The Spectral Moments and Energy of Graphs

Rao Li

Dept. of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801, USA raol@usca.edu

Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues. In this paper, we obtain an upper bound for the energy of a graph that involves its moments.

Mathematics Subject Classification: 05C50

Keywords: Eigenvalues, Energy and moments of a graph

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow that in [1]. Throught this paper, G will be always a graph of order n and size m. We use V(G) := $\{v_1, v_2, ..., v_n\}$ to denote the vertex set of G and $d(v_i)$ or d_i , where $1 \leq i \leq n$, to denote the degree of vertex v_i . For each $1 \leq i \leq n$, the 2 - degree of v_i , denoted $t(v_i)$ or t_i , is defined as the sum of degrees of the vertices adjacent to v_i , the average degree of v_i is defined as t_i/d_i , and $\sigma(v_i)$ or σ_i is defined as the sum of the 2 - degrees of vertices adjacent to v_i . We define $\Sigma_k(G)$ as $\sum_{i=1}^{n} d_i^k$. A bipartite graph G = (X, Y; E) is (a, b) - semiregular if there exist two constants a and b such that each vertex in X has degree a and each vertex in Y has degree b. A bipartite graph G = (X, Y; E) is (p_x, p_y) - pseudo semiregular if there exist two constants p_x and p_y such that each vertex in X has average degree p_x and each vertex in Y has average degree p_y . The eigenvalues $\mu_1(G) \ge \mu_2(G) \ge \dots \ge \mu_n(G)$ of the adjacency matrix A(G) of G are called the eigenvalues of the graph G. The kth - spectral moments, denoted $M_k(G)$ or M_k , of G is defined as $\sum_{i=1}^n \mu_k^i$ (see [6]). The energy of a graph G, denoted E(G), is defined as $E(G) = \sum_{i=1}^n |\mu_i|$. This concept was introduced by Gutman in [4] and more information and background on the energy of graphs can be found in [5]. In 1971, McClelland [11] proved that $E(G) \leq \sqrt{2mn}$, the first upper bound for E(G). Since then, more upper bounds for E(G) have been found and some of them can be found in the following theorems.

Theorem 1 [8]. Let G be a graph on n vertices and m edges. If $2m \ge n$, then the inequality

$$E(G) \le \frac{2m}{n} + \sqrt{(n-1)[2m - (\frac{2m}{n})^2]}$$
(1)

holds. Moreover, equality holds if and only if G is either $\frac{n}{2}K_2$, K_n , or a noncomplete connected strongly regular graph with two non-trivial eigenvalues with absolute value $\sqrt{(2m - (\frac{2m}{n})^2)/(n-1)}$. If $2m \leq n$, then the inequality $E(G) \leq 2m$ holds. Moreover, equality holds if and only if G is disjoint union of edges and isolated vertices.

Theorem 2 [9]. If $2m \ge n$ and G is a bipartite graph with n > 2 vertices and m edges, then the inequality

$$E(G) \le 2(\frac{2m}{n}) + \sqrt{(n-2)[2m-2(\frac{2m}{n})^2]}$$
(2)

holds. Moreover, equality holds if and only if at least one of the following statements holds:

(1) n = 2m and $G = mK_2$. (2) n = 2t, $m = t^2$, and $G = K_{t,t}$. (3) $n = 2\nu$, $2\sqrt{m} < n < 2m$, and G is the incidence graph of a symmetric $2 - (\nu, k, \lambda)$ - design with $k = \frac{2m}{n}$ and $\lambda = \frac{k(k-1)}{\nu-1}$.

Theorem 1 and Theorem 2 were generalized by several authors (see [13] [12]) and the latest ones are the following Theorem 3 and Theorem 4 proved by Liu, Lu, and Tian.

Theorem 3 [10]. Let G be a non-empty graph on n vertices, m edges. Then the inequality

$$E(G) \le \sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} + \sqrt{(n-1)(2m - \frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2})}$$
(3)

holds. Moreover, equality in (3) holds if and only if G is either $\frac{n}{2}K_2$, K_n , or a non-bipartite connected graph satifying $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ and has three distinct eigenvalues $(p, \sqrt{\frac{2m-p^2}{n-1}}, -\sqrt{\frac{2m-p^2}{n-1}})$, where $p = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n} > \sqrt{\frac{2m}{n}}$.

Theorem 4 [10]. Let G = (X, Y) be a non-empty bipartite graph with n > 2 vertices and m edges. Then the inequality

$$E(G) \le 2\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} + \sqrt{(n-2)(2m - 2\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2})}$$
(4)

holds. Moreover, equality in (4) holds if and only if G is either $\frac{n}{2}K_2$, $K_{r_1,r_2} \cup (n-r_1-r_2)K_1$, where $r_1r_2 = m$, or a connected bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$, and has four distinct eigenvalues $(\sqrt{p_x p_y}, \sqrt{\frac{2m-2p_x p_y}{n-2}}, -\sqrt{\frac{2m-2p_x p_y}{n-2}}, -\sqrt{p_x p_y})$, where $p_x = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$, $p_y = \frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$ and $\sqrt{p_x p_y} > \sqrt{\frac{2m}{n}}$.

Motivated by Theorem 3 and Theorem 4 above, we in this paper prove the following theorems.

Theorem 5. Let G be a non-empty graph on n vertices. If $\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} \ge (\frac{M_{2k}}{n})^{\frac{1}{2k}}$, where k is a positive integer, then the inequality

$$E(G) \le \sqrt{\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}}} + (n-1)^{\frac{2k-1}{2k}} (M_{2k} - (\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}})^{k})^{\frac{1}{2k}}$$
(5)

holds. Moreover, equality in (5) holds if and only if G is either $\frac{n}{2}K_2$, K_n , or a non-bipartite connected graph satifying $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ and has three distinct eigenvalues $(p, (\frac{M_{2k}-p^{2k}}{n-1})^{\frac{1}{2k}}, -(\frac{M_{2k}-p^{2k}}{n-1})^{\frac{1}{2k}})$, where $p = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n} > (\frac{M_{2k}}{n})^{\frac{1}{2k}}$.

Theorem 6. Let G = (X, Y) be a non-empty bipartite graph with n > 2 vertices and m edges. If $\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} \ge \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}}$, where k is a positive integer, then the inequality

$$E(G) \le 2\sqrt{\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}}} + (n-2)^{\frac{2k-1}{2k}} (M_{2k} - 2(\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}})^{k})^{\frac{1}{2k}}$$
(6)

holds. Moreover, equality in (6) holds if and only if G is either $\frac{n}{2}K_2$, $K_{r_1,r_2} \cup (n-r_1-r_2)K_1$, where $r_1r_2 = m$, or a connected bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$, and has four distinct eigenvalues $(\sqrt{p_x p_y}, (\frac{M_{2k}-2(p_x p_y)^k}{n-2})^{\frac{1}{2k}}, -(\frac{M_{2k}-2(p_x p_y)^k}{n-2})^{\frac{1}{2k}}, -(\frac{M_{2k}-2(p_x p_y)^k}{n-2})^{\frac{1}{2k}}, -\sqrt{p_x p_y})$, where $p_x = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$, $p_y = \frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_1}{t_s}$

 $\frac{\sigma_{s+2}}{t_{s+2}} = \dots = \frac{\sigma_n}{t_n} \text{ and } \sqrt{p_x p_y} > \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}}.$

Notice that $\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} \ge (\frac{M_{2k}}{n})^{\frac{1}{2k}}$ is always true when k = 1 (see [10]) and $M_2 = 2m$. Thus if we let k = 1 in Theorem 5 and Theorem 6, then they become Theorem 3 and Theorem 4 respectively.

Let q be the number of quadrangles in a graph G. Then $M_4(G) = 2\sum_{i=1}^n d_i^2 - 2m + 8q$ (see [6]). Thus if we let k = 2 and replace M_4 by $2\sum_{i=1}^n d_i^2 - 2m + 8q$ in Theorem 5 and Theorem 6 then we can obtain upper bounds for general graphs and bipartite graphs which satisfy respectively the conditions in Theorem 5 and Theorem 6.

2. Lemmas

In order to prove Theorem 5 and Theorem 6, we need the following results as our lemmas. The first one is a theorem proved by Hong and Zhang in [7].

Lemma 1 [7]. Let G be a simple connected graph of order n. Then

$$\mu_1 \ge \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}$$

with equality if and only if $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ or G is a bipartite graph with $V = \{v_1, v_2, \dots, v_s\} \cup \{v_{s+1}, v_{s+2}, \dots, v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$.

In fact, the above Hong and Zhang's theorem can be slightly strengthened to the following Lemma 1'. Notice that Lemma 1' has been used by Liu, Lu, and Tian in [10] to obtain their results.

Lemma 1'. Let G be a non-empty simple graph of order n. Then

$$\mu_1 \ge \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}$$

with equality if and only if $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ with $\mu_1 = \frac{\sigma_1}{t_1}$ or G is a bipartite graph with $V = \{v_1, v_2, \dots, v_s\} \cup \{v_{s+1}, v_{s+2}, \dots, v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$ with $\mu_1 = \sqrt{p_x p_y}$, where $p_x = \frac{\sigma_1}{t_1}$ and $p_y = \frac{\sigma_n}{t_n}$.

The following Lemma 2 and Lemma 3 can be found in [3] and [2] respectively. **Lemma 2** [3]. A graph G has only one distinct eigenvalue if and only if G is an empty graph. A graph G has two distinct eigenvalues $\mu_1 > \mu_2$ with multiplicities s_1 and s_2 if and only if G is the direct sum of s_1 complete graphs of order $\mu_1 + 1$. In this case, $\mu_2 = -1$ and $s_2 = s_1\mu_1$.

Lemma 3 [2]. Let G be a graph with m edges. Then $E(G) \ge 2\sqrt{m}$ with equality if and only if G is a complete bipartite graph plus arbitrarily many isolated vertices.

3. Proofs

Proof of Theorem 5. Let G be a graph satisfying the conditions in Theorem 9. Set $\alpha := \frac{1}{2k}$ and $\beta := 1 - \alpha$. By the Hölder inequality, we have that

$$\sum_{i=2}^{n} |\mu_i| \le (\sum_{i=2}^{n} 1^{\frac{1}{\beta}})^{\beta} (\sum_{i=2}^{n} |\mu_i|^{\frac{1}{\alpha}})^{\alpha}.$$

Therefore

$$E(G) = \sum_{i=1}^{n} |\mu_i| \le \mu_1 + (n-1)^{\beta} (M_{2k} - \mu_1^{2k})^{\frac{1}{2k}}.$$

Consider the function $f(x) = x + (n-1)^{\beta} (M_{2k} - x^{2k})^{\frac{1}{2k}}$. It can be verified that f(x) is decreasing when $(\frac{M_{2k}}{n})^{\frac{1}{2k}} \le x \le M_{2k}^{\frac{1}{2k}}$.

From Lemma 1' and the assumption that

$$\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} \ge \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}},$$

we have that

$$E(G) \le f(\mu_1) \le f(\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}).$$

Therefore Inequality (5) is proved.

If G is $\frac{n}{2}K_2$, then $\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}} = 1 = (\frac{M_{2k}}{n})^{\frac{1}{2k}}$ and both sides of Inequality (5) are equal to n.

If G is K_n , then $\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}} = n-1$. From $(n-1) \ge (\frac{(n-1)^{2k}+(n-1)}{n})^{\frac{1}{2k}}$, we have $\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}} = (n-1) \ge (\frac{(n-1)^{2k}+(n-1)}{n})^{\frac{1}{2k}} = (\frac{M_{2k}}{n})^{\frac{1}{2k}}$ and both sides of Inequality (5) are equal to 2(n-1). If G is a non-bipartite connected graph satisfying $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ and has three distinct eigenvalues $\left(p, \left(\frac{M_{2k}-p^{2k}}{n-1}\right)^{\frac{1}{2k}}, -\left(\frac{M_{2k}-p^{2k}}{n-1}\right)^{\frac{1}{2k}}\right)$, where $p = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n} > \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}}$, then both sides of Inequality (5) are equal to $p + (n-1)\left(\frac{M_{2k}-p^{2k}}{n-1}\right)^{\frac{1}{2k}}$.

Now suppose that Inequality (5) becomes an equality. Then we have that $|\mu_2| = |\mu_3| = \cdots = |\mu_n| = \left(\frac{M_{2k}-\mu_1^{2k}}{n-1}\right)^{\frac{1}{2k}}$ and $\mu_1 = \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}$. By Lemma 1', we have that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ or G is a bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$. Since G is a non-empty graph, Lemma 2 implies that G has at least two distinct eigenvalues. Hence we just have the following possible cases.

Case 1. G has two distinct eigenvalues

If the two distinct eigenvalues of G have the same absolute values, then Lemma 2 implies that $\mu_1 = |\mu_2| = \cdots = |\mu_n| = 1$. Since $\sum_{i=1}^n \mu_i = 0$, the multiplicity s_1 of $\mu_1 = 1$ must be equal to $\frac{n}{2}$. Hence G is the direct sum of $s_1 = \frac{n}{2}$ complete graphs of order $\mu_1 + 1 = 2$. Namely, G is $\frac{n}{2}K_2$.

If the two distinct eigenvalues of G have different absolute values, then Lemma 2 implies that $\mu_2 = \cdots = \mu_n = -1$. Since $\sum_{i=1}^n \mu_i = 0$, $\mu_1 = n - 1$ and the multiplicity s_1 of μ_1 is 1. Hence G is the direct sum of $s_1 = 1$ complete graph of order $\mu_1 + 1 = n$. Namely, G is K_n .

Case 2. G has three distinct eigenvalues

Since G has three distinct eigenvalues, there exists an integer r such that $\mu_1 > \mu_2 = \cdots = \mu_r > 0 > \mu_{r+1} = \cdots = \mu_n$ and $\mu_2 = -\mu_n$. Hence $\mu_1 \neq -\mu_n$ and G cannot be a bipartite graph. From $\mu_1 = \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}$ and $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$, we have that $\mu_1 = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$. Since $\mu_1 > \mu_i$, for each i with $2 \leq i \leq n$, G must be connected. Set $p := \mu_1$. Then G has three distinct eigenvalues $\left(p, \left(\frac{M_{2k}-p^{2k}}{n-1}\right)^{\frac{1}{2k}}, -\left(\frac{M_{2k}-p^{2k}}{n-1}\right)^{\frac{1}{2k}}\right)$, where $p = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n} > \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}}$.

Proof of Theorem 6. Let G be a graph satisfying the conditions in Theorem 10. Then $\mu_1 = -\mu_n$. Set $\alpha := \frac{1}{2k}$ and $\beta := 1 - \alpha$. By the Hölder inequality, we have that

$$\sum_{i=2}^{n-1} |\mu_i| \le (\sum_{i=2}^{n-1} 1^{\frac{1}{\beta}})^{\beta} (\sum_{i=2}^{n-1} |\mu_i|^{\frac{1}{\alpha}})^{\alpha}.$$

Therefore

$$E(G) = \sum_{i=1}^{n} |\mu_i| \le 2\mu_1 + (n-2)^{\beta} (M_{2k} - 2\mu_1^{2k})^{\frac{1}{2k}}.$$

Consider the function $f(x) = 2x + (n-2)^{\beta} (M_{2k} - 2x^{2k})^{\frac{1}{2k}}$. It can be verified that f(x) is decreasing when $(\frac{M_{2k}}{n})^{\frac{1}{2k}} \le x \le M_{2k}^{\frac{1}{2k}}$.

From Lemma 1' and the assumption that

$$\sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{\sum_{i=1}^{n} t_i^2}} \ge \left(\frac{M_{2k}}{n}\right)^{\frac{1}{2k}},$$

we have that

$$E(G) \le f(\mu_1) \le f(\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}).$$

Therefore Inequality (6) is proved.

If G is $\frac{n}{2}K_2$, then $\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}} = 1 = (\frac{M_{2k}}{n})^{\frac{1}{2k}}$ and both sides of Inequality (6) are equal to n.

If G is $K_{r_1,r_2} \cup (n-r_1-r_2)K_1$, where $r_1r_2 = m$, then $\sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}} = \sqrt{r_1r_2} \ge (\frac{2(r_1r_2)^k}{n})^{\frac{1}{2k}} = (\frac{M_{2k}}{n})^{\frac{1}{2k}}$ and both sides of Inequality (6) are equal to $2\sqrt{r_1r_2}$.

If G is a connected bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$, and has four distinct eigenvalues $(\sqrt{p_x p_y}, (\frac{M_{2k} - 2(p_x p_y)^k}{n^{-2}})^{\frac{1}{2k}}, -(\frac{M_{2k} - 2(p_x p_y)^k}{n^{-2}})^{\frac{1}{2k}}, -\sqrt{p_x p_y})$, where $p_x = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$, $p_y = \frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$ and $\sqrt{p_x p_y} > (\frac{M_{2k}}{n})^{\frac{1}{2k}}$, then both sides of Inequality (6) are equal to $2p + (n-2)(\frac{M_{2k} - 2p^{2k}}{n-2})^{\frac{1}{2k}}$, where $p = \sqrt{p_x p_y}$.

Now suppose that Inequality (6) becomes an equality. Then we have that $|\mu_2| = |\mu_3| = \cdots = |\mu_{n-1}| = (\frac{M_{2k}-2\mu_1^{2k}}{n-2})^{\frac{1}{2k}}$ and $\mu_1 = -\mu_n = \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{\sum_{i=1}^n t_i^2}}$. By Lemma 1', we have that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_n}{t_n}$ or G is a bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$ with $\mu_1 = \sqrt{p_x p_y}$, where $p_x = \frac{\sigma_1}{t_1}$ and $p_y = \frac{\sigma_n}{t_n}$. Since G is a non-empty graph, Lemma 2 implies that G has at least two distinct eigenvalues. Hence we just have the following possible cases.

Case 1. G has two distinct eigenvalues with the same absolute values

Then Lemma 2 implies that $\mu_1 = -\mu_n = |\mu_2| = \cdots = |\mu_{n-1}| = 1$. Since $\sum_{i=1}^n \mu_i = 0$, the multiplicity s_1 of $\mu_1 = 1$ must be equal to $\frac{n}{2}$. Hence G is the direct sum of $s_1 = \frac{n}{2}$ complete graphs of order $\mu_1 + 1 = 2$. Namely, G is $\frac{n}{2}K_2$.

Case 2. G has three distinct eigenvalues

Since G is a bipartite graph, we must have that $\mu_1 = -\mu_n \neq 0$ and $\mu_2 = \cdots = \mu_{n-1} = 0$. Thus $E(G) = 2\mu_1$. From Lemma 3, we have that $2\mu_1 \geq 2\sqrt{m}$. Thus $2\mu_1^2 \geq 2m$. Notice that $2m = \sum_{i=1}^n \mu_i^2 = 2\mu_1^2$. Therefore $\mu_1 = \sqrt{m}$ and $E(G) = 2\sqrt{m}$. Hence by Lemma 3 G is a complete bipartite graph plus arbitrarily many isolated vertices. Namely, there exist integers $r_1 \geq 1$ and $r_2 \geq 1$ such that G is $K_{r_1,r_2} \cup (n - r_1 - r_2)K_1$, where $r_1r_2 = m$.

Case 3. G has four distinct eigenvalues

Since $\mu_1 = -\mu_n$, $|\mu_2| = \cdots = |\mu_{n-1}|$, and G has four distinct eigenvalues, the multiplicity of μ_1 must be one. Hence we have by Lemma 1' that G is a connected bipartite graph with $V = \{v_1, v_2, ..., v_s\} \cup \{v_{s+1}, v_{s+2}, ..., v_n\}$ such that $\frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$ and $\frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$, and has four distinct eigenvalues $(\sqrt{p_x p_y}, (\frac{M_{2k} - 2(p_x p_y)^k}{n-2})^{\frac{1}{2k}}, -(\frac{M_{2k} - 2(p_x p_y)^k}{n-2})^{\frac{1}{2k}}, -\sqrt{p_x p_y})$, where $p_x = \frac{\sigma_1}{t_1} = \frac{\sigma_2}{t_2} = \cdots = \frac{\sigma_s}{t_s}$, $p_y = \frac{\sigma_{s+1}}{t_{s+1}} = \frac{\sigma_{s+2}}{t_{s+2}} = \cdots = \frac{\sigma_n}{t_n}$ and $\sqrt{p_x p_y} > (\frac{M_{2k}}{n})^{\frac{1}{2k}}$. \Box

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- [2] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, Variable beighbourhood search for extremal graphs, 2. Finding graphs with extremal energy, J. Chem. Info. Comput. Sci. 39 (1999) 984 – 996.
- [3] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, New York, 1980.
- [4] I. Gutman, The energy of a graph, Berichte der Mathematisch Statistischen Sektion im Forschungszentrum Graz **103** (1978) 1 – 12.
- [5] I. Gutman, The energy of a graph, in: A. Betten, A. Kohnert, R. Laue, and A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer - Verlag, Berlin, 2001, pp. 196 – 211.
- [6] I. Gutman, On graphs whose energy exceeds the number of vertices, to appear in *Linear Algebra Appl.*.

- [7] Y. Hong and X. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, *Discrete Math.* 296 (2005) 187 – 197.
- [8] J. H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47 – 52.
- [9] J. H. Koolen and V. Moulton, Maximal energy bipartite graphs, Graphs Combin. 19 (2003) 131 – 135.
- [10] H. Liu, M. Lu, and F. Tian, Some upper bounds for the energy of graphs, J. Mathematical Chem. 41 (2007) 45 – 57.
- [11] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of pi - electron energies, J. Chem. Phys. 54 (1971) 640 – 643.
- [12] A. Yu, M. Lu, and F. Tian, New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 441 – 448.
- B. Zhou, Energy of graphs, MATCH Commun. Math. Comput. Chem. 51 (2004) 111 - 118.

Received: April, 2009