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Abstract

We write and give some minimal surfaces which are solutions of the
minimal surfaces equation in the domain Bμ,ξ of the Cartesian 3-space
R

3 equipped with the 2-parameters family of Riemanian metrics

gBμ,ξ =
1

1 − (μ + ξ2)(x2 + y2)
(dx2 + dy2 −μω2 +2ξωdz + dz2);μ, ξ ∈ R.

where ω = ydx − xdy.
gBμ,ξ are defined on the domain Bμ,ξ which is, according to μ, ξ, a

region of R
3 or the whole 3-space R

3. The metrics gBμ,ξ are invariant
under rotations about (Oz)-axis and translations along the same axis.
They generalyse this one of Heisenberg and Euclidean metrics.

The minimal surface equation on Bμ,ξ for a graph function z =
f(x, y) is

fxx(1 + f2
y − 2ξxfy − μx2) − 2fxy(fxfy + ξ(yfy − xfx) + μxy)

+fyy(1 + f2
x + 2ξyfx − μy2) = 0

where the index in f denotes partial derivation.
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The affine planes z = f(x, y) = ax + by + c are solutions of previous
equation. The euclidean helicoid z = f(x, y) = a tan−1(

y

x
) + b; a, b

, c ∈ R stay as minimal surface in Bμ,ξ independently and regardless of
μ and ξ. We classify the axially symmetric minimal surfaces in Bμ,ξ.

In last, we characterise that, the only riemannian metrics which
have a constant determinant on Bμ,ξ and which admit all the planes as
minimal surfaces are Heisenberg’s metrics.

Mathematics Subject Classification: 49Q05, 53A10, 58B21

Keywords: Riemannian metrics, Minimal surfaces, Heisenberg space and

metrics

(∗)The appellation “planal metrics” in the title is given by R. L. Bryant [6]

to say that all the metrics in 3-space for which the planes are minimal surfaces.

1. Introduction

In order to understand deeply the properties and geometrical knowledge

of Bμ,ξ, the study of minimal surfaces is an effective tool. We describe the

principal elements of gBμ,ξ, we write the minimal surfaces equation and give

some particular of them in Bμ,ξ. In the last we give a characterisation of

Heisenberg’s metrics.

1.1. The affine planes z = f(x, y) = ax + by + c; a, b, c ∈ R are minimal

surfaces in Euclidean space E
3 and also in Heisenberg space H3. There are

solutions of the famous Lagrange’s minimal surface equation (1760) and also

solution of minimal surface equation in Heisenberg space given in [1].

Inspired by this observation, R. Lutz raised the problem: Determine all

the Riemannian metrics in regions of R
n which admit all the hyperplanes as

minimal hypersurfaces.

A first approach to answer this problem was described in [2] , for the case

R
3 and their affine planes z = f(x, y) = ax + by + c; a, b, c ∈ R.

In [2] , we solve partially this problem and announce that the family of Rie-

mannian metrics, denoted by M3 = {ds2 = gij(x1, x2, x3)dxidxj} , of Lutz’s

problem, is 20-dimensional space and we give the particular solutions gBμ,ξ

which are only a 2-real parameters family of Riemannian metrics. These met-

rics appear as solutions because they have the fundamental property to be

invariant under the rotations about Oz-axis and translations along the same

axis. Recall that the Euclidean metric and the left invariant metrics on the

Heisenberg group belong to this family. They are respectively gB0,0 .anb gB−ξ2,ξ
.
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R. L. Bryant in [6] proved that, M3 is effectively a 20-dimensional manifold.

His proof is based on another method. He used the theory of the moving frame

and the exterior differential system theory of Elie Cartan. The author in [6]

did not give explicitly the metrics of M3. Lutz’s problem and the answer to

our announce in [2] was solved by Th. Hangan in [9] .

1.2. In this paper we shall study the familly gBμ,ξ. We explicit all the

basic elements of this metrics as the Riemannian curvature tensor, the Ricci

tensor, the Maurer-Cartan equations, and different geometrical elements of

this metrics...

We write, as in Euclidean and in Heisenberg space, the associated minimal

surface equation in Bμ,ξ for a surface as a graph of the function z = f(x, y).

Naturally this equation generalyses Lagrange’s equation and the one in Heisen-

berg space given in [1] . We give some particular solutions and classify the

family of all the axially symmetric minimal surfaces in Bμ,ξ. These surfaces

are explicitly expressed by the elliptic integrals in Legendre form of first and

second kind in terms of the parameters ξ and μ.

1.3. In [9] pp. 333, the author announced the Theorem 2: Modulo an

isometry of the euclidean space (R3, gE), where gE is the euclidean metric, the

riemannian metrics gH,k = dx2 + dy2 + (dz + k(ydx − xdy))2 are the only

polynomials metrics solutions of R. Lutz’s problem.

In fact, always in [9] pp. 332, in Theorem 3, the author gave all the

metrics solutions of R. Lutz’s problem and specified that in 3-dimensional, the

solutions are always rational. In the end of our paper we proved that the only

polynomial solutions of R. Lutz’s are Heisenberg’s metrics stem from the gBμ,ξ.

2. Preliminaries

2.1. Lutz’s problem, in R
3, is to find all the Riemannian metrics on an

open set Ω in R
3 such as all the traces P ∩ Ω of planes P of R

3 on Ω will be

minimal surfaces.

We take an element of M3 in the form ds2 = gij(x1, x2, x3)dxidxj ∈ M3.

We use the coordinates (x1, x2, x3) instead of (x, y, z) to describe temporarily

the family M3. We take G = (gij) the matrix of fundamental tensor compo-

nents and Δij = (−1)i+jmij the matrix in which the elements are the minors

of G, mij is the minor of gij .

In [2] , Theorem.1, the author established the partial differential equations

system for which the elements of M3 must verify all the planes which are

minimal surfaces. This system is:
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(S) 2
r=3∑
r=1

Δ(ijΔk)r,r =
r=3∑
r=1

Δr(iΔjk),r.

where Δij,r =
Δij

∂xr

and the parenthesis for express the symmetry of the

index where 1 < i, j, k, r < 3. (S) is a P.D.E system of 10 equations (see [2] p.

3078) where the Heisenberg metrics and gBμ,ξ are solutions.

Th. Hangan in [9], p. 329, Theorem.1 and 2, generalised the problem

for all dimension n and establish the P.D.E. system satisfied directly by the

components gij of the metric ds2 = gijdxidxj in order that ds2 ∈ Mn, where

gij = gij(x1, x2, ..., xn) and he solved the P.D.E. system.

Mn is the family of Riemannian metrics in R
n which admit all hyperplanes

as minimal hypersurfaces and dimMn = n(n + 1)2(n + 2)/12. For n = 3,

dimM3 = 20. This result was the confirmation of announce of the author in

[2] and the one of R. L. Bryant in [6] .

2.2. Let the family of the metrics

gBμ,ξ =
1

1 − (μ + ξ2)(x2 + y2)
(dx2 + dy2 − μω2 + 2ξωdz + dz2); μ, ξ ∈ R

where ω = ydx − xdy.

gBμ,ξ are defined on the region Bμ,ξ of the Cartesian 3-space R
3(x, y, z) as

Bμ,ξ =

{ {∀(x, y, z) ∈ R
3 when μ + ξ2 ≤ 0}

{∀(x, y, z) ∈ R
3 | x2 + y2 < (μ + ξ2)−1, μ + ξ2 > 0}

We put r2 = x2 + y2, λ = μ + ξ2, δ = 1 − λr2.

2.3 .1◦) Fundamental tensor gBμ,ξ admit the associated matrix (gij) and

its inverse (gij) as quadratic forms. These matrices are

(gij) =
1

δ

⎛
⎝ 1 − μy2 μxy ξy

μxy 1 − μx2 −ξx

ξy −ξx 1

⎞
⎠ ,

(gij) =

⎛
⎝ 1 − λx2 −λxy −ξy

−λxy 1 − λy2 ξx

−ξy ξx 1 − μr2

⎞
⎠ .

Its determinant is det(gij) = 1/δ2.

2◦) Christoffel symbols in coordinates (x, y, z) for the Remannian met-

ric are
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Γk
ij = 1

2

l=3∑
l=1

glk(gjl,i + gli,j − gij,l); i, j, k = 1, 2, 3.

In coordinates we have explicitly

Γ1
11 =

λx(1 − μy2)

δ
; Γ2

11 =
y(μ − ξ2 − μλy2)

δ
; Γ3

11 =
2μξxy

δ

Γ1
12 =

y(ξ2 + μλx2)

δ
, Γ2

12 =
x(ξ2 + μλy2)

δ
, Γ3

12 =
μξ(y2 − x2)

δ
,

Γ1
13 = 0, Γ2

13 =
−ξ

δ
, Γ3

13 =
μx

δ
,

Γ1
22 =

x(μ − ξ2 − μλx2)

δ
, Γ2

22 =
λy(1 − μx2)

δ
, Γ3

22 =
−2μξxy

δ
,

Γ1
23 =

ξ

δ
, Γ2

23 = 0, Γ3
23 =

μy

δ
,

Γ1
33 =

−λx

δ
, Γ2

33 =
−λy

δ
, Γ3

33 = 0.

3◦) The orthonormal frame field e = (e1, e2, e3) is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e1 =

√
δ

1 − λy2

(
∂

∂x
− ξy

∂

∂z

)

e2 =
1√

1 − λy2

(
−λxy

∂

∂x
+ (1 − λy2)

∂

∂y
+ ξx

∂

∂z

)

e3 =
√

δ
∂

∂z
.

The associated dual coframe is θ = (θ1, θ2, θ3) where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ1 =
1√

(1 − λy2)δ
((1 − λy2)dx + λxydy)

θ2 =
dy√

1 − λy2

θ3 =
1√
δ
((ξ(ydx − xdy) + dz).

Note that the 1-form θ3 is a contact form (θ3∧dθ3 �= 0) if and only if ξ �= 0.

4◦) The Levi-Civita connection associate D on Bμ,ξ is described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

De1e1 =
λy√

1 − λy2
e2

De2e1 = −ξe3

De3e1 = −ξe2 +
λx√

δ(1 − λy2)
e3

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

De1e2 = − λy√
1 − λy2

e1 + ξe3

De2e2 = 0

De3e2 = ξe1 +
λy√

1 − λy2
e3

,
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⎧⎪⎪⎨
⎪⎪⎩

De1e3 = −ξe2

De2e3 = ξe1

De3e3 = − λx√
δ(1 − λy2)

e1 − λy√
1 − λy2

e2.

Directly, the Lie brackets are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[e1, e2] = − λy√
1 − λy2

e1 + 2ξe3

[e1, e3] = − λx√
δ(1 − λy2)

e3,

[e2, e3] = − λy√
1 − λy2

e3.

5◦) These metrics can be written in sum of squares form as

gBμ,ξ =

(
1 − λy2√
δ(1 − λy2)

dx +
λxy√

δ(1 − λy2)
dy

)2

+

(
1√

1 − λy2
dy

)2

+

+

(
ξy√

δ
dx − ξx√

δ
dy +

1√
δ
dz

)2

.

6◦) The connection forms (ωij) relating to the coframe θ = (θ1, θ2, θ3)

are given as dθi +
∑
j

ωij ∧ θj = 0. Explicitly these are expressed by

(ωij) =⎛
⎜⎜⎜⎜⎜⎜⎝

0 −ξθ3 +
λy√

1 − λy2
θ1 −ξθ2 +

λx√
δ(1 − λy2)

θ3

ξθ3 − λy√
1 − λy2

θ1 0 ξθ1 +
λy√

1 − λy2
θ3

ξθ2 − λx√
δ(1 − λy2)

θ3 −ξθ1 − λy√
1 − λy2

θ3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

7◦) We have by means of the preceding the curvature forms Ωi
j relating

to θ = (θ1, θ2, θ3), these are Ωi
j = 1

2
Ri

jklθk ∧ θl = dωij +ωih ∧ωhj where the Ri
jkl

are the components of tensor curvature:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1
2 = (μ − 2ξ2) θ1 ∧ θ2 +

2ξλx√
δ(1 − λy2)

θ1 ∧ θ3

+
2ξλy√
1 − λy2

θ2 ∧ θ3

Ω1
3 =

2ξλx√
δ(1 − λy2)

θ1 ∧ θ2 − (μ +
2λ2x2

δ(1 − λy2)
)θ1 ∧ θ3

− 2λ2xy

(1 − λy2)
√

δ
θ2 ∧ θ3

Ω2
3 =

2ξλy√
1 − λy2

θ1 ∧ θ2 − 2λ2xy

(1 − λy2)
√

δ
θ1 ∧ θ3

+(2ξ2 + μ − 2λ

1 − λy2
)θ2 ∧ θ3.

8◦) The Riemannian curvature tensor and the Ricci tensor are de-

scribed respectively in coordinates (x, y, z) by the formulas:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1
213 =

2ξλx√
δ(1 − λy2)

, R1
223 =

2ξλy2√
1 − λy2

,

R1
323 = − 2λ2xy

(1 − λy2)
√

δ
, R1

313 = −μ − 2λ2x2

δ(1 − λy2)
,

R1
212 = μ − 2ξ2, R2

323 = 2ξ2 + μ − 2λ

1 − λy2
.

and the Ricci tensor⎧⎪⎪⎨
⎪⎪⎩

	11 = −2ξ2 − 2λ2x2

δ(1 − λy2)
, 	12 = − 2λ2xy

(1 − λy2)
√

δ
, 	13 = − 2ξλy2√

1 − λy2

	23 =
2ξλx√

δ(1 − λy2)
, 	22 = 2μ − 2λ

1 − λy2
, 	33 = 2ξ2 − 2λ

δ
.

Hence the scalar curvature is

K =
1

6

(
2μ − 4λ

δ

)
.

3. Minimal surfaces equation in Bμ,ξ

3.1. Let S be an immersed surface in Bμ,ξ which is given as a graph

of a function z = f(x, y). The position vector of S is expressed as a vector

valued function X(x, y) = (x, y, f(x, y)). The first fundamental form of S is a

Riemannian metric I = X�gBμ,ξ|� on S induced by the ambiant metric gBμ,ξ on

Bμ,ξ as

I(dx, dy) = Edx2 + 2Fdxdy + Gdy2.
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If fx, fy, fxx, fxy, fyy are the partial derivatives of f with respect to x, y.

We set dz = fxdx + fydy in gBμ,ξ|�. This gives

gBμ,ξ|�=

1

δ

[
(1 + f 2

x + 2ξyfx − μy2)dx2 + 2(fxfy + ξyfy − ξxfx + μxy)dxdy+

+(1 + f 2
y − 2ξxfy − μx2)dy2

]
.

We have explicitly⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E =
1

δ
[1 − λy2 + (fx + ξy)2]

F =
1

δ
[λxy + (fx + ξy)(fy − ξx)]

G =
1

δ
[1 − λx2 + (fy − ξx)2] .

3.2. Take a vector field N normal to S in Bμ,ξ. The second fundamental

form II derived from n = N/ ‖N‖ is defined by the Gauss formula DY X�Z =

X�(∇Y Z) + II(Y, Z)n for all vector fields Y and Z on S. The Gauss formula

induces a connection ∇ on S. This connection coincides with the Levi-Civita

connection of the Riemannian submanifold (2-manifold) (S, I). Note that II

can be defined alternatively by the formula II = −gB;μ,ξ|�(Dn, dX). Since

S is a graph of a function z = f(x, y), we can choose a unit vector field

n = (n1, n2, n3) where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1 =
ξy + fx − λx(xfx + yfy)

δW

n2 =
−ξx + fy − λy(xfx + yfy)

δW

n3 =
μr2 − 1 + ξ(xfy − yfx)

δW

where W is the norm of N

‖N‖ = W =
1

δ

√
1 + f 2

x + f 2
y − 2ξ(xfy − yfx) − λ(xfx + yfy)2 − μr2.

The second fundamental form is explicitly given as

II(dx, dy) = Ldx2 + 2Mdxdy + Ndy2

where
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L =
1

Wδ2

[
δfxx + 2ξfxfy + 2μξxy + (ξ2 − μ)(yfy − xfx)+

+λ(xfx + yfy)(f
2
x + μy2)

]

M =
1

Wδ2

[
δfxy + (λfxfy − λμxy)(xfx + yfy) − μ(x2 − y2)+

+(μ − ξ2)(xfy + yfx) + ξ(f 2
y − f 2

x)

]

N =
1

Wδ2

[
δfyy − 2ξfxfy − 2μξxy − (ξ2 − μ)(yfy − xfx)+

+λ(xfx + yfy)(f
2
y + μx2).

]

3.3. Let us denote the following matrice-valued functions associated with

I and II respectively by:

Ĩ =

(
E F

F G

)
, ĨI =

(
L M

M N

)
.

The solutions k1 and k2 of the caracteristic equation det(II−kI) =0 are

the principal curvatures of S. The average over k1 and k2 denoted by H is the

mean curvature of S . The mean curvature is computed by H = (EN + GL−
2FM)/2(EG − F 2).

A surface S : z = f(x, y) is said to be minimal if H = 0.

3.4. The differential equation H = 0 for a surface S, as a graph z =

f(x, y), is the minimal surface equation in Bμ,ξ. Insert E, F, G; L,M, N in the

differential equation H = 0 we obtain explicitly the minimal surface equation

(Eμ,ξ )
fxx(1 + f 2

y − 2ξxfy − μx2) − 2fxy(fxfy + ξ(yfy − xfx) + μxy)+

+fyy(1 + f 2
x + 2ξyfx − μy2) = 0

That is, from now, the minimal surface equation in Bμ,ξ.

In the plane of parameters (ξ, μ), the Heisenberg metrics are described by

the parabola μ = −ξ2. This graph characterises Heisenberg’s metrics of the

family gBμ,ξ. The origin of the parameters plane (ξ, μ) = (0, 0) corresponds to

Lagrange’s minimal surfaces equation.

3.5. We can obtain the preceding equation (Eμ,ξ ) if we study the be-

haviour of neighbouring surfaces (Sτ ) as a graph described by the equation

zτ = f(x, y) + τh(x, y) as the process which is used by Lagrange for his varia-

tional calculation to have the minimal surface equation in the Euclidean space

E
3 We have S0 = S, and if we denote the first fundamental form of S0 by

E◦, F◦, G◦ the variational calculus gives

∂

∂x

(
fx + ξy − λx(xfx + yfy)

δ
√

E◦G◦ − F 2◦

)
+

∂

∂y

(
fy − ξx − λy(xfx + yfy)

δ
√

E◦G◦ − F 2◦

)
= 0
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which is the divergence form of (Eμ,ξ ).

4. Minimal surfaces in Bμ,ξ

Minimal surfaces theory in E
3 starts with constructing, classifing funda-

mental examples of minimal surfaces. We have a very beautiful particular mini-

mal surfaces, as axially minimal surfaces, ruled surfaces, translation surfaces...,

until the entire resolution of Lagrange’s equation by Weierstrass (1866).

Also recall in Physics, the famous Plateau problem, Steiner problem...,these

works in different subjects on the preceding questions obtained, as a reward,

the Field’s medal obtained by Tibor Rado and Jesse Douglas in 1936.

In this section we study elementary and fundamental examples of mini-

mal surfaces in Bμ,ξ. As in Heisenberg space [1] , we start to search for some

particular solutions of (Eμ,ξ ) in Bμ,ξ.

4.1. It is clear that the linear function z = f(x, y) = ax+by+c; a, b, c ∈ R

is a solution of (Eμ,ξ ) because it is the motivation of the search for metrics

gBμ,ξ.

4.2. Euclidean helicoids can be characterised as minimal surface in E
3

which is a graph of a function in the form f(x, y) = g(
y

x
). In this subsection

we search for minimal surfaces written in the form z = f(x, y) = g(
y

x
) and

must be minimal in Bμ,ξ.

Let S be a surface which is graph of a function in the form f(x, y) = g(
y

x
).

Put u =
y

x
for x �= 0. Then we have

fx = − y

x2
g′, fy =

1

x
g′, fxx =

2y

x3
g′ +

y2

x4
g′′

fxy = − 1

x2
g′ − y

x3
g′′, fyy =

1

x2
g′′.

Here g′ et g′′ are the derivatives with respect to u. We insert these data

into the minimal surface equation (Eμ,ξ ) in Bμ,ξ and multiply it by x2. Then

we obtain the classical differential equation independtly and regardless of μ

and ξ :

(1 + u2)g′′ + 2ug′ = 0.

One can see easily that the general solution to this O. D. E. is given ex-

plicitly by f(x, y) = g(
y

x
) = a tan−1(

y

x
) + b; a, b ∈ R. However we have
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Proposition 4.2. The only minimal surface in Bμ,ξ which has the form

f(x, y) = g(
y

x
) is the surfaces z = f(x, y) = a tan−1(

y

x
) + b; a, b ∈ R.

4.3. By analogy to the case in H3, where the hyperbolic paraboloid is

a minimal surface, we also have in Bμ,ξ the particular minimal surface z =

f(x, y) =
√−μxy, μ < 0. which is also a hyperbolic paraboloid.

In general, if we put f(x, y) = ξy [T (x) + x] , we have fx = ξy(T ′ + 1),

fy = ξ(T + x); fxx = ξyT ′′; fxy = ξ(T ′ + 1), fyy = 0 where T ′ et T ′′ are the

derivatives with respect to x. Now we insert these data to the minimal surface

equation (Eμ,ξ ) to obtain the differential equation

T ′′(ξ2T 2 + 1 − λx2) − 2(T ′ + 1)(ξ2T (T ′ + 2) + λx) = 0.

The solutions of this one are minimal surfaces in Bμ,ξ. It is very difficult to

solve explicitly this equation but for λ = 0, we find again the Heisenberg case

which is in [3].

4.4. The metrics gBμ,ξ are invariant under rotations about (Oz)-axis and

translations along the same axis. Based on this fundamental property, in this

subsection, we classify the axially symmetric minimal surfaces in Bμ,ξ.

Put f(x, y) = U(r) and as before r2 = x2 + y2. We have

fx =
x

r
U ′, fy =

y

r
U ′, fxx =

y2

r3
U ′ +

x2

r2
U ′′,

fyy =
x2

r3
U ′ +

y2

r2
U ′′, fxy =

−xy

r3
U ′ +

xy

r2
U ′′.

Here U ′, U ′′ are the derivatives with respect to r. From this we have the

differential equation and we obtain the following minimal surface equation:

r(1 − μr2)U ′′ + U ′(1 + U ′2) = 0.

This equation, depend only on μ, becomes an equation of the first order.

Hence, we get U ′ = V. To solve this differential equation we must discuss two

cases depending on μ:

1◦) μ = 0, the solution is U ′2 = k2/ (r2 − k2) , where k is constant.

The solution is the axial symmetric surface

U (r) = k cosh−1(
r

k
) + c1.
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If k �= 0, the graph of this surface is the catenöıd in E
3 discovered as a

minimal surface by Meusnier (1776).

Remark: If k = 0, we have U (r) = const, which is the graph is horizontal

Euclidean plane.

2◦) μ �= 0, the solution is in the form: U ′2 = α2 r2 − 1/μ

r2 + α2/μ
where

α2 = k2/(1 − k2), k is constant and −1 < k < 1. If k �= 0, we have two cases:

i) μ < 0, r verifies r2 >
α2

−μ
. The solution is the axial symmetric

surface

U (r) = α2
r∫

α/
√−μ

√
t2 + (1/

√−μ)2

t2 − (α/
√−μ)

2dt + c2.

This elliptic integral can be expressed by the elliptic integrals in Legendre

form of first and second kind. In fact, the integral

I (u) =
u∫
b

√
t2 + a2

t2 − b2
dt

is given by the elliptic integrals in Legendre form of first and second kind.as

I (u) =
√

a2 + b2 (F (ε, s) − E (ε, s)) +
1

μ

√
(u2 + a2) (u2 + b2) with u > b > 0.

ii) μ > 0, r satisfies r2 >
1

μ
. The solution is the axial symmetric

surface

U (r) = α2
r∫

1/
√

μ

√
t2 − (1/

√
μ)2

t2 +
(
α/

√
μ
)2 dt + c3.

This integral can be expressed by the elliptic integrals in Legendre form of

first and second kind. In fact, the integral

I (u) =
u∫
b

√
t2 − b2

t2 + a2
dt

is given by I (u) =
1

μ

√
(u2 + a2) (u2 − b2) −√

a2 + b2E (ε, s) with u > b >

0.

F (ε, s) and E (ε, s) are the elliptic integrals in Legendre form of first and

second kind. These are

F (ε, s) =
ε∫
0

(
1 − s2 sin2 α

)− 1
2 dα, E (ε, s) =

ε∫
0

(
1 − s2 sin2 α

) 1
2 dα.
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The modulas ε and the variable s are given by ε = cos−1(
b

u
), s =

a√
a2 + b2

.

Theorem 4.4. The only axially symmetric minimal surfaces in Bμ,ξ are

the graphs of functions f (x, y) = U (r) = U(
√

x2 + y2) with r2 = x2 + y2,

where

1◦ : U (r) = k cosh−1(
r

k
) + c1, μ = 0, k �= 0.

2◦ : i). μ < 0, U (r) = α2
r∫

α/
√−μ

√
t2 + (1/

√−μ)2

t2 − (α/
√−μ)2

dt + c2,

ii). μ > 0, U (r) = α2
r∫

1/
√

μ

√
t2 − (1/

√
μ)2

t2 +
(
α/

√
μ
)2 dt + c3

with α2 = k2

1−k2 , and k =const. and −1 < k < 1..

4.5. Comments about the surface in the form

z = f(x, y) = g(
y

x
) = a tan−1(

y

x
) + b; a, b ∈ R.

1◦) In Bμ,ξ and if ξ = μ = 0, the minimal surface z = a tan−1(
y

x
)+

b; a, b ∈ R is a right helicoid in Euclidean space E
3. This surface is minimal in

the Heisenberg space H3 as well as in E
3, see [1] . For these 2 cases gB0,0 and

gB−ξ2,ξ we have Bμ,ξ = R
3.

2◦) In a previous paper [4] of ours we proved also that the surface

z = a arctan(
y

x
)+b; a, b ∈ R is a minimal one in the well known 3-dimensional

homogeneous space called the Bianchi-Cartan-Vranceanu space which (as a

particular d’Atri space denote by C, see [5] and the references therein). We

recall briefly and essentially that the following 2-parameters family of homo-

geneous Riemannian metrics gCγ,η

gCγ,η =
dx2 + dy2

(1 + η(x2 + y2))2
+ (dz +

γ

2

ydx − xdy

1 + η(x2 + y2)
)2; γ, η ∈ R

This Riemannian metrics founded by L. Bianchi, E. Cartan and G. Vranceanu.

There are defined on the space denoted

Cγ,η=

{ {∀(x, y, z) ∈ R
3 when η ≥ 0}

{∀(x, y, z) ∈ R
3 | x2 + y2 < −1/η, η < 0} .

which is the homogeneous 3-manifold Cγ,η equipped with the riemannian

metrics gCγ,η).

The metrics gCγ,η do not belong to the family in which all the hyperplane

are minimal like this one investigated in [2] and in [9] for all γ and η. This
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means that gCγ,η do not belong to the family M3 in general but the Euclidean

gC0,0 and Heisenberg gCγ,0 metrics belong to gCγ,η. In these 2 cases we have

Cγ,η = R
3.

3◦) The surface z = a tan−1(
y

x
) + b; a, b ∈ R is also a maximal

surface in the 3-dimensional Minkowsky space. This surface is a space-like

surface with vanishing mean curvature. A Minkowsky space L
3 is R

3 equipped

with the Lorentz metric ds2
�

= dx2 + dy2 − dz2, . i.e. L
3 = (R3, ds2

�
)

In [11] p. 307, we have the Theorem. 4.2 : Except for the plane, only the

helicoid is a maximal surface in L
3 = (R3, ds2

�
) which is a minimal surface

with respect the Riemannian metric dx2 + dy2 + dz2.

For us, we want to say that the surface z = a tan−1(
y

x
) + b; a, b ∈ R is a

maximal surface which means that this one is a solution of the maximal surface

equation for z = f(x, y). Maximal surface’s equation is (see [11])

(L) fxx(1 − f 2
y ) + 2fxfyfxy + fyy(1 − f 2

x) = 0.

If we look for search surfaces in the the form z = f(x, y) = g(
y

x
) and

process as in the beginning of the subsection 4.2, we obtain the same O.D.E.

equation in the Euclidean case and the unique solution in the preceeding form

is z = g(
y

x
) = a tan−1(

y

x
) + b; a, b ∈ R.

Instead of the Theorem 4.2. p. 307 in [11] we have in our mind the

Proposition 4.5.. The only maximal surface in L
3 written in the form

z = f(x, y) = g(
y

x
) is the affine helicoid z = a tan−1(

y

x
) + b; a, b ∈ R.

Proof: We process, as in 4.2, and report the derivative fx, fy, fxx, fxy, fyy

into (L), we obtain easily the same differential equation for which z = a tan−1(
y

x
)+

b; a, b ∈ R is the solution of (L).

4◦) In Cγ,η the metrics gCγ,η are not isomorphic between them

for different parameters (γ, η). Heisenberg metrics as particular case of the

preceding gCγ,η which occurs when η = 0 and gCγ,0 = dx2 +dy2+(dz+
γ

2
(ydx−

xdy))2; γ ∈ R are, also, not isometric between them for arbitrary γ.

In metrics gBμ,ξ, the Heisenberg case happen on the parabola μ = −ξ2 in the

parameters plane (ξ, μ) and we have gB−ξ2,ξ
= dx2 +dy2 +(dz + ξ(ydx−xdy))2

and also are not isometric between them for different ξ ∈ R and never isometric

between them for arbitrary μ, ξ ∈ R.

We observe, however, that the form z = a tan−1(
y

x
)+b; a, b ∈ R is a minimal

surface in E
3, H3,B−ξ2,ξ and Cγ,η and maximal surface in L

3 independently and

regardless of the parameters as well in Bμ,ξ as in Cγ,η.
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In general, it is very unusual to find the same solution simultaneously for

5 different P.D.E. The affine surface z = a tan−1(
y

x
) + b; a, b ∈ R is a very

particular surface.

5. One caracterisation of Heisenberg metrics in Bμ,ξ

In [9], the author, in Theorem 3, gave all the metrics solutions of R. Lutz’s

problem and specifie that on 3-dimensional, the solutions are always rational.

That is the case of the metrics

gBμ,ξ =
1

1 − (μ + ξ2)r2
(dx2 +dy2−μω2 +2ξωdz+dz2); μ, ξ ∈ R, ω = ydx−xdy

These gBμ,ξ are defined on the domain Bμ,ξ which is a region of R
3 or the

whole 3-space R
3. There are invariant under rotations about (Oz)-axis and

translations along the same axis and generalyse the one of Heisenberg and

Euclidean metrics.

The tensor gBμ,ξ admit the associated matrix (gij) as a quadratic form. The

matrix

(gij) =
1

δ

⎛
⎝ 1 − μy2 μxy ξy

μxy 1 − μx2 −ξx

ξy −ξx 1

⎞
⎠ ,

.

has (see § 2.3.) det(gij) =
1

(1 − (μ + ξ2)(x2 + y2))2
. We have det(gij) = 1

if and only if (μ+ ξ2)(x2 +y2) = 0, ∀x, y ∈ R, for μ+ ξ2 = 0 which corresponds

to our famous Heisenberg metrics obtained from gBμ,ξ when μ = −ξ2.

If we put together this last calculus and Theorem 3 in [9] according to the

author that all the metrics solutions of R. Lutz’s problem on 3-dimensional

are always rational. We have

Theorem 5.1: The only metrics solutions of R Lutz problem in Bμ,ξ such

that the tensor metrics have det(gBμ,ξ) = 1, are the Heisenberg’s metrics

gB−ξ2,ξ = dx2 + dy2 + ξ2(ydx − xdy)2 + 2ξ(ydx − xdy)dz + dz2

= dx2 + dy2 + dz + (dz + ξ(ydx − xdy))2 , ξ ∈ R, B−ξ2,ξ = R
3.
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