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Abstract

The energy of a graph is defined as the sum of the absolute values of
its eigenvalues. In this paper, we obtain an upper bound for the energy
of a graph that involves its moments.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow that in [1]. Throught this
paper, G will be always a graph of order n and size m. We use V (G) :=
{ v1, v2, ...vn } to denote the vertex set of G and d(vi) or di, where 1 ≤ i ≤ n,
to denote the degree of vertex vi. For each 1 ≤ i ≤ n, the 2 - degree of vi,
denoted t(vi) or ti, is defined as the sum of degrees of the vertices adjacent
to vi, the average degree of vi is defined as ti/di, and σ(vi) or σi is defined
as the sum of the 2 - degrees of vertices adjacent to vi. We define Σk(G) as
Σn

i=1d
k
i . A bipartite graph G = (X, Y ; E) is (a, b) - semiregular if there exist

two constants a and b such that each vertex in X has degree a and each vertex
in Y has degree b. A bipartite graph G = (X, Y ; E) is (px, py) - pseudo -
semiregular if there exist two constants px and py such that each vertex in
X has average degree px and each vertex in Y has average degree py. The
eigenvalues μ1(G) ≥ μ2(G) ≥ ... ≥ μn(G) of the adjacency matrix A(G) of G
are called the eigenvalues of the graph G. The kth - spectral moments, denoted
Mk(G) or Mk, of G is defined as Σn

i=1μ
k
i (see [6]). The energy of a graph G,

denoted E(G), is defined as E(G) =
∑n

i=1 |μi|. This concept was introduced by
Gutman in [4] and more information and background on the energy of graphs
can be found in [5]. In 1971, McClelland [11] proved that E(G) ≤ √

2mn, the
first upper bound for E(G). Since then, more upper bounds for E(G) have
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been found and some of them can be found in the following theorems.

Theorem 1 [8]. Let G be a graph on n vertices and m edges. If 2m ≥ n, then
the inequality

E(G) ≤ 2m

n
+

√
(n − 1)[2m − (

2m

n
)2] (1)

holds. Moreover, equality holds if and only if G is either n
2
K2, Kn, or a non-

complete connected strongly regular graph with two non-trivial eigenvalues

with absolute value
√

(2m − (2m
n

)2)/(n − 1). If 2m ≤ n, then the inequality

E(G) ≤ 2m holds. Moreover, equality holds if and only if G is disjoint union
of edges and isolated vertices.

Theorem 2 [9]. If 2m ≥ n and G is a bipartite graph with n > 2 vertices and
m edges, then the inequality

E(G) ≤ 2(
2m

n
) +

√
(n − 2)[2m − 2(

2m

n
)2] (2)

holds. Moreover, equality holds if and only if at least one of the following
statements holds:

(1) n = 2m and G = mK2.
(2) n = 2t, m = t2, and G = Kt,t.
(3) n = 2ν, 2

√
m < n < 2m, and G is the incidence graph of a symmetric

2 − (ν, k, λ) - design with k = 2m
n

and λ = k(k−1)
ν−1

.

Theorem 1 and Theorem 2 were generalized by several authors (see [13]
[12]) and the latest ones are the following Theorem 3 and Theorem 4 proved
by Liu, Lu, and Tian.

Theorem 3 [10]. Let G be a non-empty graph on n vertices, m edges. Then
the inequality

E(G) ≤
√∑n

i=1 σ2
i∑n

i=1 t2i
+

√
(n − 1)(2m −

∑n
i=1 σ2

i∑n
i=1 t2i

) (3)

holds. Moreover, equality in (3) holds if and only if G is either n
2
K2, Kn, or

a non-bipartite connected graph satifying σ1

t1
= σ2

t2
= · · · = σn

tn
and has three

distinct eigenvalues (p,
√

2m−p2

n−1
,−

√
2m−p2

n−1
), where p = σ1

t1
= σ2

t2
= · · · = σn

tn
>√

2m
n

.
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Theorem 4 [10]. Let G = (X, Y ) be a non-empty bipartite graph with n > 2
vertices and m edges. Then the inequality

E(G) ≤ 2

√∑n
i=1 σ2

i∑n
i=1 t2i

+

√
(n − 2)(2m − 2

∑n
i=1 σ2

i∑n
i=1 t2i

) (4)

holds. Moreover, equality in (4) holds if and only if G is either n
2
K2, Kr1,r2 ∪

(n − r1 − r2)K1, where r1r2 = m, or a connected bipartite graph with V =
{ v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and σs+1

ts+1
=

σs+2

ts+2
= · · · = σn

tn
, and has four distinct eigenvalues (

√
pxpy,

√
2m−2pxpy

n−2
, −

√
2m−2pxpy

n−2
,−√

pxpy),

where px = σ1

t1
= σ2

t2
= · · · = σs

ts
, py = σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
and

√
pxpy >

√
2m
n

.

Motivated by Theorem 3 and Theorem 4 above, we in this paper prove the
following theorems.

Theorem 5. Let G be a non-empty graph on n vertices. If
√�n

i=1 σ2
i�n

i=1 t2i
≥

(M2k

n
)

1
2k , where k is a positive integer, then the inequality

E(G) ≤
√∑n

i=1 σ2
i∑n

i=1 t2i
+ (n − 1)

2k−1
2k (M2k − (

∑n
i=1 σ2

i∑n
i=1 t2i

)k)
1
2k (5)

holds. Moreover, equality in (5) holds if and only if G is either n
2
K2, Kn, or

a non-bipartite connected graph satifying σ1

t1
= σ2

t2
= · · · = σn

tn
and has three

distinct eigenvalues (p, (M2k−p2k

n−1
)

1
2k ,−(M2k−p2k

n−1
)

1
2k ), where p = σ1

t1
= σ2

t2
= · · · =

σn

tn
> (M2k

n
)

1
2k .

Theorem 6. Let G = (X, Y ) be a non-empty bipartite graph with n > 2

vertices amd m edges. If
√�n

i=1 σ2
i�n

i=1 t2i
≥ (M2k

n
)

1
2k , where k is a positive integer,

then the inequality

E(G) ≤ 2

√∑n
i=1 σ2

i∑n
i=1 t2i

+ (n − 2)
2k−1
2k (M2k − 2(

∑n
i=1 σ2

i∑n
i=1 t2i

)k)
1
2k (6)

holds. Moreover, equality in (6) holds if and only if G is either n
2
K2, Kr1,r2 ∪

(n − r1 − r2)K1, where r1r2 = m, or a connected bipartite graph with V =
{ v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and σs+1

ts+1
=

σs+2

ts+2
= · · · = σn

tn
, and has four distinct eigenvalues (

√
pxpy, (

M2k−2(pxpy)k

n−2
)

1
2k ,

−(M2k−2(pxpy)k

n−2
)

1
2k ,−√

pxpy), where px = σ1

t1
= σ2

t2
= · · · = σs

ts
, py = σs+1

ts+1
=
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σs+2

ts+2
= · · · = σn

tn
and

√
pxpy > (M2k

n
)

1
2k .

Notice that
√�n

i=1 σ2
i�n

i=1 t2i
≥ (M2k

n
)

1
2k is always true when k = 1 (see [10]) and

M2 = 2m. Thus if we let k = 1 in Theorem 5 and Theorem 6, then they
become Theorem 3 and Theorem 4 respectively.

Let q be the number of quadrangles in a graph G. Then M4(G) = 2
∑n

i=1 d2
i−

2m + 8q (see [6]). Thus if we let k = 2 and replace M4 by 2
∑n

i=1 d2
i − 2m + 8q

in Theorem 5 and Theorem 6 then we can obtain upper bounds for general
graphs and bipartite graphs which satisfy respectively the conditions in The-
orem 5 and Theorem 6.

2. Lemmas

In order to prove Theorem 5 and Theorem 6, we need the following results
as our lemmas. The first one is a theorem proved by Hong and Zhang in [7].

Lemma 1 [7]. Let G be a simple connected graph of order n. Then

μ1 ≥
√∑n

i=1 σ2
i∑n

i=1 t2i

with equality if and only if σ1

t1
= σ2

t2
= · · · = σn

tn
or G is a bipartite graph with

V = { v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and

σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
.

In fact, the above Hong and Zhang’s theorem can be slightly strengthened
to the following Lemma 1′. Notice that Lemma 1′ has been used by Liu, Lu,
and Tian in [10] to obtain their results.

Lemma 1’. Let G be a non-empty simple graph of order n. Then

μ1 ≥
√∑n

i=1 σ2
i∑n

i=1 t2i

with equality if and only if σ1

t1
= σ2

t2
= · · · = σn

tn
with μ1 = σ1

t1
or G is a bipartite

graph with V = { v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · =

σs

ts
and σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
with μ1 =

√
pxpy, where px = σ1

t1
and py = σn

tn
.

The following Lemma 2 and Lemma 3 can be found in [3] and [2] respec-
tively.
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Lemma 2 [3]. A graph G has only one distinct eigenvalue if and only if G
is an empty graph. A graph G has two distinct eigenvalues μ1 > μ2 with
multiplicities s1 and s2 if and only if G is the direct sum of s1 complete graphs
of order μ1 + 1. In this case, μ2 = −1 and s2 = s1μ1.

Lemma 3 [2]. Let G be a graph with m edges. Then E(G) ≥ 2
√

m with
equality if and only if G is a complete bipartite graph plus arbitrarily many
isolated vertices.

3. Proofs

Proof of Theorem 5. Let G be a graph satisfying the conditions in Theorem
9. Set α := 1

2k
and β := 1 − α. By the Hölder inequality, we have that

n∑
i=2

|μi| ≤ (

n∑
i=2

1
1
β )β(

n∑
i=2

|μi| 1
α )α.

Therefore

E(G) =
n∑

i=1

|μi| ≤ μ1 + (n − 1)β(M2k − μ2k
1 )

1
2k .

Consider the function f(x) = x + (n − 1)β(M2k − x2k)
1
2k . It can be verified

that f(x) is decreasing when (M2k

n
)

1
2k ≤ x ≤ M

1
2k
2k .

From Lemma 1′ and the assumption that√∑n
i=1 σ2

i∑n
i=1 t2i

≥ (
M2k

n
)

1
2k ,

we have that

E(G) ≤ f(μ1) ≤ f(

√∑n
i=1 σ2

i∑n
i=1 t2i

).

Therefore Inequality (5) is proved.

If G is n
2
K2, then

√�n
i=1 σ2

i�n
i=1 t2i

= 1 = (M2k

n
)

1
2k and both sides of Inequality (5)

are equal to n.

If G is Kn, then
√�n

i=1 σ2
i�n

i=1 t2i
= n − 1. From (n − 1) ≥ ( (n−1)2k+(n−1)

n
)

1
2k ,

we have
√�n

i=1 σ2
i�n

i=1 t2i
= (n − 1) ≥ ( (n−1)2k+(n−1)

n
)

1
2k = (M2k

n
)

1
2k and both sides of

Inequality (5) are equal to 2(n − 1).
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If G is a non-bipartite connected graph satisfying σ1

t1
= σ2

t2
= · · · = σn

tn

and has three distinct eigenvalues (p, (M2k−p2k

n−1
)

1
2k ,−(M2k−p2k

n−1
)

1
2k ), where p =

σ1

t1
= σ2

t2
= · · · = σn

tn
> (M2k

n
)

1
2k , then both sides of Inequality (5) are equal to

p + (n − 1)(M2k−p2k

n−1
)

1
2k .

Now suppose that Inequality (5) becomes an equality. Then we have that

|μ2| = |μ3| = · · · = |μn| = (
M2k−μ2k

1

n−1
)

1
2k and μ1 =

√�n
i=1 σ2

i�n
i=1 t2i

. By Lemma

1′, we have that σ1

t1
= σ2

t2
= · · · = σn

tn
or G is a bipartite graph with V =

{ v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and σs+1

ts+1
=

σs+2

ts+2
= · · · = σn

tn
. Since G is a non-empty graph, Lemma 2 implies that G has

at least two distinct eigenvalues. Hence we just have the following possible
cases.

Case 1. G has two distinct eigenvalues

If the two distinct eigenvalues of G have the same absolute values, then
Lemma 2 implies that μ1 = |μ2| = · · · = |μn| = 1. Since

∑n
i=1 μi = 0, the

multiplicity s1 of μ1 = 1 must be equal to n
2
. Hence G is the direct sum of

s1 = n
2

complete graphs of order μ1 + 1 = 2. Namely, G is n
2
K2.

If the two distinct eigenvalues of G have different absolute values, then
Lemma 2 implies that μ2 = · · · = μn = −1. Since

∑n
i=1 μi = 0, μ1 = n−1 and

the multiplicity s1 of μ1 is 1. Hence G is the direct sum of s1 = 1 complete
graph of order μ1 + 1 = n. Namely, G is Kn.

Case 2. G has three distinct eigenvalues

Since G has three distinct eigenvalues, there exists an integer r such that
μ1 > μ2 = · · · = μr > 0 > μr+1 = · · · = μn and μ2 = −μn. Hence μ1 �= −μn

and G cannot be a bipartite graph. From μ1 =
√�n

i=1 σ2
i�n

i=1 t2i
and σ1

t1
= σ2

t2
= · · · =

σn

tn
, we have that μ1 = σ1

t1
= σ2

t2
= · · · = σn

tn
. Since μ1 > μi, for each i with

2 ≤ i ≤ n, G must be connected. Set p := μ1. Then G has three distinct

eigenvalues (p, (M2k−p2k

n−1
)

1
2k ,−(M2k−p2k

n−1
)

1
2k ), where p = σ1

t1
= σ2

t2
= · · · = σn

tn
>

(M2k

n
)

1
2k . �

Proof of Theorem 6. Let G be a graph satisfying the conditions in Theorem
10. Then μ1 = −μn. Set α := 1

2k
and β := 1 − α. By the Hölder inequality,

we have that
n−1∑
i=2

|μi| ≤ (
n−1∑
i=2

1
1
β )β(

n−1∑
i=2

|μi| 1
α )α.
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Therefore

E(G) =
n∑

i=1

|μi| ≤ 2μ1 + (n − 2)β(M2k − 2μ2k
1 )

1
2k .

Consider the function f(x) = 2x + (n − 2)β(M2k − 2x2k)
1
2k . It can be verified

that f(x) is decreasing when (M2k

n
)

1
2k ≤ x ≤ M

1
2k

2k .

From Lemma 1′ and the assumption that√∑n
i=1 σ2

i∑n
i=1 t2i

≥ (
M2k

n
)

1
2k ,

we have that

E(G) ≤ f(μ1) ≤ f(

√∑n
i=1 σ2

i∑n
i=1 t2i

).

Therefore Inequality (6) is proved.

If G is n
2
K2, then

√�n
i=1 σ2

i�n
i=1 t2i

= 1 = (M2k

n
)

1
2k and both sides of Inequality (6)

are equal to n.

If G is Kr1,r2 ∪ (n− r1 − r2)K1, where r1r2 = m, then
√�n

i=1 σ2
i�n

i=1 t2i
=

√
r1r2 ≥

(2(r1r2)k

n
)

1
2k ) = (M2k

n
)

1
2k and both sides of Inequality (6) are equal to 2

√
r1r2.

If G is a connected bipartite graph with V = { v1, v2, ..., vs} ∪ { vs+1,
vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
, and has

four distinct eigenvalues (
√

pxpy, (
M2k−2(pxpy)k

n−2
)

1
2k , −(M2k−2(pxpy)k

n−2
)

1
2k , −√

pxpy),
where px = σ1

t1
= σ2

t2
= · · · = σs

ts
, py = σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
and

√
pxpy >

(M2k

n
)

1
2k , then both sides of Inequality (6) are equal to 2p+(n−2)(M2k−2p2k

n−2
)

1
2k ,

where p =
√

pxpy.

Now suppose that Inequality (6) becomes an equality. Then we have that

|μ2| = |μ3| = · · · = |μn−1| = (
M2k−2μ2k

1

n−2
)

1
2k and μ1 = −μn =

√�n
i=1 σ2

i�n
i=1 t2i

. By

Lemma 1′, we have that σ1

t1
= σ2

t2
= · · · = σn

tn
or G is a bipartite graph with

V = { v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such that σ1

t1
= σ2

t2
= · · · = σs

ts
and

σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
with μ1 =

√
pxpy, where px = σ1

t1
and py = σn

tn
. Since

G is a non-empty graph, Lemma 2 implies that G has at least two distinct
eigenvalues. Hence we just have the following possible cases.

Case 1. G has two distinct eigenvalues with the same absolute values
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Then Lemma 2 implies that μ1 = −μn = |μ2| = · · · = |μn−1| = 1. Since∑n
i=1 μi = 0, the multiplicity s1 of μ1 = 1 must be equal to n

2
. Hence G is the

direct sum of s1 = n
2

complete graphs of order μ1 + 1 = 2. Namely, G is n
2
K2.

Case 2. G has three distinct eigenvalues

Since G is a bipartite graph, we must have that μ1 = −μn �= 0 and μ2 =
· · · = μn−1 = 0. Thus E(G) = 2μ1. From Lemma 3, we have that 2μ1 ≥ 2

√
m.

Thus 2μ2
1 ≥ 2m. Notice that 2m =

∑n
i=1 μ2

i = 2μ2
1. Therefore μ1 =

√
m

and E(G) = 2
√

m. Hence by Lemma 3 G is a complete bipartite graph plus
arbitrarily many isolated vertices. Namely, there exist integers r1 ≥ 1 and
r2 ≥ 1 such that G is Kr1,r2 ∪ (n − r1 − r2)K1, where r1r2 = m.

Case 3. G has four distinct eigenvalues

Since μ1 = −μn, |μ2| = · · · = |μn−1|, and G has four distinct eigenvalues,
the multiplicity of μ1 must be one. Hence we have by Lemma 1′ that G is a
connected bipartite graph with V = { v1, v2, ..., vs} ∪ { vs+1, vs+2, ..., vn} such
that σ1

t1
= σ2

t2
= · · · = σs

ts
and σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
, and has four distinct

eigenvalues (
√

pxpy, (
M2k−2(pxpy)k

n−2
)

1
2k , −(M2k−2(pxpy)k

n−2
)

1
2k ,−√

pxpy), where px =
σ1

t1
= σ2

t2
= · · · = σs

ts
, py = σs+1

ts+1
= σs+2

ts+2
= · · · = σn

tn
and

√
pxpy > (M2k

n
)

1
2k . �
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[2] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, Variable beigh-
bourhood search for extremal graphs, 2. Finding graphs with extremal
energy, J. Chem. Info. Comput. Sci. 39 (1999) 984 – 996.
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