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Abstract. We study the spatial damping of magnetoacoustic waves
in an unbounded quiescent prominence invoking the technique of MHD
seismology. We consider Newtonian radiation in the energy equation and
derive a fourth order general dispersion relation in terms of wavenumber
k. Numerical solution of dispersion relation suggests that slow mode is
more affected by radiation. The high frequency waves have been found to
be highly damped. The uncertainty in the radiative relaxation time, how-
ever, does not allow us to conclude if the radiation is a dominant damping
mechanism in quiescent prominence.
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1. Introduction

Prominences are masses of relatively cool (T ∼104 K) and dense material suspended
in the corona (T ∼106 K). The spectra of prominences hold the key to understand-
ing the physical conditions, e.g., temperatures, densities, pressures, etc. The internal
structure and physical properties of prominences, however, can be studied through a
new tool of prominence seismology. Magnetohydrodynamic (MHD) waves and oscil-
lations of the solar prominence have been carried out both from the ground and from
space (Patsourakos & Vial 2002). Small amplitude waves (or oscillations) with veloc-
ity amplitudes from 0.1 km s−1 to 2–3 km s−1 have been observed (e.g., Bashkirtsev &
Mashnich 1984; Molowny-Horas et al. 1999). The velocity field oscillations are classi-
fied into three main categories: short-period oscillations (8≤ t ≤20 min), intermediate-
period class (10 ≤ t ≤ 40 min), and long period oscillations (40 ≤ t ≤ 90 min).
A very short period oscillation of 30 s has been observed simultaneously from two
telescopes (Balthasar et al. 1993).

Using the VTT telescope at Sac Peak, Molowny-Horas et al. (1999) found velocity
perturbations with periods between 28 and 95 min at different locations in a prominence
and observed that the amplitude of the oscillations decreases in time with damping
times between 101 and 377 min. Terradas et al. (2002) investigated the temporal
and spatial variations of oscillations and reported the strong damping of oscillations
with damping times between two and three times the wave period. Terradas et al.
(2001) considered the Newtonian radiation in the energy models and found only slow
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mode waves being affected by damping leaving fast mode waves almost undamped.
Carbonell et al. (2004) studied the damping of MHD waves in an unbounded medium
by considering the effect of prominence-corona transition region (PCTR) and neglect-
ing the adiabaticity. Terradas et al. (2005) investigated the damping of MHD waves in
an inhomogeneous and bounded medium by neglecting the adiabaticity. They found
out that only slow mode waves are affected leaving fast mode waves almost undamped.
This is in agreement with Terradas et al. (2001). Recently, Ballai (2003) has reviewed
some of the possible mechanisms that can work in the prominence to explain the spa-
tial damping of linear compressional waves.

In this paper, we consider the Newtonian radiation to discuss the spatial damping
of MHD waves. MHD equations and dispersion relation are presented in section 2;
results and discussions are given in the last section.

2. MHD equations and dispersion relation

Considering a homogeneous equilibrium configuration, which is unbounded in all
directions with magnetic field in the x-direction and neglecting the effect of gravity,
we have

p0 = cons t, ρ0 = cons t, T0 = cons t, BBB0 = B0x̂xx, vvv0 = 0, (1)

where p0, ρ0, T0 and B0 are equilibrium values of pressure, density, temperature and
magnetic field.

The relevant MHD equations are given by:

Dρ

Dt
+ ρ∇ · vvv = 0, (2)

ρ
Dv

Dt
= −∇p + 1

µ
(∇ × BBB) × BBB + ρggg, (3)

ργ̂

γ̂ − 1

D

Dt

(
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ργ̂

)
= 0, (4)

∂BBB

∂t
= ∇ × (vvv × BBB), (5)

∇ · BBB = 0, (6)

p = ρRT, (7)

where γ̂ is the complex ratio of specific heats.
We take perturbation in the MHD equations as exp i(ωt+kkk ·rrr) and ω is the frequency

of oscillations. The effect of Newtonian radiation can be incorporated by keeping the
form of the energy equation adiabatic with complex γ̂ (Bunte and Bogdan 1994),
which is given by

γ̂ = 1 + iωτRγ

1 + iωτR

. (8)
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We can generalize the ideal MHD case by replacing sound speed Cs by complex Ĉs ,
which is given by

Ĉ2
s = γ̂ p0

ρ0
, (9)

where γ̂ = γ in the adiabatic limit and γ̂ = 1 in the isothermal limit.
Linearising the MHD equations (2–7), we obtain a fourth order dispersion relation as

a4k
4 + a3k

3 + a2k
2 + a1k + a0 = 0, (10)

where the coefficients in the dimensionless form are given by

a0 = ω5 − iω4

τR

,

a1 = 0,

a2 = −ω3(1 + V 2
A) + iω2

τR

(
1

γ
+ V 2

A

)
,

a3 = 0,

a4 = cos2 θV 2
Aω − i cos2 θV 2

A

γ τR

.

For spatial damping, we take ω to be real and k to be complex as kR + ikI . The disper-
sion relation has four roots, which reveal the nature of magnetoacoustic modes due
to damping. The roots of the dispersion relation have been obtained numerically by
making use of the physical parameters in prominences (Terradas et al. 2001), namely
B0x = 5G, ρ0 = 1.2 × 10−10 kg m−3, T = 7 × 103 K. We have calculated damping
per wavelength, DL(= kI /kR) for different cases.

3. Results and discussion

The real and imaginary parts of complex wavenumber give damping per wavelength,
DL for slow and fast modes. Slow mode is not present when there is no horizontal
wavenumber. The dispersion relation gives higher damping per wavelength for slow
mode wave compared to fast mode. For a given value of frequency ω, the damping
per wavelength first increases as a function of τR and attains some maximum value
then decreases as we vary τR from 10−5 to 10+5 (in dimensionless units) (Fig. 1). As
the radiative relaxation time increases, the damping per wavelength increases which
shows greater wave damping at low values of radiative time and then attains some
maximum value and then decreases.

The slow mode wave has higher values of damping per wavelength, showing higher
levels of damping due to radiation. For τR → ∞, the wave takes infinite time to damp
and therefore travels very long distances.

The value of radiative relaxation time in prominences is not known. According to
Terradas et al. (2001), the radiative relaxation time could be between 10−4 and 104.
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Figure 1. Damping per wavelength, DL(= Im(k)/Re(k)) for the magnetoacoustic modes with
ω = 10−1 (dotted line: slow mode; solid line: fast mode).

The radiative relaxation time in PCTR varies from 10–103 s (Terradas et al. 2001).
Taking the radiative term as

Lr = ρ2χ∗T α,

the radiative relaxation time τR is given by

τR = γp

(γ − 1)χ∗ρ2T α
,

which for different prominence regimes mentioned in Carbonell et al. (2004) is between
102 and 104 s both for prominence and PCTR. The theoretical value of radiative relax-
ation time in the corona typically is 6 × 104 seconds (Priest et al. 1991). The value
of radiative relaxation time calculated using opacity values of (4 × 103 cm2 g−1).
Weigert & Wendker (1996) are 1.1 × 10−4 s (Ballai 2003). For a given value of radia-
tive relaxation time, the damping per wavelength increases almost linearly with fre-
quency (Fig. 2). This shows that damping of magnetoacoustic waves could be directly
proportional to frequency and higher frequency waves could be damped more in qui-
escent prominences.

The magnetoacoustic waves can be spatially damped by a few more dissipative
mechanisms such as classical viscosity/resistivity, magnetic diffusivity, and thermal
conduction and electrical conduction. The kinematic viscosity/resistivity gives very
high damping lengths, which shows that the effect of classical viscosity in the damp-
ing of magnetoacoustic waves is very small. Using ion collisional rate and Larmor
frequency, Ballai (2003) concluded that the nature of viscosity could be isotropic and
that of thermal conduction could be anisotropic. Thermal conduction can affect the
slow mode waves provided the wavelengths are short.

Singh (2006), studied the spatial damping of the magnetoacoustic waves using the
energy losses through Newtonian cooling and MHD turbulence. It was found that the
slow mode wave has shorter damping length compared to the fast mode wave. From
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Figure 2. Damping per wavelength, DL(= Im(k)/Re(k)) for the magnetoacoustic modes with
τR = 10−7 (dotted line: slow mode; solid line: fast mode).

prominence seismology, the opacity and turbulent kinematic viscosity is inferred. It
is found that the turbulent viscosity is orders of magnitude higher than the Spitzer’s
one. Also, it has been found that the calculated turbulent viscosity can reproduce the
observed damping time and damping length in prominences. The convective distur-
bances may travel up in the solar atmosphere through the magnetic field lines that are
anchored in the photosphere and cause the MHD turbulence in prominences.

In conclusion, I find that the Newtonian radiation alone is inadequate to explain
the spatial damping of both slow and fast mode waves and gives acceptable damping
lengths for certain values of radiative relaxation time. The presence of density inho-
mogeneity may lead to phase mixing and resonant absorption of MHD waves. The
uncertainty in the radiative relaxation time in prominences does not allow us to reach a
definite conclusion as to whether the oscillations are damped by Newtonian radiation
alone. In order to explain the damping of both slow and fast modes, some additional
mechanisms such as turbulent viscosity, ion-neutral damping, wave leakage, phase-
mixing, resonant absorption, etc. are worth considering.
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