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Abstract
In this paper, we have defined homogeneous fuzzy semi-Markov

process through the interval fuzzy transition possibilities between the
states. A large number of results have been obtained including the fol-
lowing conditional possibilities: the process will be in state j after a
time t given that it entered at starting time in state i; the process will
survive to a time t, given that the starting state; that it will continue
to remain in the starting state up to time t; that it reach state j in
the next transition, if the previous state was in i and no state change
occurred up to time t. We have also analyzed the steady state behavior
of homogeneous fuzzy semi-Markov process through steady state behav-
ior of fuzzy Markov chain and average time spent in each state. These
approaches are demonstrated by considering web navigational model.
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1 Introduction

In this paper, the homogeneous fuzzy semi-Markov model is proposed as a
useful tool for predicting the evolution of the web access during the speci-
fied period through possibilities, by assuming the state transitions as fuzzy
transition possibilities on the state space. Important theoretical results and
applications for classical semi-Markov models can be found in [1, 3, 4], [6 -
12], [15 - 17]. In this paper, the model is examined under the assumption of
the fuzzy transition between the states through the concept of possibility of
events. Since the transition between the states of a system cannot be precisely
measured due to the system that is intrinsically fuzzy, the decisions are asso-
ciated with fuzzy transition that can be defined as possibilities on the state
space of a system. This model also predicts the steady state behavior of the
system. This model has the following advantages:

1. Not only the uncertainties in the different states in which the evolution
of transitions into the consideration, but also the uncertainties in the
elapsed time in each state.

2. All the states are interrelated, therefore any transition is considered.

3. Fewer and less rigid working hypothesis is needed.

4. Needs only raw data obtained from observations with no strong assump-
tion about any standard possibility functions regarding the possibility
variable analyzed.

5. The conclusions are simply based on a list of all computed possibilities
derived directly from raw data.

This paper is constructed as follows. Section 2 recalls the basic defini-
tions of possibility space. In section 3, the definition of a discrete time ho-
mogeneous fuzzy semi-Markov model, convolution of two fuzzy semi-Markov
kernels, Chapman-kolmogorov equation for fuzzy semi-Markov kernel and the
basic equations for the interval fuzzy transition possibility are provided. Sec-
tion 4 gives the solution for the interval fuzzy transition possibilities. Section
5 deals with the steady state analysis of homogeneous fuzzy semi-Markov pro-
cess. Section 6 illustrates the fuzzy semi-Markov model described in section
3, 4 and 5. The conclusion is discussed in section 7. All the definitions and
results are based on max - min operation and we know that the computation
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in the max - min operation are more robust to perturbation when compared
to usual addition and multiplication operation.

2 Preliminary Notes

In this section, we recall some of the basic definitions of possibility space.

Definition 2.1. (Possibility Space [5])
Let Γ be the universe of discourse and Ψ be the power set of Γ. The possi-

bility measure is a mapping σ : Ψ −→ [0, 1] such that

1. σ(Φ) = 0; σ(Γ) = 1

2. σ(
⋃

i Ai)=supi(σ(Ai))

for every arbitrary collection Ai of Ψ. Then (Γ, Ψ, σ) is called as Possibility
Space.

Definition 2.2. (Conditional Possibility [5])
Let (Γ, Ψ, σ) be a possibility space and A,B∈ Ψ. Then the possibility of A

conditional on B is defined as

σ(A/B) =

{
1 if σ(AB) = σ(B)
σ(AB) if σ(AB) < σ(B)

Definition 2.3. (Total Possibility Law [5])
Let (Γ, Ψ, σ) be a possibility space and {Ai} be the collection of sets such

that
⋃

Ai = Γ and B ∈ Ψ. Then ,

σ(B) = sup
i

σ(AiB)

= sup
i

min[σ(B/Ai), σ(Ai)]

Definition 2.4. (Possibility Variable [5])
Let (Γ, Ψ, σ) be a possibility space and U be an arbitrary universe. A pos-

sibility variable X is a mapping from Γ to U. If a possibility variable can take
on countable number of possible values(i.e.,U is countable), then it is called
discrete possibility variable. If U is uncountable, then X is called continuous
possibility variable.

Definition 2.5. (Point Possibility Distribution Function [5])
Let (Γ, Ψ, σ) be a possibility space and U be an arbitrary universe.

If X : Γ −→ U is a discrete possibility variable, then the point possibility
distribution function is,

g(x)=σ(X = x),∀x ∈ U .
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3 Discrete Time Homogeneous Fuzzy Semi-

Markov Model

A classical semi-Markov process [10] is defined as a sequence of two dimensional
random variable {Xn, Tn; t ∈ T},with the properties (1)Xn is a discrete time
Markov chain taking values in a countable set S of the system and represents its
state after transition n, (2) the holding times Tn+1−Tn between two transitions
are random variable, whose distribution depends on the present state and the
state after the next transition and is given as

p[Xn+1 = j, Tn+1 − Tn ≤ t/X0, X1, . . . , Xn; T0, T1, . . . , Tn]
= p[Xn+1 = j, Tn+1 − Tn ≤ t/Xn]

Since for many systems due to uncertainties and imprecision of data, the
estimation of precise values of probability is very difficult. For this reason, we
have used possibilities defined on possibility space and since the computation
using max-min operation are more robust to perturbation when compared
to usual addition and multiplication operation, we have followed max-min
operation through out the paper. We now discuss about the discrete time
homogeneous fuzzy semi-Markov model, whose transitions are taken as fuzzy
transition possibilities on the state space.

Let E={1, 2, . . . ,m} be the state space and let (Γ, Ψ, σ)be a possibility
space. We define the following possibility variables:

Jn : Γ −→ E, Sn : Γ −→ N

where Jn represents the state at the n-th transition and Sn represents the time
of the n-th transition. The process (Jn, Sn)n∈N is called homogenous fuzzy
Markov renewal process if

σ[Jn+1 = j, Sn+1 ≤ t/J0, J1, . . . Jn = i; S0, S1, . . . Sn]

= σ[Jn+1 = j, Sn+1 ≤ t/Jn = i]

and for j�=i

Q̃ij(t) = σ[Jn+1 = j, Sn+1 − Sn ≤ t/Jn = i]

is the associated homogeneous fuzzy semi-Markov kernel Q̃.
These fuzzy semi-Markov kernels can be expressed in matrix form as

Q̃ = (Q̃ij(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̃11(t) Q̃12(t) . . . Q̃1m(t)

Q̃21(t) Q̃22(t) . . . Q̃2m(t)
.
.
.

Q̃m1(t) Q̃m2(t) . . . Q̃mm(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

mxm
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called fuzzy semi-Markov kernel matrix.
Thus, we have

p̃ij = lim
t−→∞

Q̃ij(t), i, j ∈ E, j �= i

= σ[Jn+1 = j/Jn = i]
represents the possibility of a system making its next transition to state j, given
that it entered state i at time t and P̃ = (p̃ij)i,j is the m x m fuzzy transition
possibility matrix of the embedded homogeneous fuzzy Markov chain (Jn)n∈N .

3.1 Chapman-Kolmogorov Equation for Fuzzy Semi-Markov

Kernel

To derive Chapman-Kolmogorov Equation for Fuzzy Semi-Markov Kernel (FSMK),
we first define the convolution of two fuzzy semi-Markov kernels.

3.1.1 Convolution of Two Fuzzy Semi-Markov Kernels

For two FSMK matrices Q̃ = (Q̃ij(t)) and T̃ = (T̃ij(t)) where Q̃ij(t), T̃ij(t)
are defined on E, we define its convolution as

Q̃ ∗ T̃ = Ũ ,

where Ũ = (Ũij(t)) and

Ũij(t) = max
k∈E

{ max
τ=0,1,... ,t

{min[Q̃ik(τ), T̃kj(t − τ)]}}

For our conveneience, let

max
τ=0,1,...,t

{min[Q̃ik(τ), T̃kj(t − τ)]} = Q̃ik(τ) � T̃kj(t − τ)

and hence

Ũij(t) = max
k∈E

{Q̃ik(τ) � T̃kj(t − τ)}

3.1.2 Chapman-Kolmogorov equation for FSMK

We now derive the Chapman-Kolmogorov equation for FSMK by induction
method.
consider

Q̃
(1)
ij (t) = σ[J1 = j, S1 − S0 ≤ t/J0 = i] = Q̃ij(t)
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This implies Q̃(1) = Q̃ and Q̃
(0)
ij (t)=

{
0, if t ≤ 0
1, otherwise

Now consider,

Q̃
(2)
ij (t) = σ[J2 = j, S2 − S1 ≤ t/J0 = i]

The state j can be reached to state i through some intermediate state k with
duration time t in 2 steps as

Q̃
(2)
ij (t) = min[σ[J2 = j, S2 − S1 ≤ t − τ/J1 = k], σ[J1 = k, S1 − S0 ≤ τ/J0 = i]]

= min[Q̃
(1)
kj (t − τ), Q̃

(1)
ik (τ)]

= min[Q̃
(1)
ik (τ), Q̃

(1)
kj (t − τ)]

Since these intermediate steps can take values k=1, 2, . . . , m corresponding
to their time durations, we have

Q̃
(2)
ij (t) = max

k∈E
{ max

τ=0,1,...,t
{min[Q̃

(1)
ik (τ), Q̃

(1)
kj (t − τ)]}}

This implies

Q̃(2) = Q̃(1) ∗ Q̃(1)

= Q̃ ∗ Q̃

By induction, we have

Q̃
(m+1)
ij (t) = max

k∈E
{ max

τ=0,1,...,t
{min[Q̃

(m)
ik (τ), Q̃

(1)
kj (t − τ)]}}, m ≥ 0.

This implies

Q̃(m+1) = Q̃(m) ∗ Q̃(1) = Q̃m ∗ Q̃

Thus in general, we have

Q̃(m+n) = Q̃(m) ∗ Q̃(n)

and this is called Chapman-kolmogorov equation for FSMK.
Note that

Q̃
(n)
ij (t) = σ[Jn = j, Sn − Sn−1 ≤ t/J0 = i]
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3.2 Evolution Equation of a Discrete Time Homoge-
neous Fuzzy semi-Markov Model

In this section, we derive the evolution equation of a discrete time homogeneous
fuzzy semi-Markov model. The evolution equation represents the interval fuzzy
transition possibility from state i to reach state j with time duration t.

We now define the conditional cumulative distribution function of the wait-
ing time in each state, given the state subsequently occupied by,

F̃ij(t) = σ[Sn+1 − Sn ≤ t/Jn+1 = j, Jn = i]

Since the FSMK Q̃ij(t) is both characterized by a fuzzy Markov chain (Jn)n∈N

and transition time (Sn)n∈N which depends on both the present state and the
next state, we can rewrite Q̃ij(t) as

Q̃ij(t) = σ[Jn+1 = j, Sn+1 − Sn ≤ t/Jn = i]

= min[σ[Sn+1 − Sn ≤ t/Jn+1 = j, Jn = i], σ[Jn+1 = j/Jn = i]]

= min[F̃ij(t), p̃ij]

= min[p̃ij, F̃ij(t)]

Without loss of generality, we denote the waiting time distributions as f̃ij(t)
and D̃ = (f̃ij(t))i,j represent the duration matrix. Let us introduce the possi-
bility that the process will leave state i in a time t as:

H̃i(t) = σ[Sn+1 − Sn ≤ t/Jn = i]

Obviously, it results that

H̃i(t) = max
j �=i

Q̃ij(t)

= max
j �=i

{min[p̃ij, F̃ij(t)]}, i, j ∈ E

Let us define the possibility that the process has been in state i for time
duration ’t’ without transitioning to other state as

S̃i(t) = σ[Sn+1 − Sn > t/Jn = i]

Now it is possible to define the discrete time homogeneous fuzzy semi-Markov
process Z:

Z = (Zt, t ∈ R+
0 )

representing for each waiting time t, the state occupied by the process
Zt = JN(t), where N(t) = max{n, Tn ≤ t}. This fuzzy semi-Markov process

is both characterized by a set of fuzzy transition matrices P̃ and a set of
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duration matrix D̃. Now we define the interval fuzzy transition possibilities in
the following way:

φ̃ij(t) = σ[Zt = j/Z0 = i]

By taking all the possible mutually exclusive ways in which it is possible for
the event to take place, we could prove that for ∀t, t ≥ 0.

φ̃ij(t) = max{min[δ̃ij , S̃i(t)], max
l∈E

{ max
τ=0,1,...,t

{min[p̃il, f̃il(τ), φ̃lj(t − τ)]}}}

where

δ̃ij=

{
0, i �= j
1, i=j

The above equation represents the possibility of remaining in state i without
any change from time t and possibility of having changed in state i and of
having reached in some way to state j and of staying in this state at time t and
this equation is called as the evolution equation of a discrete time homogeneous
fuzzy semi-Markov model.

4 Solution for Interval Fuzzy Transition Pos-

sibilities

We now discuss the solution for interval fuzzy transition possibilities. This
solution represents the future behavior of the system starting from one state
and reaching to other state through some intermediate states during the spec-
ified time of duration. Let there be ’k’ number of transitions to state j at time
’t’, given that the process started from state i. Let us also assume that these
’k’ transitions occur successively from state i with time duration t1, t2, ...and
reaches to state j for the given duration time ’t’.

Let us first assume that, there occurs one transition from state i with dura-
tion time t1 and reaches to state j. Then the evolution equation of homogeneous
fuzzy semi-Markov process is written as

φ̃ij(t) = max{min[δ̃ij, S̃i(t)], max
t1=0,1,...,t

{min[p̃ij , f̃ij(t1), S̃j(t − t1)]}}

and the evolution equation of homogeneous fuzzy semi-Markov process from
state i with duration time t1, t2 to reach state j occurring with two transitions
is written as

φ̃ij(t) = max

⎧⎨
⎩

min[δ̃ij , S̃i(t)], maxt1=0,1,...,t{min[p̃ij , f̃ij(t1), S̃j(t − t1)]},
maxl∈E{maxt1=0,1,...,t{maxt2=0,1,...,t−t1

{min[p̃il, f̃il(t1), p̃lj, f̃lj(t2), S̃j(t − t1 − t2)]}}}

⎫⎬
⎭
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In general, if there are ’k’ transitions occur successively from state i with
duration time t1, t2, ... and reaches to state j with total duration time ’t’. Then
the evolution equation of homogeneous fuzzy semi-Markov process can be writ-
ten as

φ̃ij(t) = max{T0, T1, T2, T ′}
where
T0 = min[δ̃ij, S̃i(t)]

T1 = maxt1=0,1,...,t{min[p̃ij, f̃ij(t1), S̃j(t − t1)]}

T2 =

{
maxl∈E{maxt1=0,1,...,t{maxt2=0,1,...,t−t1{min[p̃il, f̃il(t1),

p̃lj, f̃lj(t2), S̃j(t − t1 − t2)]}}}
}

Tk=

⎧⎨
⎩

maxl �=i, l∈E{maxn�=l, n∈E . . . {maxw �=j, w∈E

{maxt1=0,1,...,t{maxt2=0,1,... ,t−t1 . . . {maxtk=0,1,... ,t−t1...−tk−1

{min[p̃il, f̃il(t1), p̃ln, f̃ln(t2), . . . , p̃wj, f̃wj(tk), S̃j(t − t1 − . . . − tk)]}}}}}}

⎫⎬
⎭

and T ′ = maxk=3,4,... Tk, for k ≥ 3.

These expression formalizes the fact that possibility of homogeneous fuzzy
semi-Markov process is in state j with duration t, given that it has entered
state i may be derived from no transition (k=0) or from exactly one transition
(k=1) or from exactly two transitions (k=2) or more (k ≥ 3).

Let us define φ̃k
ij(t) by the following possibility:

φ̃k
ij(t)=σ[ the process is in state j at time t, k transitions with duration

t − t1 − . . . − tk / it was in state i ]
Hence finally for i, j ∈ E,

φ̃ij(t) = max
k=0,1,2,...

φ̃k
ij(t)

And in matrix form with φ̃(t) = (φ̃ij(t))i,j and φ̃k(t) = (φ̃k
ij(t))i,j

i.e., φ̃(t) = max
k=0,1,2,...,∞

φ̃k(t)

5 Steady State Analysis of Homogeneous Fuzzy

Semi-Markov Process

Fuzzy semi-Markov processes can be analyzed for steady state performance in
the same manner as discrete time fuzzy Markov process. To do this, we need
to know the steady state possibilities of the (Fuzzy semi-Markov process’s)
embedded fuzzy Markov chain and the mean residence time in each state or
the average time spent in each state.
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5.1 Steady State Possibilities of Embedded Fuzzy Markov
Chain

We see that in [2], if the powers of the fuzzy transition matrix converge in T
steps to a nonperiodic solution, then the associated fuzzy Markov chain is said
to be aperiodic and if the fuzzy Markov chain is aperiodic then it is said to be
ergodic. We should always remember that not all fuzzy Markov process will
have a steady state distribution. If the fuzzy Markov process is ergodic then
ergodic fuzzy Markov process always tends to a steady state.

In [13], [14] the possibilities of remaining in each state after n steps is
defined using max - min operation as a row vector Ṽ n = (Ṽ n

1 , Ṽ n
2 , ..., Ṽ n

m)
where each entry Ṽ n

j is the maximum of minimum of each path of length n from
state i to state j and the steady state possibilities or steady state distribution
is defined as a row vector Ṽ ∞ = (Ṽ ∞

1 , Ṽ ∞
2 , ..., Ṽ ∞

m ) where each entry Ṽ ∞
j is the

maximum of minimum of each path from state i to state j given as

Ṽ ∞
j = max{min

i
[Ṽ ∞

i , p̃ij]}, j = 1, 2, . . . , m (5.1.5.1)

and is obtained from the following algorithm:

1. Initialize the components Ṽ ∞
1 , Ṽ ∞

2 , ..., Ṽ ∞
m .

2. Fix a threshold limit(based on usage) and calculate each component of
the vector by the calculation |Ri − Li| ≤ σ, where Ri and Li are RHS
and LHS of the m equations given by equation 5.1.5.1. The computation
is stopped if the desired σ is fulfilled.

5.2 Average Time for Each State

We know that time spent at each state j (for j=1,2, . . . ,m) is given by

S̃j(t) = σ[Sn+1 − Sn > t/Jn = j]

If the time spent at each state varies with time duration u = 0, 1, 2,...t, then
the average time spent at each state j (for j=1,2, . . . ,m) is given by

θ̃j = max
u=0,1,...,t

S̃j(u), j ∈ E

Therefore the steady state possibility of being in state j (for j=1,2, . . . ,m) for
fuzzy semi-Markov process is

ϕ̃j =

{
1, if min( Ṽ ∞

j , θ̃j) = maxj∈E min(Ṽ ∞
j , θ̃j)

min( Ṽ ∞
j , θ̃j), if min( Ṽ ∞

j , θ̃j) < maxj∈E min(Ṽ ∞
j , θ̃j).

(5.2.5.1)
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6 Example

Consider the below web navigation model.

Courses Programs

  Other 
Information

Figure 1: Web Navigational Model

The operational units Courses(C), Programs(P), Other information(OI) are
the set of states with the associated connections as the transitions. With each
transition we associate a possibility based on the usage for the period of 12
weeks duration. These possibilities can be obtained from various sources con-
taining information based on actual usage patterns to track usage and failures.
As the web access increases the usage information will also increase. Hence we
have modeled fuzzy semi-Markov model with state space S = {C, P, OI} for
the above web navigation.
The corresponding fuzzy state transition matrix is

C P OI

P̃ =
C
P
OI

⎡
⎣ 0.98 0.98 0.973

0.98 0.776 0.98
0.782 0.99 0.969

⎤
⎦
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and the calculated D̃ for the given state space as

C P OI

D̃ =
C
P
OI

⎡
⎣ 0.981 0.982 0.9

0.89 0.964 0.841
0.964 0.872 0.78

⎤
⎦

Possibilities of staying in each state up to 12 weeks are given as follows:

S̃C(12) = 0.985; S̃P (12) = 0.982; S̃OI(12) = 0.964

Hence the interval fuzzy transition possibility from one state to another state
for the given period is given as matrix and is depicted below in Figure 2:

C P OI

φ̃ij(12) =
C
P
OI

⎡
⎣ 0.985 0.98 0.9

0.89 0.982 0.841
0.782 0.872 0.969

⎤
⎦ , i, j = C, P, OI.

Courses Programs

  Other 
Information

 0.985

  0.98

  0.982

  0.89

0.782 0.9 0.841 0.872

0.969

Figure 2: Interval Fuzzy Transition Possibilities
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6.1 Steady State Analysis for Web Navigation Model

In section 5, we have seen that the possibility of system being in each
state in the steady state as Ṽ ∞ = (Ṽ ∞

1 , Ṽ ∞
2 , ..., Ṽ ∞

m ). We now calculate
the steady state possibilities for the navigation model discussed in the
previous section. Ṽ ∞ = (Ṽ ∞

1 , Ṽ ∞
2 , Ṽ ∞

3 ) can be determined by the equation
Ṽ ∞

j = max{mini[Ṽ
∞
i , p̃ij]} , for j=C,P,OI.

By fixing the threshold limit as σ = 0.05 and following the algorithm in
section 5, we can compute the steady state possibilities of the fuzzy Markov
model. Thus the steady state possibilities that we have obtained are as follows
(0.9, 0.85, 0.8).
The mean residence possibilities for the state space are given by

θ̃C = 0.985; θ̃P = 0.982; θ̃OI = 0.964

Based on this steady state possibilities and mean residence possibilities, the
steady state possibilities of being in state j (for j=C, P, OI) of fuzzy semi-
Markov process can be computed using equation 5.2.5.1.
∴ Steady state possibilities that we obtained are as follows:

ϕ̃C = 1

ϕ̃P = 0.85

ϕ̃OI = 0.8

From the steady state possibilities we see that ϕ̃OI = 0.8 which indicates that
the state is less frequently visited when compared to the other states and the
most frequently visited state is ”Course”. Thus the most frequently visited
states are ”Course” and ”Programs”. Hence more focus should be given on
testing links that leads to these states.

7 Conclusion

In this paper we have defined a homogeneous fuzzy semi-Markov model and
presented a homogeneous fuzzy semi-Markov model approach to the dynamic
evolution of web application defined by interval fuzzy transition possibilities.
By means of this approach, we cannot consider only uncertainties in the pos-
sible stages of transitions, but also the uncertainties of the duration of the
waiting time in each state. This method starts from the idea of evolution
of interval fuzzy transition possibility through fuzzy transition possibility and
duration time process and this idea allows the approach of homogeneous fuzzy
semi-Markov model resulting to step transitions and the steady state possibil-
ities of web application.
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We would like to point out that this paper does not show all the potential
of homogeneous fuzzy semi-Markov process environment. Indeed, by means of
recurrence time process it is possible to assess the different transition possibil-
ities as a function of the duration inside the states. Moreover, it allows to the
possibility of doing a reliability analysis that considers in the future research.
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