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Abstract 
 
An accurate method is proposed to solve problems such as identification, analysis and 
optimal control using the Bernstein orthonormal polynomials operational matrix of 
integration. The Bernstein polynomials are first orthogonalized, normalized and then their 
operational matrix of integration is obtained. An example is given to illustrate the 
proposed method.       
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1. Introduction 

Approximations by orthonormal family of functions have played a vital role in the 
development of physical sciences, engineering and technology in general and 
mathematical analysis in particular since long. In the last three decades, they have been 
playing an important part in the evaluation of new techniques to solve problems such as 
identification, analysis and optimal control. The aim of these techniques has been to 
obtain effective algorithms that are suitable for the digital computers. The motivation and 
philosophy behind this approach is that it transforms the underlying differential equation 
of the problem to an algebraic equation, thus simplifying the solution process of the 
problem to a great extent. The basic idea of this technique is as follows:  
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(i) The differential equation is converted to an integral equation via multiple integration. 
 
(ii) Subsequently, the various signals involved in the integral equation are approximated    
      by representing them as linear combinations of the orthonormal basis functions and  
      truncating them at optimal levels.  
 
(iii) Finally, the integral equation is converted to an algebraic equation by introducing the   
operational matrix of integration of the basis functions.  
 
 
The key idea of the technique depends on the following integral property of the basis 
vector )(tϕ            
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the basis functions, orthogonal on a certain interval ],[ ba  and 1+mP  is the operational 
matrix for integration of )(tϕ . Note that 1+mP  is a constant matrix of order 

).1()1( +×+ mm  
Using the operational matrix of an orthonormal system of functions to perform 
integration for solving, identifying and optimizing a linear dynamic system has several 
advantages: 
 (i) The method is computer oriented, thus solving higher order differential equation 
becomes a matter of dimension increasing, (ii) The solution is a multi-resolution type and 
(iii) the solution is convergent, even though the size of increment may be large.  
Until now, the operational matrix of integration has been determined for several types of 
orthogonal basis functions, such as the Walsh function [1-2], block- pulse function [3-4], 
Laguerre series [5-7], Chebyshev polynomials [8-9], Legendre polynomials [10-11] , 
Fourier series [12-13] and Bessel series [14]. Later Gu and Jiang [15] derived the Haar 
wavelets operational matrix of integration followed by Razzaghi and Yousefi [16] who 
gave the Legendre wavelets operational matrix of integration.  
The aim of present paper is to derive the Bernstein orthonormal polynomials matrix of 
integration 1+mP . The matrix 1+mP  may be used to solve problems of system analysis and 
synthesis in a manner similar to those of the other orthogonal functions. The Bernstein 
polynomials are first orthonormalized and the operational matrix of integration is then 
derived. A numerical example is given to illustrate the efficiency of the proposed method. 
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2. The Bernstein polynomials:  
 
A Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the 
Bernstein form, that is a linear combination of Bernstein basis polynomials. 
The Bernstein basis polynomials of degree n  are defined by 
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There are thnn )1( +  degree Bernstein basis polynomials forming a basis for the linear 
space nV  consisting of all polynomials of degree less than or equal to n  in R[x]-the ring 
of polynomials over the field R. For mathematical convenience, we usually set 

0, =niB  if 0<i  or ni > . 
Any polynomial )(xB  in R[x] may be written as 
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Then )(xB  is called a polynomial in Bernstein form or Bernstein polynomial of degree n . 
The coefficients iβ  are called Bernstein or Bezier coefficients.But several mathematicians 
call Bernstein basis polynomials )(, xB ni as the Bernstein polynomials. We will follow 
this convention as well. These polynomials have the following properties: 
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)(vi It has a degree raising property in the sense that any of the lower-degree    
       polynomials (degree n< ) can be expressed as a linear combinations of polynomials      
       of degree n . We have, 
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L  is an eigen value of nB ; the       

         corresponding eigen function is a polynomial of degree k . 
 
 
3. The orthonormal polynomials: 
 
Using Gram- Schmidt orthonormalization process on niB ,  and normalizing, we obtain a 
class of orthonormal polynomials from Bernstein polynomials. We call them 
orthonormal Bernstein polynomials of order n  and denote them by nnnno bbb ,,, 1 L . 
 
 
For 5=n  the five orthonormal polynomials are given by 
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A function ]1,0[2Lf ∈  may be written as  
 

                                               ∑
=

∞→
=

n

i
ninin

tbctf
0

)(lim)( ,                                                     (5) 

 
 
where, nini bfc ,=  and ,  is the standard inner product on ]1,0[2L .  
If the series (5) is truncated at mn = , then  
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4. The operational matrix of integration.  
 
 
The orthonormal Bernstein polynomials operational matrix of integration of order 

)1()1( +×+ mm  will be derived now. To achieve this, consider the following integral 
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where the operational matrix 1+mP  of integration associated with orthonormal Bernstein 
polynomials is given by  
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For 5=m , the matrix 6P  is denoted by P  and is given as follows: 
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5. Numerical example 
 
The following example shows the computational power of the Bernstein polynomial 
operational matrix of integration. 
Consider a linear time-varying system  
 
                   ,0)0(),()()( ==+ ywithtutytya &                                                 (14) 
where )(tu is the unit step function. The analytic solution of (14) is atety /1)( −−= . Gu 
and Jiang [15] considered this problem with 25.0=a  and gave an approximate solution 
by using Haar wavelets with four, six and ten basis functions. Paraskevopoulos et all. 
[12] considered the same problem with 1=a  and used Fourier series operational matrix 
of integration of orders )1111( ×  and )2121( × to obtain approximate solutions. In 2001, 
Razzaghi and Yousefi [16]  used Legendre wavelets operational matrix of order )66( ×  
to solve this problem. We obtain approximate solution of (14) using the Bernstein 
operational  matrix of integration 1+mP  by taking 4=m , 5  and compare the solutions.   
Integrating (14) from 0  to t , we get 
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Using (6), the unknown function )(ty and unit step function )(tu  are approximated as 
                            )()( tBCty T=  and  )()( tBdtu T= ,                                                  (16)  
 
where  T

mmmm cccC ],,,[ 10 K=  is to be determined. Substituting (16) in (15), we obtain 
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As (18) holds for all )1,0[∈t , it reduces to  
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 where I  is the )1()1( +×+ mm  unit matrix. Eqn. (20) is a set of algebraic equations 
whose solution gives mic , .0 mi ≤≤  Solving (20), one gets 
 
                                                             EQC 1−= .                                                         (21)         
 
Finally, the solution )(ty  is obtained by substituting (21) into (16).For 5=m , the Td  is 
given by 
 
              [ ]166667.0,288675.0,372678.0,440959.0,5.0,552771.0=Td .                      (22) 
 
 
In figures 1 and 2, graphs of the exact solution as well as those of the approximate 
solution )()( tBCty T=  for 54 andm =  are given taking 25.0=a , respectively . 
Figure 3 depicts the corresponding errors between the approximate solutions. From Fig.  
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3, it can be seen that the accuracy increases quite fast as we go from level 

.54 == mtom  
 
                

Fig.1. The exact solution )(ty (solid line) and the approximate solution denoted by                               

           )(1 tY  (dotted line) truncated at level 4=m  .                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. The exact solution )(ty (solid line) and the approximate solution denoted by                               

           )(tY  (dotted line) truncated at level 5=m  .    
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        Fig.3. Comparison between the errors  at 5=m  (solid line) and 4=m (dotted line). 
 
 
6. Conclusion. 
 
The uniform approximation capabilities of Bernstein polynomials coupled with the fact  
that only a small number of polynomials are needed to obtain a satisfactory result makes 
our method very attractive. It gives better approximation compared to that of 
paraskevopoulos et all. [12] , Gu and Jiang [15], and Razzaghi and Yousefi [16].         
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