansive, we conclude that PKS : K → K is

nonexpansive.
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From the control condition on {αn}, we have

Σ∞
n=1βn(1 − βn) =

1

(1 − k)2
Σ∞

n=1(αn − k)(1 − αn) = ∞.

Then, by Theorem 2 given by Reich in [7] to deduce that {xn} converges

weakly to a fixed point of PKS.

Notice that F (PKS) = F (S) = F (T ), we have the conclusion.

The proof is completed.

From Theorem 3.1, we can deduce Theorem 3.2 of Marino and Xu [24].

Corollary 3.2.(Xu [24]) Let K be a nonempty closed convex subset of a

real Hilbert space H . Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N ,

Ti : K → K, be a ki-strict pseudo-contraction for some 0 ≤ ki < 1. Let

k = max{ki : 1 ≤ i ≤ N}. Assume the common fixed point set
⋂N

i=1 Fix(Ti)

is nonempty. Assume also {λi}N
i=1 is a finite sequence of positive numbers,

such that ΣN
i=1λi = 1. Given x0 ∈ K, let {xn}∞0 be the sequence generated by

Mann’s algorithm:

xn+1 = αnxn + (1 − αn)ΣN
i=1λiTixn

Assume the control sequence {αn}∞0 is chosen so that k < αn < 1 for all n

and

Σ∞
n=1(αn − k)(1 − αn) = ∞.

Then {xn} converges weakly to a common fixed point {Ti}N
1 .

Proof. We observe first that, for all x ∈ K.

PK [kI + (1 − k)ΣN
i=1λiTi]x = [kI + (1 − k)ΣN

i=1λiTi]x

Since Ti : K → K, thus kI + (1 − k)ΣN
i=1λiTi : K → K is a self-mapping.

For given {αn}, by the choice of {βn}, we get

xn+1 = αnxn + (1 − αn)ΣN
i=1λiTixn

= [k + (1 − k)βn]xn + (1 − k)(1 − βn)ΣN
i=1λiTixn

= βnxn + (1 − βn)[kxn + (1 − k)ΣN
i=1λiTixn]

= βnxn + (1 − βn)PK [kxn + (1 − k)ΣN
i=1λiTixn]

Consequently, we conclude that {xn} converges weakly to a common fixed

point of {Ti}N
1 by Theorem 3.1.

The proof is completed.

Remark 3.3. Theorem 3.1 and its Corollary mainly improves Xu [24] in

the following senses:

(i) relaxing the restriction on {αn} from (k, 1) to [k, 1];

(ii) from k-strict pseudo-contraction self-mapping to non-self mapping.
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In order to get a strong convergence theorem, we modify the iterative algo-

rithm for k-strict pseudo-contraction. We have the following theorem.

Theorem 3.4. Let K be a nonempty closed convex subset of a Hilbert

space H and Ti : K → H be a ki-strictly pseudo-contractive nonself-mapping,

for some 0 ≤ ki < 1, let k = max{ki : 1 ≤ i ≤ N}. Assume the common

fixed point set
⋂N

i=1 Fix(Ti) is nonempty. Assume also for each n, {λi}N
i=1 is

a finite sequence of positive numbers, such that ΣN
i=1λi = 1 for all 1 ≤ i ≤

N . Given u ∈ K and sequences {α′
n} and {β ′

n} in (0,1), satisfying control

conditions: (i)Σ∞
n=1β

′
n = ∞; β ′

n → 0, (ii) k ≤ α′
n ≤ b < 1 for all n ≥ 1, and

(iii)Σ∞
n=1|α′

n+1 − α′
n| < ∞, Σ∞

n=1|β ′
n+1 − β ′

n| < ∞, or β′
n

β′
n+1

→ 1 as n → ∞, let

the sequence {x′
n} be generated by (1.8), i.e.,

x′
n+1 = β ′

nu + (1 − β ′
n)PK [α′

nx′
n + (1 − α′

n)ΣN
i=1λiTix

′
n]

Then, {x′
n} converges strongly to a common fixed point z of {Ti}N

i=1, where

z = PF (T )u and T = ΣN
i=1λiTi.

Proof. 1. {x′
n} is bounded. By Proposition 2.5, we know that Fix(ΣN

i=1λiTi) =⋂N
i=1 Fix(Ti) �= ∅, take p ∈ ⋂N

i=1 Fix(Ti), from (1.8), we have

‖x′
n+1 − p‖ ≤ β ′

n‖u − p‖ + (1 − β ′
n)‖PK [α′

nx′
n + (1 − α′

n)Tx′
n] − p‖

≤ β ′
n‖u − p‖ + (1 − β ′

n)‖α′
nx′

n + (1 − α′
n)Tx′

n − p‖2

= β ′
n‖u − p‖ + (1 − β ′

n)[α′
n‖x′

n − p‖2 + (1 − α′
n)‖Tx′

n − p‖2

−α′
n(1 − α′

n)‖x′
n − Tx′

n‖2]

= β ′
n‖u − p‖ + (1 − β ′

n)[‖x′
n − p‖2

−(1 − α′
n)(α′

n − k)‖x′
n − Tx′

n‖2]

≤ β ′
n‖u − p‖ + (1 − β ′

n)‖x′
n − p‖2

≤ max{‖u − p‖, ‖x′
n − p‖}

By induction, ‖x′
n+1 − p‖ ≤ max{‖u − p‖, ‖x′

1 − p‖}, n ≥ 0, i.e., {x′
n} is

bounded.

2. lim supn→∞〈u − PF (T )u, y′
n − PF (T )u〉 ≤ 0.

By Proposition 2.5, we also have T is a k-strict pseudo-contraction on K

with k = max{ki : 1 ≤ i ≤ N}. Proposition 2.6 ensures that PF (T )u is well

defined.

PK [α′
nI +(1−α′

n)T ] : K → K is a nonexpansive mapping. Indeed, by using

Lemma 2.1, the definition of strictly pseudocontraction and condition (ii), we
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have for all x, y ∈ K that

‖PK [α′
nI + (1 − α′

n)T ]x − PK [α′
nI + (1 − α′

n)T ]y‖2

≤ ‖α′
n(x − y) + (1 − α′

n)(Tx − Ty)‖2

= α′
n‖x − y‖2 + (1 − α′

n)‖Tx − Ty‖2

−α′
n(1 − α′

n)‖x − Tx − (y − Ty)‖2

≤ α′
n‖x − y‖2 + (1 − α′

n)[‖x − y‖2 + k‖x − Tx − (y − Ty)‖2

−α′
n(1 − α′

n)‖x − Tx − (y − Ty)‖2

= ‖x − y‖2 − (1 − α′
n)(α′

n − k)‖x − Tx − (y − Ty)‖2

≤ ‖x − y‖2

which imply that PK [α′
nI + (1 − α′

n)T ] is nonexpansive.

Next we prove that ‖x′
n+1 − x′

n‖ → 0 as n → ∞.

To this end, we first estimate ‖y′
n−y′

n−1‖. Set M1 = sup{‖x′
n−Tx′

n−1‖} and

M2 = ‖u‖+ sup{‖y′
n‖}, then, by (1.8) and noting that PK [α′

nI + (1−α′
n)T ] is

nonexpansive, we have

‖y′
n − y′

n−1‖ = ‖PK [α′
nI + (1 − α′

n)T ]x′
n

−PK [α′
n−1I + (1 − α′

n−1)T ]x′
n−1‖

= ‖PK [α′
nI + (1 − α′

n)T ]x′
n − PK [α′

nI + (1 − α′
n)T ]x′

n−1

+PK [α′
nI + (1 − α′

n)T ]x′
n−1 − PK [α′

n−1I

+(1 − α′
n−1)T ]x′

n−1‖
≤ ‖x′

n − x′
n−1‖ + ‖PK [α′

nI + (1 − α′
n)T ]x′

n−1

−PK [α′
n−1I + (1 − α′

n−1)T ]x′
n−1‖

≤ ‖x′
n − x′

n−1‖ + M1|α′
n − α′

n−1|
(3.1)

then, from (3.1), we get

‖x′
n+1 − x′

n‖ ≤ ‖(1 − β ′
n)‖y′

n − y′
n−1‖ + M2|β ′

n − β ′
n−1|

≤ (1 − β ′
n)(‖x′

n − x′
n−1‖ + M1|α′

n − α′
n−1|)

+M2|β ′
n − β ′

n−1|
(3.2)

By Lemma 2.4, we conclude that ‖x′
n − x′

n−1‖ → 0 as n → ∞.

Noting that ‖x′
n+1 − y′

n‖ = β ′
n‖u − y′

n‖ → 0 as n → ∞, combining this and

(3.2), we have ‖x′
n − y′

n‖ → 0 as n → ∞.

On the other hand, by condition (ii) and (iii), we have α′
n → α as n → ∞,

where α ∈ [k, 1). Define S : K → H by Sx = αx + (1 − α)Tx.

Then, S is nonexpansive mapping with F (S) = F (T ) by proposition 2.9, it

follows from proposition 2.7 that F (PKS) = F (S) = F (T ).

Set M3 = sup{‖x′
n‖ + ‖Tx′

n‖ : n ≥ 1}. Since

‖PKSx′
n − y′

n‖ ≤ M3|α′
n − α′

n−1| → 0, as n → ∞,
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then we have

‖x′
n − PKSx′

n‖ ≤ ‖x′
n − y′

n‖ + ‖y′
n − PKSx′

n‖ → 0, as n → ∞.

We now prove that lim supn→∞〈u − PF (T )u, y′
n − PF (T )u〉 ≤ 0.

To see this, assume that

lim sup
n→∞

〈u − PF (T )u, y′
n − PF (T )u〉 = lim

j→∞
〈u − PF (T )u, y′

nj
− PF (T )u〉.

Without loss of generality, assume that y′
nj

⇀ p as j → ∞,

then x′
nj

⇀ p and ‖x′
nj

− PKSx′
nj
‖ → 0 as j → ∞.

By Lemma 2.2 we have p ∈ F (PKS) = F (T ).

By lemma 2.3, we have that

〈u − PF (T )u, p − PF (T )u〉 ≤ 0.

Hence,

lim sup
n→∞

〈u − PF (T )u, y′
n − PF (T )u〉 ≤ 0.

3. we prove that x′
n → PF (T )u as n → ∞.

Putting γn = max{〈u − PF (T )u, y′
n − PF (T )u〉, 0}, then γn → 0 as n → ∞.

By lemma 2.1, we have

‖x′
n+1 − PF (T )u‖2 = (1 − β ′

n)2‖y′
n − PF (T )u‖2 + β ′

n
2‖u − PF (T )u‖2

+2β ′
n(1 − β ′

n)〈u − PF (T )u, y′
n − PF (T )u〉

≤ (1 − β ′
n)‖x′

n − PF (T )u‖2 + o(β ′
n)

which leads to x′
n → PF (T )u as n → ∞, by virtue of lemma 2.4.

This completes the proof.
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