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Abstract

This paper address the exponential stability for a class of switched
systems with mixed time delays. Based on linear matrix inequalities
and Lyapunov-Krasovskii functional approach, a geometrically switch-
ing rule for the exponential stability of the system is designed. The
approach allows to compute simultaneously the two bounds that charac-
terize the exponential stability rate of the solution. Numerical example
to show the effectiveness of the proposed method is given.
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1 Introduction

Hybrid system is a combination of discrete and continuous dynamical systems.
These systems arise as models phenomena, which cannot be described by ex-
clusively continuous or exclusively discrete processes [1, 8]. As an important
class of hybrid systems, switched system is a family of subsystems together
with rules to switch between them.

Switched systems arise in many practical models in manufacturing, com-
munication networks, automotive engine control, chemical processes, e.g. see
[1, 5, 9] and the references therein. The stability analysis of switched time-delay
systems has attracted a lot of attention from many researchers [3, 4, 7, 11]. The
main approach for stability analysis relies on the use of Lyapunov-Krasovskii
functionals and LMI approach for constructing common Lyapunov function
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and switching rules [3, 4, 6, 13]. In recent paper [4], studying a switching sys-
tem composed of a finite number of linear point time-delay differential equa-
tions, it was shown that the asymptotic stability of this kind of switching
systems may be achieved by using a common Lyapunov function method and
minimum switching rule. Some extending results of [4] to linear switching sys-
tems with discrete and distributed time delays were given in [2]. However, the
common Lyapunov functional and the switching rule were constructed base on
the existence of a Hurwitz linear convex combination of non-delay system ma-
trices. This condition is delay-independent and it was shown that the system
was stable for sufficiently small delays. The problem of stability and stabiliza-
tion of a class of switched neutral control systems were investigated in [12].
By using quadratic Lyapunov functions and inequalities analysis technique, a
delay-dependent stability condition was formulated in term of linear matrix
inequalities. However, this condition was delay-independent of the derivation
of the past state.

In this paper, we study the problem of exponential stability for a class
of linear switching systems with mixed time delays. By using an improved
Lyapunov-Krasovskii functional, a delay-dependent conditions for the expo-
nential stability of the systems are derived in terms of the linear matrix in-
equalities which allows to design switching rules and to compute simultane-
ously the two bounds that characterize the exponential stability rate of the
solution.

The paper is organized as follows. Section 2 presents notations, definitions
and technical lemmas need for the proof of the main result. Sufficient con-
ditions for the exponential stability and numerical example to illustrate the
obtained results are presented in Section 3. The paper ends with conclusions
and cited references.

2 Preliminaries

The following notations will be used throughout this paper: Rn denotes the n
dimensional Euclidean space with the Euclidean norm ‖.‖ and scalar product
〈x, y〉 = xT y; λmax(A) (λmin(A), resp.) denotes the maximal (the minimum,
resp.) of the real part of eigenvalues of A; AT denotes the transpose of the
matrix A; Q ≥ 0 (Q > 0, resp.) means Q is semi-positive definite (positive
definite, resp.), A ≥ B means A − B ≥ 0.

Consider a switched linear system with mixed time delays of the form

ẋ(t) = Aσx(t) + Dσx(t − h) + Eσ

∫ t

t−r

x(s)ds,

x(t) = φ(t), t ∈ [−τ, 0], τ = max{h, r},
(1)
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where x(t) ∈ Rn is the state, σ ∈ m̄ = {1, 2, . . . , m} is piecewise constant
switching signal depending on time and the system state and will be designed,
Ai, Di, Ei, (i = 1, 2, . . . , m) are given real matrices.

Definition 1. Given α > 0. The system (1) is α-exponentially stable if there
exist a switching rule σ and a constant N ≥ 1 such that every solution x(t, φ)
of the system satisfies the following inequality

‖x(t, φ)‖ ≤ Ne−αt‖φ‖, t ≥ 0.

Definition 2. The system of matrices {Li}, i ∈ m̄ = {1, 2, . . . , m} is said to
be strictly complete if for every x ∈ Rn\{0} there is i ∈ m̄ such that xT Lix < 0.

Let us define

Ωi = {x ∈ Rn : xT Lix < 0}, i ∈ m̄

It’s easy to show that the system {Li}, i ∈ m̄ is strictly complete if and only if

m⋃
i=1

Ωi = Rn\{0}.

Remark 1. As shown in ([10]), a sufficient condition for the strictly com-
pleteness of the system {Li} is that there exist βi ≥ 0,

∑m
i=1 βi > 0 such that

m∑
i=1

βiLi < 0.

If N = 2 then the above condition is also necessary for the strictly complete-
ness.

The following well-known lemmas will be used in the proof of our main
results.

Proposition 1. (Matrix Cauchy inequality) For any symmetric positive defi-
nite matrix M and x, y ∈ Rn one has

± 2xT y ≤ xT Mx + yTM−1y.

Proposition 2. For any symmetric positive definite matrix M , scalar γ > 0
and vector function ω : [0, γ] → Rn such that the integrals concerned are well
defined, then

(∫ γ

0

ω(s)ds

)T

M

(∫ γ

0

ω(s)ds

)
≤ γ

∫ γ

0

ωT (s)Mω(s)ds.
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3 Main results

For given α > 0, h, r > 0 and symmetric positive definite matrices P, Q, S, M ,
we denote

Li = AT
i P + PAi + 2αP + Q + rS + M, i ∈ m̄,

Ωi = {x ∈ Rn : xT Lix < 0}, i ∈ m̄,

Ω1 = Ω1, Ωi = Ωi\
i−1⋃
j=1

Ωj , i = 2, 3, . . . , m.

Theorem 1. Given α > 0. The system (1) is α-exponentially stable if the exist
symmetric positive definite matrices P, Q, S, M satisfy the following conditions:

(i) The system of matrices {Li} is strictly complete,

(ii)

⎡
⎢⎣

M PDi PEi

DT
i P e−2αhQ 0

ET
i P 0

1

r
e−2αrS

⎤
⎥⎦ > 0, (i = 1, 2, . . . , m).

The switching rule is chosen as σ(x(t)) = i whenever x(t) ∈ Ωi. Moreover, all
solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤
√

α2

α1
e−αt‖φ‖, t ≥ 0,

where α1 = λmin(P ), α2 = λmax(P ) + hλmax(Q) +
1

2
r2λmax(S).

Proof. By the assumption (i) we have

m⋃
i=1

Ωi = Rn\{0}. It follows that

m⋃
i=1

Ωi = Rn\{0}, Ωi

⋂
Ωj = ∅, i 
= j. (2)

The switching rule is chosen as σ(x(t)) = i whenever x(t) ∈ Ωi (this switching
rule is well-defined due to (2)). So when x(t) ∈ Ωi, the ith subsystem is
activated and then we have the following subsystem

ẋ(t) = Aix(t) + Dix(t − h) + Ei

∫ t

t−r

x(s)ds.

Consider the following Lyapunov-Krasovskii functional

V (xt) = V1(xt) + V2(xt) + V3(xt), (3)
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where

V1(xt) = xT (t)Px(t),

V2(xt) =

∫ 0

−h

e2αsxT (t + s)Qx(t + s)ds,

V3(xt) =

∫ 0

−r

∫ 0

s

e2αξxT (t + ξ)SxT (t + ξ)dξds.

It’s easy to verify that

α1‖x(t)‖2 ≤ V (xt) ≤ α2‖xt‖2, t ≥ 0. (4)

Taking derivative of V1(xt) along trajectories of the system (1) we get

V̇1(xt) = xT (t)(AT
i P + PAi)x(t) + 2xT (t)PDix(t − h) + 2xT (t)PEi

∫ t

t−τ

x(s)ds.

Apply Proposition 1 and 2 we have

2xT (t)PDix(t − h) ≤ e2αhxT (t)PDiQ
−1DT

i Px(t) + e−2αhxT (t − h)Qx(t − h),

2xT (t)PEi

∫ t

t−τ

x(s)ds ≤ re2αrxT (t)PEiS
−1ET

i Px(t)

+
1

r
e−2αr

(∫ t

t−r

x(s)ds

)T

S

(∫ t

t−r

x(s)ds

)

≤ re2αrxT (t)PEiS
−1ET

i Px(t) + e−2αr

∫ t

t−r

xT (s)Sx(s)ds.

Therefore,

V̇1(xt) ≤ xT (t)
[
AT

i P + PAi

]
x(t)

+ e2αhxT (t)PDiQ
−1DT

i Px(t) + e−2αhxT (t − h)Qx(t − h)

+ re2αrxT (t)PEiS
−1ET

i Px(t) + e−2αr

∫ t

t−r

xT (s)Sx(s)ds.

(5)

Next, taking derivative of V2, V3 along trajectories of system (1) respectively,
we obtain

V̇2(xt) = xT (t)Qx(t) − e−2αhxT (t − h)Qx(t − h) − 2αV2(xt),

V̇3(xt) = rxT (t)Sx(t) −
∫ 0

−r

e2αsxT (t + s)Sx(t + s)ds − 2αV3(xt)

≤ rxT (t)Sx(t) − e−2αr

∫ t

t−r

xT (s)Sx(s)ds − 2αV3(xt).

(6)
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Combining (5), (6) we get

V̇ (xt) + 2αV (xt) ≤ xT (t)
[
AT

i P + PAi + 2αP + Q + rS
]
x(t)

+ e2αhxT (t)PDiQ
−1DT

i Px(t) + re2αrxT (t)PEiS
−1ET

i Px(t).

By Schur complement theorem, from hypothesis (ii) we have

M − e2αhPDiQ
−1DT

i P − re2αrPEiS
−1ET

i P > 0, i ∈ m̄.

Therefore,

V̇ (xt) + 2αV (xt) ≤ xT (t)
[
PAi + AT

i P + 2αP + Q + rS + M
]
x(t)

= xT (t)Lix(t), t ≥ 0.
(7)

By the completeness of the system of matrices {Li}, for any t ≥ 0, there exists
i ∈ m̄ such that x(t) ∈ Ωi. Therefore, from (7) it follows that

V̇ (xt) + 2αV (xt) ≤ 0, ∀t ≥ 0,

and hence
V (xt) ≤ V (φ)e−2αt ≤ α2‖φ‖2e−2αt, t ≥ 0.

Taking (4) into account we obtain

‖x(t, φ)‖ ≤
√

α2

α1
e−αt‖φ‖, t ≥ 0,

which completes the proof.

From Remark 1 and Theorem 1 we have the following corollary.

Corollary 2. Given α > 0. The system (1) is α-exponentially stable if the ex-

ist a convex combination Â of Ai, symmetric positive definite matrices P, Q, S, M
such that the following LMIs hold:

i) ÂT P + PÂ + 2αP + Q + rS + M < 0, (8)

ii)

⎡
⎢⎣

M PDi PEi

DT
i P e−2αhQ 0

ET
i P 0

1

r
e−2αrS

⎤
⎥⎦ > 0, (i = 1, 2, . . . , m), (9)

where Â =
∑m

i=1 βiAi, βi ≥ 0,
∑m

i=1 βi = 1. The switching rule is chosen as
σ(x(t)) = i whenever x(t) ∈ Ωi. Moreover, all solution x(t, φ) of the system
satisfies

‖x(t, φ)‖ ≤
√

α2

α1
e−αt‖φ‖, t ≥ 0.
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Example. Consider the switching system given by

ẋ(t) = Aix(t) + Dix(t − h) + Ei

∫ t

t−r

x(s)ds, i ∈ m̄ = {1, 2}, (10)

where h = 1, r = 1 and

(A1, D1, E1) =

([−20 1
−3 2

]
,

[
1 −1
1 −1

]
,

[
1 1
1 −3

])
,

(A2, D2, E2) =

([
4 −1
1 −32

]
,

[
1 −1
3 −4

]
,

[−1 1
−1 4

])
.

It is easy to check that each subsystem is unstable. For α = 0.5, by solving
LMIs (8), (9) with β1 = β2 = 0.5 we get

P =

[
0.6991 −0.2583
−0.2583 0.5142

]
, Q =

[
2.8282 −2.2782
−2.2782 3.0657

]
,

S =

[
1.2451 −0.4272
−0.4272 2.5712

]
, M =

[
4.1690 −1.9356
−1.9356 6.5331

]
.

Then

L1 =

[−17.4725 −1.0937
−1.0937 14.2247

]
, L2 =

[
14.0176 2.1479
2.1479 −19.7109

]
.

The switching regions are constructed by (see Figure 1)

Ω1 = {(x1, x2) ∈ R2 : −17.4725x2
1 − 2.1874x1x2 + 14.2247x2

2 < 0},
Ω2 = {(x1, x2) ∈ R2 : 14.0176x2

1 + 4.2958x1x2 − 19.7109x2
2 < 0},

Ω1 = Ω1, Ω2 = Ω2\Ω1.

Fig.1.
Under the switching rule σ(x(t)) = i whenever x(t) ∈ Ωi, i = 1, 2, the

system (10) is exponentially stable with decay rate α = 0.5. Moreover, the
solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ 4.7374e−0.5t‖φ‖, t ≥ 0.
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4 Conclusion

This paper has proposed a switching design for the exponential stability of
a class of switched systems with mixed time delays. Based on an improved
Lyapunov-Krasovskii functional, the exponential stability conditions are de-
rived in terms of linear matrix inequalities which allows to compute simulta-
neously the two bounds that characterize the exponential stability rate of the
solution. Numerical example illustrated the obtained results is given.
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