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Abstract

New classes containing generalization of differential operator are introduced. Char-
acterization and other properties of these classes are studied. Moreover, Fekete-Szego

functional for these classes are obtained.
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1 Introduction, Definitions and Preliminaries.

Let ‘H be the class of functions analytic in U and H[a,n] be the subclass of H consisting
of functions of the form f(z) = a + a,2™ + an112"" + ... Let A be the subclass of H

consisting of functions of the form

o0
f(z) :z—i—Zanz”, z eU. (1.1)
n=2
Now we introduce a differential operator defines as follows : Dl;’? :A— Aby

DY§f(z) =24 ) [+ (n— Dn®NFC(6,n)anz", k, a €No, A>0,0>0, (1.2)

n=2

where

n+dé—1 I'(n+9)
o= ( ; ) " TG
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Remark 1.1. When @ = 1,A = 0,0 = 0or a = 0,A = 1,0 = 0 we get Salagean
differential operator [6], & = 0 gives Ruscheweyh operator [5], « = 0,0 = 0 implies Al-
Oboudi differential operator of order (k) [1], « = 1,A =0 or &« = 0, A\ = 1 operator (1.2)
reduces to Al-Shagsi and Darus differential operator [2] and o = 0 poses the differential
operator of order (k), which is given by the authors [3]. Note that the operator in [3] was
first introduced by Al-Shagsi and Darus [7] and further studies have been done by the
same authors in [8].

Some of relations for the differential operator (1.2) are discussed in the next lemma.

Lemma 1.1. Let f € A. Then

(i) DYGf(2) = f(2),
(i7) Dypf(2) = 2f'(2).

In the following definitions, new classes of analytic functions containing the differential
operator (1.2) are introduced:

Definition 1.1. Let f(z) € A. Then f(z) € Sl)i’?(u) if and only if

- { 2[DY5 f(2))

T }>u,0§,u<1,z€U.
D)\’?f(z)

Definition 1.2. Let f(z) € A. Then f(z) € C’f’?(,u) if and only if

k,o ns

[2(D}5 f(2))]

R(ERRTTY ey, s e
(D35 /(2))

The article is organized as follows: In section 2, we study the characterization and distor-

tion theorems, and other properties of these classes. In section 3, we obtain sharp upper

bound of |az| and of the Fekete-Szegd functional |ag — va3| for the classes Sf’?(u) and

Clj’?(u). For this purpose we need the following result:

Lemma 1.2.[4] Let p € P, that is, p be analytic in U, be given by p(z) =1+ > .7 ppz"
and R{p(z)} > 0 for z € U. Then

2 2

b1 ’pﬂ
__<2_—
p2 =Sl = 5

and |p,| <2 for alln € N.
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. k,
2 General properties of D )\,?

2509

In this section we study the characterization properties and distortion theorems for the
function f(z) € A to belong to the classes S];’? (1) and C’f’?(y,) by obtaining the coefficient

bounds.

Theorem 2.1. Let f(z) € A. If

o0

> (n—ph® + (n—DnAFCOn)an <1—p, 0<p<1,
n=2

then f(z) € Sf?(u) The result (2.3) is sharp.

Proof. Suppose that (2.3) holds. Since

1—M>Zn— [n® + (n — 1)n*N\* C(6,n)|ay|

[e.9]

> Zu[no‘ + (n = 1)n°NFC(6,n)|an| = Y n[n® + (n = 1)n*\*C(6,n)|ay]

n=2 n=2

then this implies that

1+ Y2, n[n® + (n — D)n®A*C(8,n)|ay|
L+, [n® + (n— 1)neAFC(0,n)|ay|

hence

2DV (=)
pf{TMTE
{ DY £(2) } 8

We also note that the assertion (2.3) is sharp and the extremal function is given by

B (1 — ,u) n
J=et 7;2 (n— Wn® + (n— LneXFC(n)

Corollary 2.1. Let the hypotheses of Theorem 2.1 satisfy. Then

(1 —p)
(n — p)[n® + (n — 1)n*A\J*C(§,n)’

lan| < Vn > 2.

(2.3)

(2.4)

Corollary 2.2. Let the hypotheses of Theorem 2.1 be satisfied. Then for 6 = u=%k=0

1
lan| < =, Vn > 2.
n

(2.5)
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In the same way we can verify the following results:

Theorem 2.2. Let f(z) € A. If

[e.9]

Z [n® + (n— D)nA*C(0,n)|an| <1—p, 0<p<1, (2.6)

then f(z) € C];’?(,u). The result (2.6) is sharp.

Corollary 2.3. Let the hypotheses of Theorem 2.2 be satisfied. Then

(1—p)
jan] < n(n — p)[n® + (n — D)neA\kC(5,n)’ vn22. 27

Also we have the following inclusion results:

Theorem 2.3. Let 0 < p; < ps < 1. Then Sf:?(,ul) D S];:?(/Lg).
Proof. By Theorem 2.1.

Theorem 2.4. Let 0 < puy < o < 1. Then C];:?(ul) D Cl)i’?(,ug).
Proof. By Theorem 2.2.

Theorem 2.5. Let 0 < \; < A\y. Then S];f&( ) C Sf; ().
Proof. By Theorem 2.1.

Theorem 2.6. Let 0 < \; < \y. Then C’ffé( ) C Cl;;‘&(u)
Proof. By Theorem 2.2.

We introduce the following distortion theorems.

Theorem 2.7. Let the hypotheses of Theorem 2.1 be satisfied. Then for z € U and
0<u<l1

a 1 -
DS S = [2 — 5—

and

1—p
D < — .
DRSF) <l + 5,

Proof. By using Theorem 2.1, one can verify that

(e 9]

(2= )Y _[n®+ (n— DN C@G,n)|an| <D (0 — pw)n® + (n— Yn*AFC(S,n)an| <1 - p
n=2

n=2
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then
- « a1k 1—,u
D In®+ (n— DnAFC(6,n)]an| < T
n=2

Thus we obtain

|D’;§f(z)\ <2l + > _In® + (n = Dn®AFC(6,n)|an]|2|"
n=2

<2l 4+ > _[n® + (n = Dn®A\FC(6,n)|an]| 2|

n=2

1—p
< |z + [2—]\2|2

The other assertion can be proved as follows:

IDYSF()| = |2+ Y [0 + (n = DnN\FC(5,n)an2"|
n=2

> [z =) (n—ph*+ (n— 1)n"AFC(6,n)an2"]

n=2
[e%S)

> |2[ = Y [n% + (n — Dn*N*C(6,n)|an||2]"
n=2

> |z] = Y [n® + (n — DN C(8,n) a2

n=2

1—
2 [2] = [ 1P

This completes the proof.

In the same way we can get the following result.

Theorem 2.8. Let the hypotheses of Theorem 2.2 be satisfied. Then for z € U and
0<pu<l1

a 1-
DES ] 2 | - 55—
and
« 1-—
IDAS ) < el + oy o

Also, we have the following distortion results
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Theorem 2.9. Let the hypotheses of Theorem 2.1 be satisfied. Then
(1= WG +1)

£() 2 2~ e e
and
(1—p)(6+1)
PO+ GG

Proof. In virtue of Theorem 2.1, we have

2= W+ N Zr ol <Z n— )+ (0= DneXFCE mlanl < (1 p)
then

. (- W5 +1)

2l < G F G 2pe (1 S

n=2

Thus we obtain

x
=]+ anz"|
n=2
[o@)
<zl + ) lanl|2?
n=2

(1= pl(E+1)
(2= )0+ 2)[22(1 + A)]

The other assertion can be proved as follows

o
2)| > |z — Zanz”\
n=2
(o]
> 12— 3 Janllof?
n=2

(1—p)(6+1)
(2= IO +2)2*(1+ )]

< |Z|+ k|Z|2

> |2 =

2
rlzl”
This completes the proof.

In the same way we can get the following results.

Theorem 2.10. Let the hypotheses of Theorem 2.2 be satisfied. Then (n — p)[n® + (n —
Dn*A*C(6,n) > 1 and 0 < p < 1 poses
(1—pIl(@E+1) 2
> _
= = e =G r o or

and
(L—pwI'(0+1)

HEI= 1 36 o T I
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3 Fekete-Szego for the classes S];:g‘(,u) and C’f”g‘(,u)

In this section we determine the sharp upper bound for |az| for the classes Sf’g‘(,u) and

Cf’?(u). Moreover, we calculate the Fekete-Szegd |ag — va3| functional for the classes

aforementioned.

Theorem 3.1. Let the hypotheses of Theorem 2.1 be satisfied. Then

2(1—p) T(1+46)
20(1+ \)FT(2+9)

las| <
(

and for all v € C the following bound is sharp

(1+9) (A—p)
(3+0) (3(1+ 2\))F

v « k
T I'(3 4 6)(3%(1 + 2))) r(1+5)”}.

Jmaz {11421 - p)l1 - (P + )22 (1 + W)k’

Proof. Since f € Sf:g‘(,u) then the condition
) z /
’7f(ﬂ}>u, 0<pu<l, ze€U
(2)

is equivalent to

ADYSf(2)] = DYSF(2)[(1— pwp(z) + ), 2 €U,

for some p € P. Equating coefficients we obtain ay = A(1 — p)p1, a3 = B[(1 — p)*p? +

L T'(1+9) L T'(146) L 1
(1 — p)p2] where A := (@ AT B := FETOBe (120 and further, for C' := D{5 +

(1—p)— %} where D := B(1 — u) and by using Lemma 1.2 we have |a3 — va3| <

H(z)=2D+ (C — %)xQ, x = |p1| < 2. Consequently, we receive

H(0)=2D, C<%
|a3—1/a%| <
H(2)=4C, C>%.

Equality is attained for functions given by

dDYS PR 14221 - 2p)
DYSf(z) 17

and

DS FE) 14 2(1 - 2p)
DS f(2) 1-=

respectively.



2514 M. Darus and R. W. Ibrahim

For p = 0 we receive the following corollary.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then for y =0

jaal < 2I'(1 + 6)
TR 6 1+ N)E

and

(1+9)
(3+8)(3%(1 +2)))k

vI(3 +8)(3%(1 4 20)FT(1 + 5)”}

a —VCL2
las 2l <2 (D(2 + 6)(20(1 + A)F)?

]maaz{l, |14 2[1—

In the similar manner we can prove the following result.

Theorem 3.2. Let the hypotheses of Theorem 2.2 be satisfied. Then

(L-p) T(1+9)
221+ A)JF (21 0)

las| <
(

and for all v € C the following bound is sharp

(1+4) (A-p
(3+108) (32(1 4 2)))k

—3”X$+®@%1+2Mﬁru+5ﬁ@.

]ma${1,!1+(1_“)[2 2(D(2+0)(22(1 + A)F)

For p = 0 we receive the following corollary.

Corollary 3.2. Let the assumptions of Theorem 3.2 hold. Then for y =0

sl < I'(1+6)
TR 61+ N)E

and

9 _ 2 (1+9)
_ < Z

_ 3wl(3+0)(3*(1 4+ 20) (1 + 5)”}

»“nmx{L“"+p 2(T(2 4+ 8)(22(1 + M)’
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