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Abstract 
 
 In this paper, we introduce general formulas finding the Bracket polynomials 
of torus knot ( )2,K n  and Jones polynomials of torus knots ( )2,K n . 
 
 
1.  Introduction 
 
 We will use many standard terminologies and notations knot theory. ( See [1] 
for the basic terminology of knot theory .) A knot is a simple closed curve obtained 
by embedding of the circle 1S  into R3 (or 3S ). A Knot is a torus knot if  it is 
equivalent to a knot that can be drawn without any points of intersection on the 
trivial torus. Trivial torus is a solid T  obtained by rotating around the y -axis the 

circle ( )2 2: 2 1m x y− + = , on the xy -plane, which as its center the point ( )2,0 , 

radius 1 unit [2]. The torus knot ( ),K p q  of the type ,p  q  is the knot which wraps 
around this standard solid torus T in the longitudinal direction p times and in the 
meridianal direction q  time, where ,p  q are relatively prime. 
 
 The natural question which emerges in knot theory is, given two knot 
diagrams, to determine if they represent the same knot. A special case is the 
unknotting problem: To determine if a given knot diagram represents the unknot. If 
the unknotting problem has a solution in some specific example, then we can prove 
this fact by using the appropriate Reidemeister moves ( that transform our diagram 
into the round circle ). In the case when we are given a knot diagram that we suspect 
represent a nontrivial knot, in order the prove its nontriviality, the standard method is 
to use an invariant, i.e., an assignment to each knot diagram of some algebraic object 
( e.g. a number or a polynomial ) that depends only on the knot isotopy class, and 
verify that the value of this invariant for the given knot differs from that for the  
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unknot. This method will be effective if there is a simple algorithm for computing the 
invariant from the knot diagram.  
 
 The famous Jones polynomial is such an invariant for knot; it will be 
described inhere. Due to Louis Kauffman, we begin its construction by defining the 
so-called Bracket polynomial of nonoriented knot diagrams. 
 
 
2. The Bracket Polynomials and the Jones Polynomial 
 
Definition 1. Let us assign to each nonoriented knot diagram K  a polynomial in the 
variables , ,a b c denoted by K , where it is satisfies the following defining relations: 
 

(1)  

 = a      + b  

 

(2) < K U O >  =  c < K > 

(3) < 0 > = 1 [3]. 

        Here, we denote the little pictures in relation (1) by three knot diagrams 

BA KKK ,,  respectively. In this rotation, (1) may be rewritten in the form 

BA KbKaK += . Note that for the crossing contained in the small disk in the 

diagram K , no matter how it is rotated, the diagrams AK  and BK  are uniquely 

defined. In fact, the arcs inside the small disks of the diagrams AK  and BK  are 

chosen in the regions A and B respectively, i.e., when we move along the upper 

branch of the crossing, we first see the region A to our left, and, after the crossing, to 

our right (and conversely for B) (Figure 1.). 

 
Figure 1. 

         Relation (2) means that the addition to the knot K  of a circular component 

which does not intersect K  that has no crossing points with K  results in the 

polynomial being multiplied by c . Moreover, relation (3) means that the polynomial 

assigned  to the circle is equal to 1. Consequently, we suppose that the polynomial 

K  does not change under plane isotopies of the diagram K .  
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          Now, let us try to impose relationships between the variables cba ,,  so that the 

polynomial will be invariant with respect to the three Reidemeister moves. If we 

consider the move 2Ω , it follows that;  

 

 

 
       

 
 

 

       Now if we had 1=ab  and 022 =++ abcba , the polynomial would be invariant 

with respect to 2Ω . So we obtain 1−= ab  and 22 bac −−= , thereby ensuring 

invariance with respect to 2Ω  of the Bracket polynomial K . 

       The Bracket polynomial as above defined turns out to be invariant with respect 

to 3Ω  as well. By condition (1), we obtain the two following relations.  

 



2902                                                              A. KOPUZLU, A. ŞAHİN and T. UĞUR 

 

 

 

Clearly, the two diagrams that are into 1−a  are the same. Further, applying 2Ω -

invariance twice, it follows that  

 
            Now comparing the right-hand sides of the two formulas (*), we see that they 

are equal term-by term. Then so are the left-hand sides, which proves 3Ω -invariance 

of the Bracket polynomial. 

 

            Now we turn to 1Ω . By relations (1) and (2), we have 

 

 
 

where 3122 )( aaaaa −=+−−= −−λ . A similar computation can be performed for 

the other type of little loop. Thus we have 
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where 3221 9( −−− −=+−−= aaaaaλ . So, unless 13 −=a , the Bracket polynomial is 

not invariant with respect to 1Ω  and therefore is not an isotopy invariant of knots. 

For example, we have 

 
although both “figure eights” are diagrams of the trivial knot [3]. 

Example 2.1. For the simplest diagrams with one and two crossings, we have  

 
Example 2.2. For the Hopf links Bracket polynomial is  

 -a4 – a- 4  

2.2. Definition of the Jones Polynomial. Assume K  is an oriented knot and D  is a 

oriented regular diagram for K . Then the Jones polynomial of K , )(tVK , can be 

defined uniquely from the following two axioms. The polynomial itself may be terms 

in which t  has a negative exponent. (We assume ( ) tt =
2

) The polynomial  )(tVK  

is an invariant of K . 

Axiom 1: If  K  is the trivial knot, then )(tVK =1 [1]. 

Axiom 2: Suppose that +D , −D , 0D  are skein diagrams (see Figure 2), then the 

following skein relation holds [2]. 

).()1()()(1
0

tV
t

tttVtV
t DDD −=−

−+
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Skein Diagrams 

Figure 2. 

 

                The Jones polynomial satisfies the following relations: 

(1’)  )()()()( 0
2

1
2

11 DVttDtVDVt
−

−+
− −=−  

(2’)  )()()0( 2
1

2
1

KVttKV +−=
−

U  

(3’)  1)0( =V  

 

Remark. For an oriented knot diagram K , let us define its writhe number by setting 

∑=
i

ieKw )(  

where the sum is taken over all crossing points and the numbers ie  are equal to 1±  

depending on the sign of the i th crossing point, which is defined as shown in Figure 

3.  

 
Figure 3 

         

         If the orientation of the knot K  is reversed, then the writhe number )(Kw  does 

not change. The calculating of writhe numbers for some knot examples is presented 

below. 
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       Now let us define the Kauffman polynomial )(ˆ aPK  for any oriented knot K  by 

setting 

)()()(ˆ )(3 aPaaP K
Kw

K
−−= , 

where )(aPK  is the Bracket polynomial. 

       Let us substitute 4
1−

= ta  into the Kauffman polynomial )(ˆ aPK . We then obtain 

a polynomial in 4
1±t , denoted by )(tVK  and called the Jones polynomial of the 

oriented knot K . 

 

Example 2.3. The Bracket polynomial of left-hand trefoil is 537 −−− aaa . Now we 

give an orientation on the left-hand trefoil. Then, the writhe number of the oriented 

left-hand trefoil is equal to –3. We have the Kauffman polynomial of the oriented 

left-hand trefoil as follows: 

)()()(ˆ )3.(3 aPaaP KK
−−−=  

                                                                     ).()( 5379 −−−−= aaaa  

                                                                     41216 aaa ++−=     .......................(**) 

Now let us substitute 4
1−

= ta  into relation (**).  It follows that  

44
1124

1164
1

)(9()()(
−−−

++−= ttttVK  

                                                          134 −−− ++−= ttt . 

 

This is the Jones polynomial for the oriented left-hand trefoil. 
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3. The Bracket Polynomial of Torus Knots nK ,2  and The Jones 

Polynomials of Torus Knots ),2( nK  

 

         Firstly, let us label nonoriented torus knots nK ,2  and oriented torus knots 

),2( nK  as follows. Then we use these labelled cases in our studies. 

 

 
 

                             

           

3.1. The Bracket Polynomial of Torus Knots nK ,2 : 

 

 Example 1. We find the Bracket polynomial of 3,2K . 

 

 
 

 



On polynomials of K ( )2,n  torus knots                                                                 2907 

  

         

  

 

 

= )( 222 aaa −− −  ( )⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − Oa
O
O

a 1 + )()()( 11 OaOOaOa
O
O

a −− +++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  

 

= ++−−++−−+−−+−−−− −−−−−− 12212231225 )()()())(( aaaaaaaaaaaaaa  

    )( 2231 aaaa +−+ −−−  

= 151131131317331 −−−−−−−−− −−++−−+−−−+−+++ aaaaaaaaaaaaaaa  

= 537 −−− aaa  

Thus it follows that,  )(
3,2

aPK = 537 −−− aaa  

Example 2. For 5,2K , we obtain  )(
5,2

aPK
75913 −−−+−= aaaaa  

by the same method. 
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Example 3. For 7,2K , we have  )(
7,2

aPK
9137111519 −− −−+−+−= aaaaaaa . 

Consequence 3.1. If we carefully examine the above results, we find the following 

general formula for the Bracket polynomials of nK ,2  

231)1()()(
1,2,2

+−−−+=
−

nn
KK aaaPaP

nn
, where 3)(

1,2
aaPK −= . 

Proof. By induction. 

Example 4. For 3,2K ′ , we have  )(
3,2

aPK ′ = 537 aaa −− −− . 

Example 5. For 5,2K ′ , we obtain )(
5,2

aPK ′
715913 aaaaa −−+−= −−−− . 

Example 6. For 7,2K ′ , we obtain )(
7,2

aPK ′
9137111519 aaaaaaa −−+−+−= −−−−− . 

Consequence 3.2. For the Bracket polynomials of nK ,2′ , we find the following 

general formula: 
2311 )1()()(

1,2,2

−−
′

−
′ −+=

−

nn
KK aaPaaP

nn
 

where 3)(
1,2

−
′ −= aaPK . 

Proof. By induction. 

 

3.2. The Jones Polynomial of Torus Knots ),2( nK : 

Example 7. We find the Jones polynomial of )3,2(K . 
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if we turn to relation (1)  

 

 

 
 

)()3,2( tVK
431 −−− −+= ttt . 

Example 8. For )5,2(K , by the same method we obtain 
76542

)5,2( )( −−−−− −+−+= ttttttVK  
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Example 9. For )7,2(K , we obtain 
10987653

)7,2( )( −−−−−−− −+−+−+= ttttttttVK  

Consequence 3.3. For the Jones polynomials of ),2( nK , we find the following 

general formula: 

∑
−

=

+
+−+

−
−

−+=
1

1

)
2

1
(1)

2
1

(

),2( )1()(
n

k

n
kk

n

nK tttV  

Proof. By induction. 

Example. For )3,2(K ′ , we obtain 

ttttVK ++−=′
34

)3,2( )(  

Example 11. For )5,2(K ′ , we obtain 
24567

)5,2( )( ttttttVK ++−+−=′  

Example 12. For )7,2(K ′ , we obtain 
35678910

)7,2( )( ttttttttVK ++−+−+−=′  

Consequence 3.4. For the Jones polynomials of ),2( nK ′ , we find the following 

general formula: 

∑
−

=

+
++

−

′ −+=
1

1

)
2

1(12
1

),2( )1()(
n

k

nkk
n

nK tttV  

Proof. By induction. 
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