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Abstract

In this paper, we introduce the notion of Quasi αψ-open function
and investigate some of its fundamental properties and its characterisa-
tions.
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1. INTRODUCTION

Many different terms of open functions have been introduced over the
course of years. Various interesting problems arise when one consider open-
ness. Its importance is significant in various areas of Mathematics and related
sciences.

The notion of αψ-closed set was introduced and studied by R.Devi et al.[2].
In this paper, we will continue the study of related functions by involving αψ-
open sets. We introduce and characterize the concept of quasi αψ-functions.

Through out this paper, spaces means topological spaces on which no sepa-
ration axioms are assumed unless otherwise mentioned and f : (X, τ) → (Y, σ)
denotes a function f of a space (X, τ) into a space (Y, σ). Let A be a subset of
a space X. The closure and the interior of A are denoted by cl(A) and int(A),
respectively.
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2. PRELIMINARIES

Before entering to our work, we recall the following definitions, which are
useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

1. a semi-open set [3] if A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆
A and

2. an α-open set [4] if A ⊆ int(cl(int(A))) and an α-closed set if cl(int(cl(A))) ⊆
A.

The semi-closure (resp. α-closure) of a subset A of a space (X, τ) is the
intersection of all semi-closed (resp. α-closed) sets that contain A and is
denoted by scl(A) (resp. αcl(A)).

Definition 2.2. A subset A of a topological space (X, τ) is called a

1. a semi-generalized closed (briefly sg-closed) set [1] if scl(A) ⊆ U when-
ever A ⊆ U and U is semi-open in (X, τ). The complement of sg-closed
set is called sg-open set,

2. a ψ-closed set [5] if scl(A) ⊆ U whenever A ⊆ U and U is sg-open in
(X, τ). The complement of ψ-closed set is called ψ-open set and

3. a αψ-closed set [2] if ψcl(A) ⊆ U whenever A ⊆ U and U is α-open in
(X, τ). The complement of αψ-closed set is called αψ-open set.

3. ON QUASI αψ-OPEN AND QUASI αψ-CLOSED FUNCTIONS

Definition 3.1. A function f : X → Y is said to be quasi αψ-open if the
image of every αψ-open set in X is open in Y .

It is evident that, the the concepts of quasi αψ-openness and αψ-continuity
coinside if the function is a bijection.

Theorem 3.2. A function f : X → Y is quasi αψ-open if and only if for
every subset U of X, f(αψ-int(U)) ⊂ int(f(U)).
Proof. Let f be a quasi αψ-open function. Now, we have int(U) ⊂ U and
αψ-int(U) is a αψ-open set. Hence, we obtain that f(αψ-int(U)) ⊂ f(U). As
f(αψ-int(U)) is open,f(αψ-int(U)) ⊂ int(f(U)).
Conversely, assume that U is a αψ-open set in X. then, f(U) = f(αψ-
int(U)) ⊂ int(f(U)) but int(f(U)) ⊂ f(U). Consequently, f(U) = int(f(U))
and hence f is quasi αψ- open.
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Theorem 3.3. If a function f : X → Y is quasi αψ-open, then αψ-
int(f−1(G)) ⊂ f−1(int(G)) for every subset G of Y .
Proof. Let G be any arbitrary subset of Y . Then, αψ-int(f−1(G)) is a αψ-
openset inX and f is quasi αψ-open, then f(αψ-int(f−1(G))) ⊂ int(f(f−1(G))) ⊂
int(G). Thus, αψ-int(f−1(G)) ⊂ f−1(int(G)).

Definition 3.4. A subset A is said to be an αψ-neighbourhood of a point x
of X if there exists a αψ-open set U such that x ∈ U ⊂ A.

Theorem 3.5. For a function f : X → Y , the following are equivalent

(i) f is quasi αψ-open;

(ii) for each subset U of X, f(αψ-int(U)) ⊂ int(f(U));

(iii) for each x ∈ X and each αψ-neighbourhood U of x in X, there exists a
neighbourhood V of f(x) in Y such that V ⊂ f(U).

Proof. (i) ⇒ (ii) It follows from Theorem 3.1.
(ii) ⇒ (iii) Let x ∈ X and U be an arbitrary αψ-neighbourhood of x ∈ X.
Then, there exists a αψ-open set V in X such that x ∈ V ⊂ U . Then by (ii),
we have f(V ) = f(αψ-int(V )) ⊂ int(f(V )) and hence f(V ) is open in Y such
that f(x) ∈ f(V ) ⊂ f(U).
(iii) ⇒ (i) Let U be an arbitrary αψ-open set in X. Then for each y ∈ f(U), by
(iii) there exists a neghbourhood Vy of y in Y such that Vy ⊂ f(U). As Vy is a
neighbourhood of y, there exists an open set Wy in Y such that y ∈ Wy ⊂ Vy.
Thus f(U) =

⋃{Wy : y ∈ f(U)} which is an open se in Y . This implies that
f is quasi αψ-open function.

Theorem 3.6. A functon f : X → Y is quasi αψ-open if and only if for
any subset B of Y and for any αψ-closed set F of X containing f−1(B), there
exists a closed set G of Y containing B such that f−1(G) ⊂ F .
Proof. Suppose f is quasi αψ-open. Let B ⊂ Y and F be a αψ-closed
set of X containing f−1(B). Now, put G = Y − f(X − F ). It is clear that
f−1(B) ⊂ F ⇒ B ⊂ G. Since f is quasi αψ- open, we obtain G as a closed
set of Y . Moreover, we have f−1(G) ⊂ F .
Conversely, let U be a αψ-open set ofX and put B = Y−f(U). ThenX−U is a
αψ-closed set in X containing f−1(B). By hypothesis, there exists a closed set
F of Y such that B ⊂ F and f−1(F ) ⊂ X−U . Hence, we obtain f(U) ⊂ Y −F .
On the other hand, it follows that B ⊂ F , Y − F ⊂ Y − B = f(U). Thus we
obtain f(U) = Y −F which is open and hence f is a quasi αψ-open function.

Theorem 3.7 A function f : X → Y is quasi αψ-open if and only if
f−1(cl(B)) ⊂ αψ-cl(f−1(B)) for every subset B of Y .
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Proof. Suppose that f is quasi αψ-open. For any subset B of Y , f−1(B) ⊂
αψ-cl(f−1(B)). Therefore, by theorem 3.5 there exists a closed set F in Y
such that B ⊂ F and (f−1(F )) ⊂ αψ-cl(f−1(B)). Therefore, we obtain
f−1(cl(B)) ⊂ (f−1(F )) ⊂ αψ-cl(f−1(B)).
Conversely, let B ⊂ Y and F be a αψ-closed set of X containing f−1(B).
Put W = clY (B), then we have B ⊂ W and W is closed and f−1(W ) ⊂ αψ-
cl(f−1(B)) ⊂ F . Then by theorem 3.6., f is quasi αψ-open.

Theorem 3.8. A function f : X → Y and g : Y → Z be two functions and
g ◦ f : X → Z is quasi αψ-open. If g is continuous injective function, then f
is quasi αψ-open.
Proof. Let U be a αψ-open set in X, then (g ◦ f)(U) is open in Z, since
g ◦ f is quasi αψ-open. Again g is an injective continuous function, f(U) =
g−1(g ◦ f(U)) is open in Y. This shows that f is quasi αψ-open

4. ON QUASI αψ-CLOSED FUNCTIONS

Definition 4.1. A function f : X → Y is said to be quasi αψ-closed if the
image of every αψ-closed set in X is closed in Y .

Theorem 4.2. Every quasi αψ-closed function is closed as well as αψ-closed.
Proof. It is obvious.

The converse of the above theorem need not be true by the following example.

Example 4.3. Let X = Y = {a, b, c}, τ = {X, {a}, {b, c}, φ} = σ. Define a
function f : (X, τ) → (Y, σ) by f(a) = a, f(b) = b and f(c) = c. Then clearly
f is αψ-closed as well as closed but not quasi αψ-closed.

Lemma 4.4. If a function is quasi αψ-closed, then f−1(int(B)) ⊂ αψ-
int(f−1(B)) for every subset B of Y .
Proof. Let B any arbitrary subset of Y . Then, αψ-int(f−1(G)) is a αψ closed
set inX and f is quasi αψ-closed, then f(αψ- int(f−1(B))) ⊂ int(f(f−1(B))) ⊂
int(B). Thus, f(αψ-int(f−1(B))) ⊂ f−1(int(B)).

Theorem 4.5. A function f : X → Y is quasi αψ-closed if and only if for
any subset B of Y and for any αψ-open set G of X containing f−1(B), there
exists an open set U of Y containing B such that f−1(U) ⊂ G.
Proof This proof is similar to that of theorem 3.6.

Definition 4.6. A function f : X → Y is called αψ∗-closed if the image of
every αψ-closed subset of X is αψ-closed in Y .
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Theorem 4.7. If f : X → Y and g : Y → Z be any quasi αψ-closed func-
tions, then g ◦ f : X → Z is a quasi αψ-closed function.
Proof. It is obvious.

Theorem 4.8. Let f : X → Y and g : Y → Z be any two functions, then

(i) If f is αψ-closed and g is quasi αψ-closed, then g ◦ f is closed;

(ii) If f is quasi αψ-closed and g is quasi αψ-closed, then g◦f is αψ∗-closed;

(iii) If f is αψ∗-closed and g is quasi αψ-closed, then g◦f is quasi αψ- closed.

Proof. It is obvious.

Theorem 4.9. Let f : X → Y and g : Y → Z be any two functions such that
g ◦ f : X → Z is quasi αψ-closed.

(i) If f is αψ-irresolute surjective, then g is is closed;

(ii) If g is αψ-continuous injective, then f is αψ∗-closed.

Proof. (i) Suppose that F is an arbitrary closed set in Y . As f is αψ-
irresolute, f−1(F ) is αψ-closed in X. Since g ◦ f is quasi αψ-closed and f is
surjective, (g ◦ f)(f−1(F )) = g(F ), which is closed in Z. This implies that g
is a closed function.
(ii) Suppose F is any αψ-closed set in X. Since g ◦ f is quasi αψ-closed,
(g ◦ f)(F ) is closed in Z. Again g is a αψ-continuous injective function,
g−1(g ◦ f(F )) = f(F ), which is αψ-closed in Y . This shows that f is αψ∗-
closed.

Theorem 4.10. Let X and Y be topological spaces. Then the function
f : X → Y is a quasi αψ-closed if and only if f(X) is closed in Y and
f(V ) − f(X − V ) is open in f(X) whenever V is αψ-open in X.
Proof. Necessity: Suppose f : X → Y is a quasi αψ-closed function. Since
X is αψ-closed, f(X) is closed in Y and f(V ) − f(X − V ) = f(V ) ∩ f(X) −
f(X − V ) is open in f(X) when V is αψ-open in X.
Sufficiency: Suppose f(X) is closed in Y , f(V ) − f(X − V ) is open in f(X)
when V is αψ-open in X and let C be closed in X. Then f(C) = f(X) −
(f(C −X) − f(C)) is closed in f(X) and hence closed in Y .

Corollary 4.11. Let X and Y be topological spaces. Then a surjective
function f : X → Y is quasi αψ-closed if and only if f(V )− f(X−V ) is open
in Y whenever U is αψ-open in X.
Proof. It is obvious.
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Theorem 4.12. Let X and Y be topological spaces and let f : X → Y be
αψ-continuous and quasi αψ-closed surjective function. Then the topology
on Y is {f(V ) − f(X − V ) : V is αψ-open in X}.
Proof. Let W be open in Y . Let f−1(W ) is αψ-open in X, and f(f−1(W ))−
f(X−f−1(W )) = W . Hence all open sets an Y are of the form f(V )−f(X−V ),
V is αψ-open in X. On the other hand, all sets of the form f(V )− f(X − V ).
V is αψ-open in X, are open in Y from corollary 4.11.

Definition 4.13. A topological space (X, τ) is said to be αψ-normal if for
any pair of disjoint αψ-closed subsets F1 and F2 of X, there exists disjoint
open sets U and V such that F1 ⊂ U and F2 ⊂ V .

Theorem 4.14. Let X and Y be topological spaces with X is αψ-normal. If
f : X → Y is αψ-continuous and quasi αψ-closed surjective function. Then
Y is normal.
Proof. Let K and M be disjoint closed subsets of Y . Then f−1(K), f−1(M)
are disjoint αψ-closed subsets ofX. SinceX is αψ-normal, there exists disjoint
open sets V and W such that f−1(K) ⊂ V , f−1(M) ⊂ W . Then K ⊂
f(V ) − f(X − V ) and M ⊂ f(W ) − f(X − W ), further by corollary 4.11,
f(V ) − f(X − V ) and f(W ) − f(X − W ) are open sets in Y and clearly
(f(V )− f(X − V ))∩ (f(W )− f(X −W )) = φ. This shows that Y is normal.
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