A Further Symmetric Relation on the Analogue of the Apostol-Bernoulli and the Analogue of the Apostol-Genocchi Polynomials

Veli Kurt

Department of Mathematics, Akdeniz University, Antalya, 07058, Turkey vkurt@akdeniz.edu.tr

Abstract

The main object of this paper is to investigate some relations between the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. We first establish some relations between the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Furthermore we give two symmetric relations on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials.

Mathematics Subject Classification: 11B68

Keywords: Bernoulli polynomials, Genocchi polynomials, Apostol-Bernoulli polynomials, Apostol-Genocchi polynomials

1 Introduction

The Bernoulli numbers B_n and the Bernoulli polynomials $B_n(x)$ are defined by the following generating functions, respectively:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1}, \qquad \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} = \frac{t}{e^t - 1} e^{xt}, \quad |t| < 2\pi$$
 (1)

where $B_0 = 1$. For every $n \ge 1$ the Bernoulli numbers B_n and the Bernoulli polynomials $B_n(x)$ satisfy the following recourence relations, respectively:

$$\sum_{i=0}^{n} \binom{n+1}{i} B_i = 0, \qquad B_n(x) = \sum_{i=0}^{n} \binom{n}{i} B_i x^{n-i}.$$

For each integer $k \geq 0$

$$S_k(n) = 0^k + 1^k + 2^k + \dots + n^k$$

is called the sum of integer powers.

$$\sum_{i=0}^{n} i^k = S_k(n)$$

is a polynomial in n of degree k+1.

This sum satisfies the following equation in [17]

$$S_k(n) = \sum_{i=0}^{n} i^{k-1} \binom{k}{i} \frac{n^i}{i+1} B_{k-i}.$$

On the other hand, Ronrigues [3] proved the equation

$$B_n = \frac{1}{a(1-a^n)} \sum_{k=0}^{n-1} a^k \binom{n}{k} B_k S_{n-k} (a-1).$$

Also, Tuenter [15] defined the polynomial

$$\sigma_m(a-1) = \frac{1}{m+1} \sum_{j=0}^{m} {m+1 \choose j} B_j a^{m+1-j}.$$

He proved the following symmetric relations with respect to a, b for every pair of positive integers a and b, and all nonnegative integers m.

$$\sum_{j=0}^{m} {m \choose j} a^{j-1} B_j b^{m-j} \sigma_{m-j} (a-1) = \sum_{j=0}^{m} {m \choose j} b^{j-1} B_j a^{m-j} \sigma_{m-j} (b-1)$$
 (2)

The following symmetric relations are given by Sheng-Liang Yang [17]

$$\sum_{i=0}^{n} \binom{n}{i} a^{i-1} B_i b^{n-i} S_{n-i} (a-1) = \sum_{i=0}^{n} \binom{n}{i} b^{i-1} B_i a^{n-i} S_{n-i} (b-1)$$
 (3)

and

$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1} B_{n-k}^{(m)}(bx) \times \sum_{i=0}^{k} \binom{k}{i} S_i(a-1) B_{k-i}^{(m-1)}(ay)$$

$$= \sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^{k+1} B_{n-k}^{(m)}(ax) \times \sum_{i=0}^{k} \binom{k}{i} S_i(b-1) B_{k-i}^{(m-1)}(by)$$

$$(4)$$

where a and b are positive integers, $n \ge 0$ and $m \ge 1$.

Symmetric properties of q-Bernoulli polynomials in q-Calculus are investigated by B.A. Kupershmidt [8]. Also T. Kim studied on q-Bernoulli polynomials and q-Euler polynomials. He wrote a lot of paper on this subject ([4], [5], [6], [7]). He gave the below symmetric relations with the help of q-Volkenborn integrals [5]:

$$\sum_{i=0}^{n} \binom{n}{i} B_i(w_2 x) S_{n-i}(w_1 - 1) w_1^{i-1} w_2^{n-i}$$

$$= \sum_{i=0}^{n} \binom{n}{i} B_i(w_1 x) S_{n-i}(w_2 - 1) w_2^{i-1} w_1^{n-i}$$
(5)

where w_1 and w_2 are integers.

An interpolation formula of q-Genocchi numbers are given by Cenkci, Can, Kurt [1].

Different relations and theorems on classical Bernoulli and Euler polynomials are studied by Gi-Sang Cheon [2], Srivastava, Qiu Ming Luo [9], Luo ([10], [11]), Simsek [12]. Some results on the Apostol-Bernoulli and Apostol-Euler polynomials are given by W.Wang, C. Jia, T. Wang [16].

Definition 1.1 ([9], [10], [11], [16]) The Apostol Bernoulli polynomials, $B_n^{\alpha}(x,\lambda)$ of order α are defined by means of the following generating function

$$\left(\frac{z}{\lambda e^z - 1}\right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} B_n^{\alpha}(x, \lambda) \frac{z^n}{n!}, \quad |z + \log \lambda| \le 2\pi, 1^{\alpha} := 1$$

where $\alpha \in Z^{+}, \lambda \in C, \lambda$ is a parameter, $B_{n}^{\alpha}\left(x\right) = B_{n}^{\alpha}\left(x,1\right), B_{n}^{\alpha}\left(\lambda\right) = B_{n}^{\alpha}\left(\lambda,1\right)$.

Definition 1.2 ([9], [16]) The Apostol Euler polynomials, $\varepsilon_n^{\alpha}(x,\lambda)$ of order α are defined by means of the following generating function

$$\left(\frac{2}{\lambda e^z + 1}\right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} \varepsilon_n^{\alpha}(x, \lambda) \frac{z^n}{n!}, \quad |z + \log \lambda| \le \pi, 1^{\alpha} := 1$$

where $\alpha \in Z^{+}$, $\lambda \in C$, λ is a parameter, $\varepsilon_{n}^{\alpha}\left(x\right) = \varepsilon_{n}^{\alpha}\left(x,1\right)$, $\varepsilon_{n}^{\alpha}\left(\lambda\right) = \varepsilon_{n}^{\alpha}\left(\lambda,0\right)$.

Definition 1.3 We define the analogue of the Apostol-Bernoulli polynomials $B_n^{\alpha}(x, \lambda^a)$ order α and the analogue of the Apostol-Euler polynomials $\varepsilon_n^{\alpha}(x, \lambda^a)$ order α as follows, respectively:

$$\left(\frac{z}{\lambda^a e^z - 1}\right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} B_n^{\alpha} (x, \lambda^a) \frac{z^n}{n!}$$
 (6)

where a and α are positive integers, $\lambda \in C$, $|z + a \log \lambda| < 2\pi$ and

$$\left(\frac{2}{\lambda^a e^z + 1}\right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} \varepsilon_n^{\alpha} (x, \lambda^a) \frac{z^n}{n!}$$
 (7)

where a and α are positive integers, $\lambda \in C, |z + a \log \lambda| < \pi$.

From (6) and (7) we have

$$\lambda^{a} B_{n}^{\alpha}(x+1,\lambda^{a}) - B_{n}^{\alpha}(x,\lambda^{a}) = n B_{n-1}^{\alpha-1}(x,\lambda^{a})$$
$$\lambda^{a} \varepsilon_{n}^{\alpha}(x+1,\lambda^{a}) + \varepsilon_{n}^{\alpha}(x,\lambda^{a}) = 2\varepsilon_{n}^{\alpha-1}(x,\lambda^{a})$$

moreover, since

$$B_n^0(x,\lambda^a) = \varepsilon_n^0(x,\lambda^a) = x^n$$

we obtain

$$\lambda^{a} B_{n} (x + 1, \lambda^{a}) - B_{n} (x, \lambda^{a}) = nx^{n-1}$$

$$\lambda^{a} \varepsilon_{n} (x + 1, \lambda^{a}) + \varepsilon_{n} (x, \lambda^{a}) = 2x^{n}$$
(8)

2 Main Theorems

In this section, we introduce our main results. We give some theorems, definitions and corollaries which are related to the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Euler polynomials.

Theorem 2.1 There is a following relation between the analogue of the Apostol-Bernoulli polynomials $B_n^{\alpha}(x,\lambda^a)$ and the analogue of the Apostol-Euler polynomials $\varepsilon_n^{\alpha}(x,\lambda^a)$:

$$B_n^{\alpha}(kx,\lambda^{2a}) = 2^{-n} \sum_{k=0}^n \binom{n}{k} B_k^{\alpha}(\lambda^a) \,\varepsilon_{n-k}^{\alpha}(kx,\lambda^a) \tag{9}$$

where k, a, α are positive integers, $\lambda \in C$.

Proof. From (6)

$$\begin{split} \sum_{n=0}^{\infty} B_n^{\alpha} \left(kx, \lambda^{2a} \right) \frac{z^n}{n!} &= \left(\frac{z}{\lambda^{2a} e^z - 1} \right)^{\alpha} e^{kxz} = \frac{\left(\frac{z}{2} \right)^{\alpha}}{\left(\lambda^a e^{\frac{z}{2}} - 1 \right)^{\alpha}} \times \frac{2^{\alpha} e^{\frac{z}{2}(24x)}}{\left(\lambda^a e^{\frac{z}{2}} + 1 \right)^{\alpha}} \\ &= \sum_{n=0}^{\infty} B_n^{\alpha} \left(\lambda^a \right) \frac{z^n}{2^n n!} \times \sum_{n=0}^{\infty} \varepsilon_n^{\alpha} \left(2kx, \lambda^a \right) \frac{z^n}{2^n n!} \\ &= \sum_{n=0}^{\infty} \left(2^{-n} \sum_{k=0}^{n} \binom{n}{k} B_n^{\alpha} \left(\lambda^a \right) \varepsilon_{n-k}^{\alpha} \left(2kx, \lambda^a \right) \right) \frac{z^n}{n!}. \end{split}$$

By comparing the coefficients of $\frac{z^n}{n!}$ on both sides of the above equation, then (8) is obtained. \blacksquare

Corollary 2.2 The analogue of the Apostol-Bernoulli polynomials $B_n^{\alpha}(rx, \lambda^a)$ of order α satisfy the following equalities:

$$B_{n}^{\alpha}(rx,\lambda^{a}) = B_{n}^{\alpha}(kx,\lambda^{2a}) = \sum_{m=0}^{n} \binom{n}{k} B_{m}^{\alpha}(x,\lambda^{a}) (r-1)^{n-m} x^{n-m}, (10)$$

$$B_{n}^{\alpha}(rx,\lambda^{a}) = B_{n}^{\alpha}(kx,\lambda^{2a}) = \sum_{k=0}^{n} \binom{n}{k} B_{k}^{\alpha-1}(rx,\lambda^{a}) B_{n-k}(\lambda^{a})$$

where $r \in \mathbb{Z}^+$.

Proof. The proof of these equalities are find easily from (6).

Definition 2.3 We define the analogue of the Apostol-Genocchi numbers and polynomials of order α by means of the following generating functions, respectively:

$$\left(\frac{2z}{\lambda^a e^z + 1}\right)^{\alpha} = \sum_{n=0}^{\infty} G_n^{\alpha}(\lambda^a) \frac{z^n}{n!}, \qquad \left(\frac{2z}{\lambda^a e^z + 1}\right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} G_n^{\alpha}(x, \lambda^a) \frac{z^n}{n!}, \tag{11}$$

where a, α are positive integers, $\lambda \in C, |z + a \log \lambda| < \pi$.

From (11) we have

$$G_n^0\left(x,\lambda^a\right) = x^n,$$

$$G_n^\alpha\left(x+1,\lambda^a\right) + G_n^\alpha\left(x,\lambda^a\right) = 2nG_{n-1}^{\alpha-1}\left(x,\lambda^a\right)$$

and

$$\lambda^a G_n(x+1,\lambda^a) + G_n^{\alpha}(x,\lambda^a) = 2nx^{n-1}.$$

Theorem 2.4 The analogue of the Apostol-Genocchi polynomials $G_n^{\alpha}(x, \lambda^a)$ of order α satisfy the following equation:

$$G_n^{\alpha}(x+y,\lambda^a) = \sum_{k=0}^n \binom{n}{k} G_k^{\alpha}(x,\lambda^a) \, y^{n-k} = \sum_{k=0}^n \binom{n}{k} G_k^{\alpha}(y,\lambda^a) \, x^{n-k}. \tag{12}$$

Proof. With the help of equation (11), theorem can be proved easily.
We consider the following sum,

$$S = 1 - \lambda e^{at} + \lambda^2 e^{2at} + \dots + \left(-\lambda e^{bt}\right)^{a-1} = \begin{cases} \frac{1 + \lambda^a e^{abt}}{1 + \lambda e^{bt}} & , a \text{ odd integer} \\ \frac{1 - \lambda^a e^{abt}}{1 - \lambda e^{bt}} & , a \text{ even integer} \end{cases}$$

Theorem 2.5 The analogue of the Apostol-Genocchi polynomials $G_n^{\alpha}(x, \lambda^a)$ of order α satisfy the following symmetric relation:

$$\sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{a-1} \left(-\lambda^{b}\right)^{i} G_{k}^{\alpha} \left(bx + \frac{b}{a}i, \lambda^{a}\right) G_{n-k}^{\alpha-1} \left(ay, \lambda^{b}\right) a^{k} b^{n-k+1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{b-1} \left(-\lambda^{a}\right)^{i} G_{k}^{\alpha} \left(ax + \frac{a}{b}i, \lambda^{b}\right) G_{n-k}^{\alpha-1} \left(by, \lambda^{a}\right) b^{k} a^{n-k+1},$$
(13)

where a, b are positive odd integers, α is a positive integer and λ is a parameter.

Proof. We define

$$k\left(t\right) = \frac{t^{2\alpha - 1}e^{abxt}\left(\lambda^{ab}e^{abt} + 1\right)e^{abyt}}{\left(\lambda^{a}e^{at} + 1\right)^{\alpha}\left(\lambda^{b}e^{bt} + 1\right)^{\alpha}}.$$

From the above, we have

$$k(t) = \frac{1}{2^{2\alpha-1}a^{\alpha}b^{\alpha-1}} \left(\frac{2at}{\lambda^{a}e^{at}+1}\right)^{\alpha} e^{abxt} \left(\frac{\lambda^{ab}e^{abxt}+1}{\lambda^{b}e^{bt}+1}\right) \left(\frac{2bt}{\lambda^{b}e^{bt}+1}\right)^{\alpha-1} e^{abyt}$$

$$= \frac{1}{2^{2\alpha-1}a^{\alpha}b^{\alpha-1}} \sum_{i=0}^{a-1} \left(-\lambda^{b}\right)^{i} e^{at\left(bx+\frac{b}{a}i\right)} \left(\frac{2at}{\lambda^{a}e^{at}+1}\right)^{\alpha} \left(\frac{2bt}{\lambda^{b}e^{bt}+1}\right)^{\alpha-1} e^{abyt}$$

$$= \frac{1}{2^{2\alpha-1}a^{\alpha}b^{\alpha}} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k}\right)$$

$$\times \sum_{i=0}^{a-1} \left(-\lambda^{b}\right)^{i} G_{k}^{\alpha} \left(bx+\frac{b}{a}i,\lambda^{a}\right) G_{n-k}^{\alpha-1} \left(ay,\lambda^{b}\right) a^{k}b^{n-k+1} \frac{t^{n}}{n!}. \tag{14}$$

Similarly, we obtain

$$k(t) = \frac{1}{2^{2\alpha - 1}b^{\alpha}a^{\alpha}} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \right) \times \sum_{i=0}^{b-1} (-\lambda^{a})^{i} G_{k}^{\alpha} \left(ax + \frac{a}{b}i, \lambda^{b} \right) G_{n-k}^{\alpha - 1} (by, \lambda^{a}) b^{k} a^{n-k+1} \frac{t^{n}}{n!}.$$
(15)

Hence by (14) and (15) we have (13).

Corollary 2.6 By taking $\alpha = 1$ in (13), we have the following symmetric equation

$$\sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{a-1} (-\lambda^{b})^{i} G_{k} \left(bx + \frac{b}{a}i, \lambda^{a} \right) a^{n} b^{n-k+1} y^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{b-1} (-\lambda^{a})^{i} G_{k} \left(ax + \frac{a}{b}i, \lambda^{b} \right) b^{n} a^{n-k+1} y^{n-k}$$
(16)

Corollary 2.7 The analogue of the Apostol-Bernoulli polynomials $B_n^{\alpha}(x, \lambda^a)$ of order α satisfy the following symmetric relation:

$$\sum_{i=0}^{a-1} \lambda^{bi} \sum_{k=0}^{n} \binom{n}{k} B_k^{\alpha} \left(bx + \frac{b}{a}i, \lambda^a \right) B_{n-k}^{\alpha-1} \left(ay, \lambda^b \right) a^k b^{n-k+1}$$

$$= \sum_{i=0}^{b-1} \lambda^{ai} \sum_{k=0}^{n} \binom{n}{k} B_k^{\alpha} \left(ax + \frac{a}{b}i, \lambda^b \right) B_{n-k}^{\alpha-1} \left(by, \lambda^a \right) b^k a^{n-k+1}$$
(17)

where a, b are positive even integers.

Proof. We define

$$k\left(t\right) = \frac{t^{2\alpha - 1}e^{abxt}\left(\lambda^{ab}e^{abt} - 1\right)e^{abyt}}{\left(\lambda^{a}e^{at} - 1\right)^{\alpha}\left(\lambda^{b}e^{bt} - 1\right)^{\alpha}}.$$

After making necessary operation on this function we obtain (17). \blacksquare Putting $\lambda = 1$ in (17) we obtain Shen-Ling Yang's result.

ACKNOWLEDGEMENT: This work was supported by Akdeniz University Scientific Research Project Unit.

References

- [1] M. Cenkci, M. Can and V. Kurt, q-Extension of Genocchi numbers, J. Korean Math. Soc. 43 No.1 (2006) 183-198.
- [2] G. S. Cheon, A note on the Bernoulli and Euler polynomial, Appl. Math. Letters 16 (2003) 365-368.
- [3] E. Y. Deeba and D.M. Rodriguez, Stirling's series and Bernoulli numbers, Amer. Math. Monthly 98 (1991) 423-426.
- [4] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002) 288-297.
- [5] T. Kim, On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. 329 (2007) 1472-1481.
- [6] T. Kim, q-extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys. 14 (2007) 275-278.
- [7] T. Kim, Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials, J. Diff. Eq. Appl. (2008) 1-11.
- [8] B. A. Kuperschmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005) 412-422.

[9] Q. M. Luo and H. M. Srivastava, Some generalization of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math Anal. Appl. 308 (2005) 290-302.

- [10] Q. M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10 (2006) 917-925.
- [11] Q. M. Luo, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comp. Math. Appl. 51 (2006) 631-642.
- [12] Y. Simsek, On twisted q-Hurwitz zeta function and q-two variable L-function, Appl. Math. Comput. 187 (2007) 466-473.
- [13] H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Letters 17 (2004) 375-380.
- [14] J. H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001) 258-261.
- [15] J. H. Tuenter, The Frobenius problem, sums of power of integers and reccurences for the Bernoulli numbers, J. Number Theory 117 (2006) 376-386.
- [16] W. Wang, C. Jia and T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler Polynomials, Comp. Math. Appl. 55 (2008) 1322-1332.
- [17] S. L. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008) 550-554.

Received: April, 2009