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Abstract
In this study, we present the existence of solution for nonlinear third-

order differential equation with two-point boundary value conditions
under more easily verified conditions than the conditions found in the
literature. Reproducing kernel theorem play an important role in the
arguments. And we give a constructive method for solving these prob-
lems, the numerical examples are given to illustrate the applicability
and efficiency of the novel method.
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1 Introduction

The existence of solution for nonlinear third-order two-point boundary value
problems has been paid much attention to all through. These problems can
be seen as a generalized model for various physical, natural or physiological
phenomena such as the flow of a thin film of viscous fluid over a solid surface
[1,2], the solitary waves solution of the Korteweg-de Vries equation [3] or the
thyroid-pituitary interaction [4]. In the last decade or so, several papers[5-
11] have been devoted to the study of third-order differential equations with
two-point boundary conditions.

Motivated greatly by the above-mentioned excellent works, in this paper,
we will consider more easily verified conditions than the conditions in [5,7,8,11]
for the existence of nonlinear third-order two-point boundary value problems:{

Lu(x)
Δ
= u(3)(x) = f(x, u(x), u′(x), u′′(x)), 0 ≤ x ≤ 1,

u′(0) = 0, u′(1) = 0, u(0) = 0.
(1)

1jiangwei015@163.com



2888 W. Jiang and M. Cui

where L : W 4
2 [0, 1] → W 1

2 [0, 1] is a bounded linear operator. The reproducing
kernel space W 4

2 [0, 1] and W 1
2 [0, 1] are defined in the following section.

Suppose that the right-hand function f(x, y(x), z(x), t(x)) of Eq.(1.1) sat-
isfies condition H :

(H1) f(x, y, z, t) ∈W 1
2 [0, 1], for y = y(x), z = z(x), t = t(x) ∈W 1

2 [0, 1].
(H2) f , fx, fy, fz and ft are bounded on [0, 1] ×R3.
(H3) f(x, y, z, t) > 0 on [0, 1] × R3.
However, to the best of our knowledge, few papers can be found in the liter-

ature for solving these problems. We give a constructive method to obtain the
exact solution of Eq.(1.1) expressed by series in the reproducing kernel space.
Finally, results of numerical experiments have been given, which supports the
theoretical analysis of our method.

2 Preliminary

Definition 2.1. W 1
2 [0, 1] = {u(x) | u(x) is an absolutely continuous real

value function in [0, 1], u′(x) ∈ L2[0, 1]}. The inner product and norm in
W 1

2 [0, 1] are given respectively by

(u(x), v(x))1 = u(0)v(0) +
∫ 1

0
u′(x)v′(x)dx, ‖ u ‖1= (u(x), u(x))

1
2 .

Theorem 2.2. The space W 1
2 [0, 1] is a reproducing kernel space. That is,

for any fixed x ∈ [0, 1], there exists R1x(y) ∈ W 1
2 [0, 1], u(y) ∈ W 1

2 [0, 1], such
that u(x) = (u(y), R1x(y))1. The reproducing kernel R1x(y) can be denoted by

R1x(y) =

{
1 + y, y ≤ x,
1 + x, y > x.

(2)

Definition 2.3. W 4
2 [0, 1] = {u(x)|u(x), u′(x), u′′(x), u(3)(x) are absolutely

continuous real value functions in [0,1], u′(0) = u′(1) = u(0) = 0, u(4)(x) ∈
L2[0, 1]}. The inner product and norm in W 4

2 [0, 1] are given respectively by

(u(x), v(x))4 =
3∑

i=1

u(i)(0)v(i)(0) +
∫ 1

0
u(4)(x)v(4)(x)dx, ‖ u ‖4= (u(x), u(x))

1
2 . (3)

Theorem 2.4. The space W 4
2 [0, 1] is a reproducing kernel space. The re-

producing kernel R4x(y) can be denoted by

R4x(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− y2

4717440
(−6552xy4 + 936y5 + 420x3(360 − 252y − 63y2

−6y3 + y4) + 105x4(360 + 60y + 15y2 − 6y3 + y4) − 42x5(360
+60y + 15y2 − 6y3 + y4) + 7x6(360 + 60y + 15y2 − 6y3

+y4) + 504x2(−540 + 300y + 75y2 + 9y3 + 5y4)), y ≤ x,
x2

4717440
(−936x5 + 6552x4y − 504(−540 + 300x+ 75x2 + 9x3

+5x4)y2 − 420(360 − 252x− 63x2 − 6x3 + x4)y3 − 105(360
+60x+ 15x2 − 6x3 + x4)y4 + 42(360 + 60x+ 15x2

−6x3 + x4)y5 − 7(360 + 60x+ 15x2 − 6x3 + x4)y6), y > x.

(4)
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The method of obtaining the reproducing kernel R1x(y), R4x(y) and the
proof of Theorem 2.2 and Theorem 2.4 are given in [12, Theorem 1.3.1 and
Theorem 1.3.2].

3 Notes

(1) Put {xi} is dense on [0, 1], let ϕi(x) = R1xi
(x), ψi(x) = L

∗ϕi(x), then

ψi(x) = (ψi(y), R4x(y))4 = (L∗ϕi(y), R4x(y))4 = (ϕi(y),LyR4x(y))1

= (R1xi
(y),LyR4x(y))1 = LyR4x(y)|y=xi

,

where L
∗ is the conjugate operator of L. {ψi(x)}∞i=0 is a complete system,

we can have the normal orthogonal system {ψi(x)}∞i=0 in W 4
2 [0, 1] by using

Gram-Schmidt orthogonalization process of {ψi(x)}∞i=0,

ψi(x) =

i∑
k=0

βikψk(x), (5)

where βik are orthogonalization coefficients, βii > 0, i = 0, 1, . . . .

(2) Pn : W 4
2 [0, 1] → Span{ψ0(x), ψ1(x), · · · , ψn(x)} is an orthogonal pro-

jection operator.

(3) ‖ w ‖Cm= max
0≤x≤1

{
m∑

i=0

| w(i)(x) |}. M and {Mi}3
i=0 are constants.

We give the iterative formula is: for any initial value u0(x) ∈W 4
2 [0, 1],{

Lvn(x) = f(x, un(x), u
′
n(x), u′′n(x)),

un+1(x) = Pnvn(x), n = 0, 1, . . .
(6)

Lemma 3.1. vn(x) �= 0, x ∈ (0, 1).

Proof. Suppose there exists a x0 ∈ (0, 1) such that vn(x0) = 0. Moreover,
vn(x) ∈ W 4

2 [0, 1], then there exists a ξ0 ∈ (0, x0) such that v′n(ξ0) = 0, thus
there exist ξ1 ∈ (0, ξ0), ξ2 ∈ (ξ0, 1) such that v′′n(ξ1) = 0, v′′n(ξ2) = 0. It is easy

to see that v
(3)
n (ξ) = 0, ξ ∈ (ξ1, ξ2), so f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ)) = Lvn(ξ) =

v
(3)
n (ξ) = 0, which is in contradiction to (H3).

From above Lemma, un+1(x) is rewritten by un+1(x) = αnvn(x), where

αn = �nvn(x)
vn(x)

, x ∈ (0, 1). (7)
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4 Existence

The progress of proof is divided into four-step:
(i) The method to obtain expression for vn(x) and un+1(x), n = 0, 1, . . . .
(ii) ‖ αn − 1 ‖C3→ 0(n→ ∞).
(iii) To prove that {un+1(x)} and {vn(x)} are bounded in W 4

2 [0, 1]. The
application of Lemma 4.5 shows that there exists a nk such that | unk+1(x) −
u(x) |→ 0, | vnk

(x) − v(x) |→ 0, as k → ∞.
If (ii) and (iii) are proved, we have

v(x) = lim
k→∞

vnk
(x) = lim

k→∞
unk+1(x)

αnk
=

lim
k→∞

unk+1(x)

lim
k→∞

αnk
= u(x).

(iv) By (6), Lvnk
(x) = f(x, unk

(x), u′nk
(x), u′′nk

(x)), we still need to prove
| unk

(x)− u(x) |→ 0, which comes from the proof of | unk+1(x)− unk
(x) |→ 0.

Through above discussion, inserting nk in (6) and taking limit for k on
both sides, the proof is completed.

Lemma 4.1.

vn(x) =
∞∑
i=0

i∑
k=0

βikf(xk, un(xk), u
′
n(xk), u

′′
n(xk))ψi(x), (8)

un+1(x) =
n∑

i=0

i∑
k=0

βikf(xk, un(xk), u
′
n(xk), u

′′
n(xk))ψi(x). (9)

Proof. By (6), then

vn(x) =
∞∑
i=0

(vn(x), ψi(x))4ψi(x) =
∞∑
i=0

i∑
k=0

βik(vn(x), ψk(x))4ψi(x)

=
∞∑
i=0

i∑
k=0

βik(vn(x),L∗ϕk(x))4ψi(x) =
∞∑
i=0

i∑
k=0

βik(Lvn(x), ϕk(x))1ψi(x)

=
∞∑
i=0

i∑
k=0

βik(f(x, un(x), u
′
n(x), u′′n(x)), R1xk

(x))1ψi(x)

=
∞∑
i=0

i∑
k=0

βikf(xk, un(xk), u
′
n(xk), u

′′
n(xk))ψi(x).

Since Pn is an orthogonal projection operator, it follows that

un+1(x) = Pnvn(x) =
n∑

i=0

i∑
k=0

βikf(xk, un(xk), u
′
n(xk), u

′′
n(xk))ψi(x).

Lemma 4.2. ‖ un+1 ‖4≤‖ vn ‖4

Lemma 4.3. If w(x) ∈W 4
2 [0, 1], then ‖ w ‖C3≤ M ‖ w ‖4
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Proof. For any x, y ∈ [0, 1], w(i)(x) = (w(y), ∂xiR4x(y))4. By the expression of
R4x(y), ‖ ∂xiR4x(·) ‖4≤Mi, then

| w(i)(x) |=| (w(y), ∂x3R4x(y))4 |≤‖ w ‖4‖ ∂xiR4x(·) ‖4≤Mi ‖ w ‖4, i = 0, 1, 2, 3.

Hence ‖ w ‖C3≤M ‖ w ‖4, where M = max{M0,M1,M2,M3}.
Lemma 4.4. A bounded set in W 1

2 [0, 1] is a compacted set in C[0, 1].

Proof. Assume wn(x) ∈W 1
2 [0, 1] and ‖ wn ‖1≤M , then

| wn(x) |=| (wn(y), R1x(y))1 |≤‖ wn ‖1‖ R1x(·) ‖1≤ M
√
R1x(x) ≤

√
2M,

{wn(x)} is uniformly bounded in C[0, 1]. For any x1, x2 ∈ [0, 1], any n ∈ N+,

| wn(x1) − wn(x2) |
= | (wn(y), R1x1(y) −R1x2(y))1 |≤‖ wn ‖1‖ R1x1(·) − R1x2(·) ‖1

≤ M
√
R1x1(x1) +R1x2(x2) − 2R1x1(x2) ≤M

√| x1 − x2 |.

then for any ε > 0, taking δ = ε2

M2 , we obtain | wn(x1) − wn(x2) |< ε for
| x1 − x2 |< δ, so {wn(x)} is equicontinuous. Therefore, {wn(x)} is a compact
set in C[0, 1].

Lemma 4.5. A bounded set in W 4
2 [0, 1] is a compacted set in C3[0, 1].

Proof. Suppose wn(x) ∈W 4
2 [0, 1] and ‖ wn ‖4≤M . From Lemma 4.3, {wn(x)}

is uniformly bounded in C3[0, 1]. For any x1, x2 ∈ [0, 1], any n ∈ N+,

| w(i)
n (x1) − w

(i)
n (x2) | = | (wn(y), ∂xiR4x1(y) − ∂xiR4x2(y))4 |

≤ ‖ wn ‖4‖ ∂xiR4x1(·) − ∂xiR4x2(·) ‖4

≤ M ‖ ∂xi+1R4ξ(·) ‖4| x1 − x2 |≤MM0 | x1 − x2 |,

where ξ ∈ (x2, x1)(or(x1, x2)), M0 = max
0≤ξ≤1

{‖ ∂xiR4ξ(·) ‖4}, i = 0, 1, 2. There-

fore, for any ε > 0, taking δ = ε
MM0

, we get | w(i)
n (x1) − w

(i)
n (x2) |< ε for

| x1 − x2 |< δ, so {wn(x)} is equicontinuous. Since ‖ w(3)
n ‖1= (w

(3)
n (0))2 +∫ 1

0
(w

(4)
n (x))2dx ≤

3∑
i=0

(w
(i)
n (0))2 +

∫ 1

0
(w

(4)
n (x))2dx =‖ wn ‖4, then {w(3)

n (x)} is

a bounded set in W 1
2 [0, 1], thus {w(3)

n (x)} is equnicontinuous by Lemma 4.4.
Consequently, {wn(x)} is a compact set in C3[0, 1].

Lemma 4.6. ‖ αn − 1 ‖C3→ 0, as n→ ∞.

Proof. Put ṽnk
(x) =

vnk
(x)

‖vnk
‖4

. Since ‖ ṽnk
‖4= 1, ‖ (Pnk

− I)ṽnk
‖4≤‖ Pnk

− I ‖→
0, then {(Pnk

−I)ṽnk
(x)}, {ṽnk

(x)} are bounded in W 4
2 [0, 1]. From Lemma 4.5,
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there exists a nkj
such that {(Pnkj

− I)ṽnkj
(x)}, {ṽnkj

(x)} are convergent in

C3[0, 1], thus

lim
n→∞

‖ αn − 1 ‖C3 = lim
n→∞

‖ �nvn

vn
− 1 ‖C3

∃nk= lim
k→∞

‖ (�nk
−�)�vnk

�vnk
‖C3

= lim
j→∞

‖ (�nkj
−�)�vnkj

�vnkj

‖C3=‖
lim

j→∞
(�nkj

−�)�vnkj

lim
j→∞

�vnkj

‖C3= 0.

Therefore, ‖ αn − 1 ‖C3→ 0, as n→ ∞.

Lemma 4.7. ‖ vn ‖4, ‖ un+1 ‖4 are bounded.

Proof. By (H2), | f(x, un(x), u
′
n(x), u′′n(x)) |≤M . From (6),

vn(x) =
∫ x

0
dt

∫ t

0
dη

∫ η

0
f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ))dξ

−1
2
x2

∫ 1

0
dη

∫ η

0
f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ))dξ,

(10)

then

| v′n(x) | ≤ ∫ x

0
dη

∫ η

0
| f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ)) | dξ

+ | x | ∫ 1

0
dη

∫ η

0
| f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ)) | dξ

≤ M 1
2
| x2 | + | x |M 1

2
≤M.

Using this method, | vn(x) |≤ 5
12
M , | v′′n(x) |≤ 3

2
M , | v(3)

n (x) |≤ M . By

Lemma 4.6, ‖ αn ‖C3 is bounded, then | α(i)
n | (i = 0, 1, 2, 3) are bounded, then

| u(i)
n+1(x) | (i = 0, 1, 2, 3) are bounded, namely | u(i)

n (x) | (i = 0, 1, 2, 3) are

bounded. Thus by (H2) and (6), | v(4)
n (x) |=| fx+fyu

′
n(x)+fzu

′′
n(x)+ftu

(3)
n (x) |

is bounded. Hence, ‖ vn ‖4 is bounded by the definition of ‖ · ‖4. From Lemma
4.2, ‖ un+1 ‖4 is bounded.

Lemma 4.8. There exists a nk, such that | v′′nk+1(0)−v′′nk
(0) |→ 0(k → ∞).

Proof. From Lemma 4.6, ‖ αn ‖C3≤ M1. Applying Lemma 4.3 and Lemma
4.7, ‖ vn ‖C3≤M2, then

| un+1(x) − un(x) | = | αnvn(x) − αn−1vn−1(x) |
≤ | αn(vn(x) − vn−1(x)) | + | (αn − αn−1)vn−1(x) |
≤ M1 | vn(x) − vn−1(x) | +M2 | αn − αn−1 |
≤ M1

2∑
i=0

| v(i)
n (x) − v

(i)
n−1(x) | +ρn−1,

where ρn−1 = M2 ‖ αn − αn−1 ‖C3, by Lemma 4.6, ‖ αn − αn−1 ‖C3→ 0, then
lim

n→∞
ρn−1 → 0. In the similar manner,

| u(i)
n+1(x) − u

(i)
n (x) | ≤ iM1

2∑
i=0

| v(i)
n (x) − v

(i)
n−1(x) | +iρn−1, i = 1, 2,
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2∑
i=0

| u(i)
n+1(x) − u

(i)
n (x) |≤ 4M1

2∑
i=0

| v(i)
n (x) − v

(i)
n−1(x) | +4ρn−1.

Since v′n+1(0) − v′n(0) = 0, v′n+1(1) − v′n(1) = 0, it follows that there exists a
θn ∈ (0, 1) such that

v′′n+1(θn) − v′′n(θn) = 0. (11)

Since {θn} is bounded, there exists a subsequence {θnk
} of {θn} such that

θnk
→ θ(k → ∞). In the following, the proof contains two parts:
(i) θ = 1. In this case, applying Lemma 4.5 and Lemma 4.7, there exist

v(x) and v(x) such that v′′nk
(x) → v′′(x), v′′nk+1(x) → v′′(x)(k → ∞)(for conve-

nience, subscripts to subsequence of {vn(x)} and {vn+1(x)} are denoted by nk

and nk + 1, respectively). By (11),

lim
k→∞

| v′′nk+1(1) − v′′nk
(1) |=| v′′(1) − v′′(1) |= lim

k→∞
| v′′nk+1(θnk

) − v′′nk
(θnk

) |= 0.

(ii) θ �= 1, namely θn < θ < 1(for convenience, subscript to subsequence of
{θn} is denoted by n instead of nk). When x ∈ (θ, 1], noting that Lvn(x) =

v
(3)
n (x) = f(x, un(x), u

′
n(x), u′′n(x)), then

v′′n(x) − v′′n(θn) =
∫ x

θn
f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ))dξ,

v′n(x) − v′′n(θn)x =
∫ x

0
dη

∫ η

θn
f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ))dξ,

vn(x) − 1
2
v′′n(θn)x2 =

∫ x

0
dt

∫ t

0
dη

∫ η

θn
f(ξ, un(ξ), u

′
n(ξ), u

′′
n(ξ))dξ,

vn+1(x) − 1
2
v′′n+1(θn)x2 =

∫ x

0
dt

∫ t

0
dη

∫ η

θn
f(ξ, un+1(ξ), u

′
n+1(ξ), u

′′
n+1(ξ))dξ,

thus by (11),

vn+1(x) − vn(x) =
∫ x

0
dt

∫ t

0
dη

∫ η

θn
(f(ξ, un+1(ξ), u

′
n+1(ξ), u

′′
n+1(ξ))

−f(ξ, un(ξ), u
′
n(ξ), u

′′
n(ξ)))dξ.

From (H2), let M3 = max{fx, fy, fz, ft},

| vn+1(x) − vn(x) | ≤ | ∫ x

0
dt

∫ t

0
dη

∫ η

θn
| f(ξ, un+1(ξ), u

′
n+1(ξ), u

′′
n+1(ξ))

−f(ξ, un(ξ), u
′
n(ξ), u

′′
n(ξ)) | dξ |

≤ M3

∫ 1

0
dt

∫ 1

0
dη

∫ x

0

2∑
i=0

| u(i)
n+1(ξ) − u

(i)
n (ξ)dξ

≤ M3

∫ x

0

2∑
i=0

| u(i)
n+1(ξ) − u

(i)
n (ξ) | dξ.

By doing this,

| v(i)
n+1(x) − v

(i)
n (x) | ≤ M3

∫ x

0

2∑
i=0

| u(i)
n+1(ξ) − u

(i)
n (ξ)dξ, i = 1, 2
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2∑
i=0

| v(i)
n+1(x) − v

(i)
n (x) | ≤ 3M3

∫ x

0

2∑
i=0

| u(i)
n+1(ξ) − u

(i)
n (ξ)dξ

≤ 12M3(M1

∫ x

0

2∑
i=0

| v(i)
n (ξ) − v

(i)
n−1(ξ)dξ + ρn)

≤ M
∫ x

0

2∑
i=0

| v(i)
n (ξ) − v

(i)
n−1(ξ)dξ + ρn,

(12)

where M = 12M1M3, ρn = 12M3ρn, lim
n→∞

ρn = 0.

If n = 1,
2∑

i=0

| v(i)
2 (x) − v

(i)
1 (x) |≤Mx ‖ v1 − v0 ‖C2 +ρ1.

If n = 2,

2∑
i=0

| v(i)
3 (x) − v

(i)
2 (x) | ≤ M

∫ x

0

2∑
i=0

| v2(i)(ξ) − v1(i)(ξ) | dξ + ρ2

≤ M
∫ x

0
(Mξ ‖ v1 − v0 ‖C2 +ρ1)dξ + ρ2

≤ (xM)2

2
‖ v1 − v0 ‖C2 +Mρ1x+ ρ2.

Generally,

| vn+1(x) − vn(x) | + | v′n+1(x) − v′n(x) | + | v′′n+1(x) − v′′n(x) |
≤ (xM)n

n!
‖ v1 − v0 ‖C2 +

∑n
k=0

(xM)k

k!
ρn−k

≤ (M)n

n!
‖ v1 − v0 ‖C2 +

∑[n/2]
k=0

(M)k

k!
ρn−k +

∑n
k=[n/2+1]

(M)k

k!
ρn−k

≤ (M)n

n!
‖ v1 − v0 ‖C2 +ρ̃n

∑[n/2]
k=0

(M)k

k!
+ ρ

∑n
k=[n/2+1]

(M)k

k!
−→ 0,

where [·] denotes the integral part of ” · ”, ρ̃n = max{ρn, ρn−1, · · · , ρn−[n/2]},
ρ = max{ρ0, ρ1, · · · , ρn−[n/2+1]}. Since lim

n→∞
ρ̃n = 0, ‖ vn+1(x) − vn(x) ‖C2→ 0,

as n→ ∞, x ∈ (θ, 1].
Combining (i) and (ii), we infer that there exists a nk such that{ ‖ vnk+1(x) − vnk

(x) ‖C2→ 0, x ∈ (θ, 1](θ �= 1),
| v′′nk+1(1) − v′′nk

(1) |→ 0, θ = 1.

Let vnk
(x) = vnk

(1 − x), unk
(x) = unk

(1 − x), then using the above method,
we can verify that{ ‖ vnk+1(x) − vnk

(x) ‖C2→ 0, x ∈ (θ, 1](θ �= 1),
| v′′nk+1(1) − v′′nk

(1) |→ 0, θ = 1,

which means that{ ‖ vnk+1(1 − x) − vnk
(1 − x) ‖C2→ 0, x ∈ (θ, 1](θ �= 1),

| v′′nk+1(0) − v′′nk
(0) |→ 0, θ = 1.

Consequently,{ ‖ vnk+1(x) − vnk
(x) ‖C2→ 0, x ∈ [0, 1 − θ)(θ �= 1),

| v′′nk+1(0) − v′′nk
(0) |→ 0, θ = 1.
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Furthermore, there exists a nk such that | v′′nk+1(0)−v′′nk
(0) |→ 0, as k → ∞.

Lemma 4.9. There exists a nk such that | unk+1(x)−unk
(x) |→ 0(k → ∞).

Proof. By (10), v′′nk
(0) = − ∫ 1

0
dη

∫ η

0
f(ξ, unk

(ξ), u′nk
(ξ), u′′nk

(ξ))dξ, then

vnk
(x) =

∫ x

0
dt

∫ t

0
dη

∫ η

0
f(ξ, unk

(ξ), u′nk
(ξ), u′′nk

(ξ))dξ + 1
2
x2v′′nk

(0). (13)

Thus

| vnk+1(x) − vnk
(x) |

≤ | ∫ x

0
dt

∫ t

0
dη

∫ η

0
(f(ξ, unk+1(ξ), u

′
nk+1(ξ), u

′′
nk+1(ξ))

−f(ξ, unk
(ξ), u′nk

(ξ), u′′nk
(ξ)))dξ | +x2

2
| v′′nk+1(0) − v′′nk

(0) |
≤ M3

∫ x

0

2∑
i=0

| u(i)
nk+1(ξ) − u

(i)
nk(ξ) | dξ + 1

2
ρnk

.

In the same manner,

| v(i)
nk+1(x) − v

(i)
nk(x) | ≤ M3

∫ x

0

2∑
i=0

| u(i)
nk+1(ξ) − u

(i)
nk(ξ) | dξ + ρnk

, i = 1, 2,

where M3 = max{fx, fy, fz, ft}, ρnk
=| v′′nk+1(0) − v′′nk

(0) |. By Lemma 4.8,
lim
k→∞

ρnk
→ 0. Using the same method after (12), | vnk+1(x) − vnk

(x) |→ 0.

Lemma 4.6 and un+1(x) = αnvn(x) assure | unk+1(x) − unk
(x) |→ 0.

Theorem 4.10. The solution of Eq.(1) exists in W 4
2 [0, 1].

Proof. From Lemma 4.7, ‖ un+1 ‖4≤ M . Applying Lemma 4.5, there exists a
nk such that a subsequence {unk+1(x)} of {un+1(x)} converges to a function
u(x), a subsequence {vnk

(x)} of {vn(x)} converges to a function v(x) ∈W 4
2 [0, 1]

in the sense of normal ‖ · ‖C3 , thus | unk+1(x)−u(x) |→ 0, | vnk
(x)−v(x) |→ 0.

In terms of Lemma 4.6, | αnk
− 1 |→ 0, as k → ∞, it holds that

v(x) = limk→∞ vnk
(x) = limk→∞

unk+1(x)

αnk
=

lim
k→∞

unk+1(x)

lim
k→∞

αnk
= u(x).

Due to Lemma 4.9, | unk+1(x) − unk
(x) |→ 0, then | unk

(x) − u(x) |≤|
unk+1(x) − unk

(x) | + | unk+1(x) − u(x) |→ 0. In view of (6), Lvnk
(x) =

f(x, unk
(x), u′nk

(x), u′′nk
(x)), taking limit for k on both sides, we have Lv(x) =

f(x, u(x), u′(x), u′′(x)). Hence, Lu(x) = f(x, u(x), u′(x), u′′(x)), the solution
of Eq.(1) exists. Since f(x, u(x), u′(x), u′′(x)) ∈ W 1

2 [0, 1], u(x) ∈W 4
2 [0, 1].

Corollary 4.11. The limit function of any convergent subsequence of {un(x)}
is the solution to Eq.(1).
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Theorem 4.12. If the solution of Eq.(1) is unique, then {un(x)} is con-
vergent.

Proof. Suppose {un(x)} is not convergent. By Lemma 4.7, ‖ un ‖4 is bounded,
we can choose two subsequences {unk

(x)}, {unj
(x)} such that unk

(x) → u1(x),
unj

(x) → u2(x) and u1(x) �= u2(x), From Corollary 4.11, u1(x) and u2(x) are
the solution of Eq.(1), this contradicts the uniqueness for solution of Eq.(1).

5 Numerical examples

All computations are performed by Mathematica 5.0, and we take u0(x) = 0.

Example 5.1. Taking f(x, y, z, t) = −6π+cos(π(1.5−x)x2)−sin(3π(−1+
x)x)− cos y − sin z in Eq.(1.1), the true solution is u(x) = πx2(1.5− x). The
numerical result are given in following Table 1, Table 2.

Table 1: Numerical result for Example 1
Node u(x) u42(x) Absolute Error Relative Error
0.1 0.0439823 0.043978 4.34201E-6 9.87217E-5
0.2 0.163363 0.163353 9.47884E-6 5.80232E-5
0.3 0.339292 0.339277 1.47661E-5 4.35203E-5
0.4 0.55292 0.5529 1.98828E-5 3.59596E-5
0.5 0.785398 0.785374 2.45757E-5 3.12907E-5
0.6 1.01788 1.01785 2.86479E-5 2.81448E-5
0.7 1.2315 1.23147 3.19506E-5 2.59444E-5
0.8 1.40743 1.4074 3.43755E-5 2.44242E-5
0.9 1.52681 1.52678 3.58507E-5 2.34807E-5

Table 2: RMS errors for the derivatives for Example 1√
10∑
i=1

(u′(0.1i)−u′
42(0.1i))2

10

√
10∑
i=1

(u′′(0.1i)−u′′
42(0.1i))2

10

√
10∑
i=1

(u′′′(0.1i)−u′′′
42(0.1i))2

10

1.50443E-8 5.13786E-8 7.10415E-7

Example 5.2. Taking f(x, y, z, t) = e−16(2−6x+3x2)2 + 24(x − 1) + (1 +
x) cos((−2 + x)2x2)/(1+16(−2 + x)2(−1 + x)2 x2)−(1+x) cos y/(1+z2)−e−t2

in Eq.(1.1), the true solution is u(x) = (2x − x2)2. The numerical result are
given in following Table 3, Table 4.
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Table 3: Numerical result for Example 3
Node u(x) u60(x) Absolute Error Relative Error
0.1 0.0361 0.0360965 3.54375E-6 9.81649E-5
0.2 0.1296 0.129593 7.2364E-6 5.58364E-5
0.3 0.2601 0.260089 1.07918E-5 4.14911E-5
0.4 0.4096 0.409586 1.40866E-5 3.43911E-5
0.5 0.5625 0.562483 1.70015E-5 3.02248E-5
0.6 0.7056 0.705581 1.94621E-5 2.75824E-5
0.7 0.8281 0.828079 2.14175E-5 2.58634E-5
0.8 0.9216 0.921577 2.28241E-5 2.47657E-5
0.9 0.9801 0.980076 2.36614E-5 2.41418E-5

Table 4: RMS errors for the derivatives for Example 3√
10∑
i=1

(u′(0.1i)−u′
60(0.1i))2

10

√
10∑
i=1

(u′′(0.1i)−u′′
60(0.1i))2

10

√
10∑
i=1

(u′′′(0.1i)−u′′′
60(0.1i))2

10

6.53229E-9 1.93492E-8 8.75839E-9

6 Conclusion

In this paper, We have shown the easier verification conditions for the exis-
tence of nonlinear third-order two-point boundary value problems. We have
developed reproducing kernel theorem for solving the nonlinear third-order
two-point boundary value problems. The numerical results were as accurate
as the theory predicted and it outperforms other available results. In addi-
tion, our results cannot be deduced trivially from any of the earlier published
results.
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[4] X. Liu, H. Chen, Y. Lü, Explicit solutions of the generalized KdV equa-
tions with higher order nonlinearity, Appl. Math. Comput., 171 (2005),
315-319.

[5] Yao Q, Feng Y., The existence of solution for a third-order two-point
boundary value problem, Appl. Math. Lett., 15 (2002), 227-232.

[6] Yuqiang Feng, Sanyang Liu, Solvability of a third-order two-point bound-
ary value problem, Appl. Math. Lett., 18 (2005), 1034-1040.

[7] M.R. Grossinho, F.M. Minhós, A.I. Santosc, A third-order boundary value
problem with one-sided Nagumo condition, Nonlinear Anal., 63 (2005),
e247-e256.

[8] M.R. Grossinho, F.M. Minhós, A.I. Santosc, Solvability of some third-
order boundary value problems with asymmetric unbounded nonlineari-
ties, Nonlinear Anal., 62 (2005), 1235-1250.

[9] Li S., Positive solutions of nonlinear singular third-order two-point bound-
ary value problem, J. Math. Anal. Appl., 323 (2006), 413-25.

[10] Pei Minghe, Sung Kag Chang, Existence and uniqueness of solutions for
third-order nonlinear boundary value problems, J. Math. Anal. Appl., 327
(2007), 23-35.

[11] Feliz Manuel Minhós, On some third order nonlinear boundary value prob-
lems: Existence, location and multiplicity results, J. Math. Anal. Appl.,
339 (2008), 1342-1353.

[12] Minggen Cui, Yingzhen Lin, Nonlinear numercial Analysis in the Repro-
ducing kernel space, Nova Science Publisher, New York, 2009.

Received: May, 2009


