New Classes Containing Generalization of Differential Operator

Maslina Darus and Rabha W. Ibrahim

School of Mathematical Sciences
Faculty of science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan, Malaysia
maslina@ukm.my, rabhaibrahim@yahoo.com

Abstract

New classes containing generalization of differential operator are introduced. Characterization and other properties of these classes are studied. Moreover, Fekete-Szegö functional for these classes are obtained.

Mathematics Subject Classification: 30C45

Keywords: Differential operator; Fekete-Szegö functional, Distortion theorem

1 Introduction, Definitions and Preliminaries.

Let \mathcal{H} be the class of functions analytic in U and $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$ Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U.$$
 (1.1)

Now we introduce a differential operator defines as follows: $\mathbf{D}_{\lambda,\delta}^{k,\alpha}: \mathcal{A} \to \mathcal{A}$ by

$$\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z) = z + \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^k C(\delta,n) a_n z^n, \quad k, \quad \alpha \in \mathbb{N}_0, \ \lambda \ge 0, \quad \delta \ge 0,$$
 (1.2)

where

$$C(\delta, n) = \begin{pmatrix} n + \delta - 1 \\ \delta \end{pmatrix} = \frac{\Gamma(n + \delta)}{\Gamma(n)\Gamma(\delta + 1)}.$$

Remark 1.1. When $\alpha = 1, \lambda = 0, \delta = 0$ or $\alpha = 0, \lambda = 1, \delta = 0$ we get Sălăgean differential operator [6], k = 0 gives Ruscheweyh operator [5], $\alpha = 0, \delta = 0$ implies Al-Oboudi differential operator of order (k) [1], $\alpha = 1, \lambda = 0$ or $\alpha = 0, \lambda = 1$ operator (1.2) reduces to Al-Shaqsi and Darus differential operator [2] and $\alpha = 0$ poses the differential operator of order (k), which is given by the authors [3]. Note that the operator in [3] was first introduced by Al-Shaqsi and Darus [7] and further studies have been done by the same authors in [8].

Some of relations for the differential operator (1.2) are discussed in the next lemma.

Lemma 1.1. Let $f \in \mathcal{A}$. Then

(i)
$$\mathbf{D}_{\lambda,0}^{0,\alpha}f(z) = f(z),$$

(ii)
$$\mathbf{D}_{0,0}^{1,1}f(z) = zf'(z)$$
.

In the following definitions, new classes of analytic functions containing the differential operator (1.2) are introduced:

Definition 1.1. Let $f(z) \in \mathcal{A}$. Then $f(z) \in S_{\lambda,\delta}^{k,\alpha}(\mu)$ if and only if

$$\Re\left\{\frac{z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]'}{\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)}\right\} > \mu, \quad 0 \le \mu < 1, \quad z \in U.$$

Definition 1.2. Let $f(z) \in \mathcal{A}$. Then $f(z) \in C_{\lambda,\delta}^{k,\alpha}(\mu)$ if and only if

$$\Re\left\{\frac{\left[z(\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z))'\right]'}{(\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z))'}\right\} > \mu, \ \ 0 \le \mu < 1, \ \ z \in U.$$

The article is organized as follows: In section 2, we study the characterization and distortion theorems, and other properties of these classes. In section 3, we obtain sharp upper bound of $|a_2|$ and of the Fekete-Szegö functional $|a_3 - \nu a_2^2|$ for the classes $S_{\lambda,\delta}^{k,\alpha}(\mu)$ and $C_{\lambda,\delta}^{k,\alpha}(\mu)$. For this purpose we need the following result:

Lemma 1.2.[4] Let $p \in \mathcal{P}$, that is, p be analytic in U, be given by $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ and $\Re\{p(z)\} > 0$ for $z \in U$. Then

$$|p_2 - \frac{p_1^2}{2}| \le 2 - \frac{|p_1|^2}{2}$$

and $|p_n| \leq 2$ for all $n \in N$.

2 General properties of $\mathbf{D}_{\lambda.\delta}^{k,lpha}$

In this section we study the characterization properties and distortion theorems for the function $f(z) \in \mathcal{A}$ to belong to the classes $S_{\lambda,\delta}^{k,\alpha}(\mu)$ and $C_{\lambda,\delta}^{k,\alpha}(\mu)$ by obtaining the coefficient bounds.

Theorem 2.1. Let $f(z) \in \mathcal{A}$. If

$$\sum_{n=2}^{\infty} (n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}| \le 1 - \mu, \quad 0 \le \mu < 1, \tag{2.3}$$

then $f(z) \in S_{\lambda,\delta}^{k,\alpha}(\mu)$. The result (2.3) is sharp.

Proof. Suppose that (2.3) holds. Since

$$1 - \mu \ge \sum_{n=2}^{\infty} (n - \mu) [n^{\alpha} + (n - 1)n^{\alpha} \lambda]^{k} C(\delta, n) |a_{n}|$$

$$\ge \sum_{n=2}^{\infty} \mu [n^{\alpha} + (n - 1)n^{\alpha} \lambda]^{k} C(\delta, n) |a_{n}| - \sum_{n=2}^{\infty} n [n^{\alpha} + (n - 1)n^{\alpha} \lambda]^{k} C(\delta, n) |a_{n}|$$

then this implies that

$$\frac{1 + \sum_{n=2}^{\infty} n[n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k} C(\delta, n) |a_{n}|}{1 + \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k} C(\delta, n) |a_{n}|} > \mu,$$

hence

$$\Re\left\{\frac{z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]'}{\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)}\right\} > \mu.$$

We also note that the assertion (2.3) is sharp and the extremal function is given by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{(1-\mu)}{(n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^k C(\delta, n)} z^n.$$

Corollary 2.1. Let the hypotheses of Theorem 2.1 satisfy. Then

$$|a_n| \le \frac{(1-\mu)}{(n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^k C(\delta, n)}, \ \forall n \ge 2.$$
 (2.4)

Corollary 2.2. Let the hypotheses of Theorem 2.1 be satisfied. Then for $\delta = \mu = k = 0$

$$|a_n| \le \frac{1}{n}, \ \forall n \ge 2. \tag{2.5}$$

In the same way we can verify the following results:

Theorem 2.2. Let $f(z) \in \mathcal{A}$. If

$$\sum_{n=2}^{\infty} n(n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^k C(\delta, n)|a_n| \le 1 - \mu, \quad 0 \le \mu < 1, \tag{2.6}$$

then $f(z) \in C_{\lambda,\delta}^{k,\alpha}(\mu)$. The result (2.6) is sharp.

Corollary 2.3. Let the hypotheses of Theorem 2.2 be satisfied. Then

$$|a_n| \le \frac{(1-\mu)}{n(n-\mu)[n^\alpha + (n-1)n^\alpha \lambda]^k C(\delta, n)}, \quad \forall n \ge 2.$$

$$(2.7)$$

Also we have the following inclusion results:

Theorem 2.3. Let $0 \le \mu_1 \le \mu_2 < 1$. Then $S_{\lambda,\delta}^{k,\alpha}(\mu_1) \supseteq S_{\lambda,\delta}^{k,\alpha}(\mu_2)$.

Proof. By Theorem 2.1.

Theorem 2.4. Let $0 \le \mu_1 \le \mu_2 < 1$. Then $C_{\lambda,\delta}^{k,\alpha}(\mu_1) \supseteq C_{\lambda,\delta}^{k,\alpha}(\mu_2)$.

Proof. By Theorem 2.2.

Theorem 2.5. Let $0 \le \lambda_1 \le \lambda_2$. Then $S_{\lambda_1,\delta}^{k,\alpha}(\mu) \subseteq S_{\lambda_2,\delta}^{k,\alpha}(\mu)$.

Proof. By Theorem 2.1.

Theorem 2.6. Let $0 \le \lambda_1 \le \lambda_2$. Then $C_{\lambda_1,\delta}^{k,\alpha}(\mu) \subseteq C_{\lambda_2,\delta}^{k,\alpha}(\mu)$.

Proof. By Theorem 2.2.

We introduce the following distortion theorems.

Theorem 2.7. Let the hypotheses of Theorem 2.1 be satisfied. Then for $z \in U$ and $0 \le \mu < 1$

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| \ge |z| - \frac{1-\mu}{2-\mu}$$

and

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| \le |z| + \frac{1-\mu}{2-\mu}.$$

Proof. By using Theorem 2.1, one can verify that

$$(2-\mu)\sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}| \leq \sum_{n=2}^{\infty} (n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}| \leq 1-\mu$$

then

$$\sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^k C(\delta, n)|a_n| \le \frac{1-\mu}{2-\mu}.$$

Thus we obtain

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| \le |z| + \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}||z|^{n}$$

$$\le |z| + \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}||z|^{2}$$

$$\le |z| + [\frac{1-\mu}{2-\mu}]|z|^{2}$$

The other assertion can be proved as follows:

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| = |z + \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)a_{n}z^{n}|$$

$$\geq |z - \sum_{n=2}^{\infty} (n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)a_{n}z^{n}|$$

$$\geq |z| - \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}||z|^{n}$$

$$\geq |z| - \sum_{n=2}^{\infty} [n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k}C(\delta,n)|a_{n}||z|^{2}$$

$$\geq |z| - [\frac{1-\mu}{2-\mu}]|z|^{2}$$

This completes the proof.

In the same way we can get the following result.

Theorem 2.8. Let the hypotheses of Theorem 2.2 be satisfied. Then for $z \in U$ and $0 \le \mu < 1$

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| \ge |z| - \frac{(1-\mu)}{2(2-\mu)}|z|^2$$

and

$$|\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)| \le |z| + \frac{(1-\mu)}{2(2-\mu)}|z|^2.$$

Also, we have the following distortion results

Theorem 2.9. Let the hypotheses of Theorem 2.1 be satisfied. Then

$$|f(z)| \ge |z| - \frac{(1-\mu)\Gamma(\delta+1)}{(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}|z|^2$$

and

$$|f(z)| \le |z| + \frac{(1-\mu)\Gamma(\delta+1)}{(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}|z|^2.$$

Proof. In virtue of Theorem 2.1, we have

$$(2-\mu)[2^{\alpha}(1+\lambda)]^{k} \frac{\Gamma(\delta+2)}{\Gamma(\delta+1)} \sum_{n=2}^{\infty} |a_{n}| \leq \sum_{n=2}^{\infty} (n-\mu)[n^{\alpha} + (n-1)n^{\alpha}\lambda]^{k} C(\delta,n)|a_{n}| \leq (1-\mu)$$

then

$$\sum_{n=2}^{\infty} |a_n| \le \frac{(1-\mu)\Gamma(\delta+1)}{(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}.$$

Thus we obtain

$$|f(z)| = |z + \sum_{n=2}^{\infty} a_n z^n|$$

$$\leq |z| + \sum_{n=2}^{\infty} |a_n||z|^2$$

$$\leq |z| + \frac{(1-\mu)\Gamma(\delta+1)}{(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}|z|^2$$

The other assertion can be proved as follows

$$|f(z)| \ge |z - \sum_{n=2}^{\infty} a_n z^n|$$

$$\ge |z| - \sum_{n=2}^{\infty} |a_n||z|^2$$

$$\ge |z| - \frac{(1-\mu)\Gamma(\delta+1)}{(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k} |z|^2.$$

This completes the proof.

In the same way we can get the following results.

Theorem 2.10. Let the hypotheses of Theorem 2.2 be satisfied. Then $(n-\mu)[n^{\alpha}+(n-1)n^{\alpha}\lambda]^kC(\delta,n)\geq 1$ and $0\leq \mu<1$ poses

$$|f(z)| \ge |z| - \frac{(1-\mu)\Gamma(\delta+1)}{2(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}|z|^2$$

and

$$|f(z)| \le |z| + \frac{(1-\mu)\Gamma(\delta+1)}{2(2-\mu)\Gamma(\delta+2)[2^{\alpha}(1+\lambda)]^k}|z|^2.$$

3 Fekete-Szegő for the classes $S_{\lambda,\delta}^{k,\alpha}(\mu)$ and $C_{\lambda,\delta}^{k,\alpha}(\mu)$

In this section we determine the sharp upper bound for $|a_2|$ for the classes $S_{\lambda,\delta}^{k,\alpha}(\mu)$ and $C_{\lambda,\delta}^{k,\alpha}(\mu)$. Moreover, we calculate the Fekete-Szegö $|a_3 - \nu a_2^2|$ functional for the classes aforementioned.

Theorem 3.1. Let the hypotheses of Theorem 2.1 be satisfied. Then

$$|a_2| \le \frac{2(1-\mu)}{(2^{\alpha}(1+\lambda))^k} \frac{\Gamma(1+\delta)}{\Gamma(2+\delta)}$$

and for all $\nu \in \mathbb{C}$ the following bound is sharp

$$|a_3 - \nu a_2^2| \leq 2\left[\frac{(1+\delta)}{(3+\delta)} \frac{(1-\mu)}{(3^{\alpha}(1+2\lambda))^k}\right] max\Big\{1, |1+2(1-\mu)[1 - \frac{\nu\Gamma(3+\delta)(3^{\alpha}(1+2\lambda))^k\Gamma(1+\delta)}{\left(\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k\right)^2}]|\Big\}.$$

Proof. Since $f \in S^{k,\alpha}_{\lambda,\delta}(\mu)$ then the condition

$$\Re\left\{\frac{z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]'}{\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)}\right\} > \mu, \quad 0 \le \mu < 1, \ z \in U$$

is equivalent to

$$z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]' = \mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)[(1-\mu)p(z) + \mu], \ z \in U,$$

for some $p \in \mathcal{P}$. Equating coefficients we obtain $a_2 = A(1-\mu)p_1$, $a_3 = B[(1-\mu)^2p_1^2 + (1-\mu)p_2]$ where $A := \frac{\Gamma(1+\delta)}{\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k}$, $B := \frac{\Gamma(1+\delta)}{\Gamma(3+\delta)[3^{\alpha}(1+2\lambda)]^k}$ and further, for $C := D\{\frac{1}{2} + (1-\mu) - \frac{\nu A^2(1-\mu)}{B}\}$ where $D := B(1-\mu)$ and by using Lemma 1.2 we have $|a_3 - \nu a_2^2| \leq H(x) = 2D + (C - \frac{D}{2})x^2$, $x := |p_1| \leq 2$. Consequently, we receive

$$|a_3 - \nu a_2^2| \le \begin{cases} H(0) = 2D, & C \le \frac{D}{2} \\ H(2) = 4C, & C > \frac{D}{2}. \end{cases}$$

Equality is attained for functions given by

$$\frac{z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]'}{\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)} = \frac{1+z^2(1-2\mu)}{1-z^2}$$

and

$$\frac{z[\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)]'}{\mathbf{D}_{\lambda,\delta}^{k,\alpha}f(z)} = \frac{1+z(1-2\mu)}{1-z}$$

respectively.

For $\mu = 0$ we receive the following corollary.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then for $\mu = 0$

$$|a_2| \le \frac{2\Gamma(1+\delta)}{\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k}$$

and

$$|a_3 - \nu a_2^2| \leq 2\left[\frac{(1+\delta)}{(3+\delta)(3^{\alpha}(1+2\lambda))^k}\right] \max\left\{1, |1+2[1-\frac{\nu\Gamma(3+\delta)(3^{\alpha}(1+2\lambda))^k\Gamma(1+\delta)}{\left(\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k\right)^2}]\right|\right\}.$$

In the similar manner we can prove the following result.

Theorem 3.2. Let the hypotheses of Theorem 2.2 be satisfied. Then

$$|a_2| \le \frac{(1-\mu)}{(2^{\alpha}(1+\lambda))^k} \frac{\Gamma(1+\delta)}{\Gamma(2+\delta)}$$

and for all $\nu \in \mathbb{C}$ the following bound is sharp

$$|a_3 - \nu a_2^2| \leq \frac{2}{3} \left[\frac{(1+\delta)}{(3+\delta)} \frac{(1-\mu)}{(3^{\alpha}(1+2\lambda))^k} \right] \max \left\{ 1, |1 + (1-\mu)[2 - \frac{3\nu\Gamma(3+\delta)(3^{\alpha}(1+2\lambda))^k\Gamma(1+\delta)}{2(\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k)^2}] \right] \right\}.$$

For $\mu = 0$ we receive the following corollary.

Corollary 3.2. Let the assumptions of Theorem 3.2 hold. Then for $\mu = 0$

$$|a_2| \le \frac{\Gamma(1+\delta)}{\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k}$$

and

$$|a_3 - \nu a_2^2| \le \frac{2}{3} \left[\frac{(1+\delta)}{(3+\delta)(3^{\alpha}(1+2\lambda))^k} \right] \max \left\{ 1, |1 + \left[2 - \frac{3\nu\Gamma(3+\delta)(3^{\alpha}(1+2\lambda))^k\Gamma(1+\delta)}{2(\Gamma(2+\delta)(2^{\alpha}(1+\lambda))^k)^2} \right] \right] \right\}.$$

Acknowledgement: The authors were supported in part by ScienceFund: 04-01-02-SF0425, MOSTI, Malaysia.

References

- [1] F.M.Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, I.J.M.M.S,(27)(2004), 1429-1436.
- [2] K. Al-Shaqsi, M.Darus, An operator defined by convolution involving polylogarthms functions, Journal of Mathematics and Statistics 4 (1): (2008), 46-50.

- [3] M.Darus, R.Ibrahim, Generalization of differential operator, Journal of Mathematics and Statistics 4 (3): (2008), 138-144.
- [4] P. L. Duren, Univalent functions. Springer-Verlag, New York, 1983.
- [5] S.Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc.49(1975), 109-115.
- [6] G.S.Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer-Verlag, Berlin, (1983), 362-372.
- [7] K. Al-Shaqsi and M. Darus, Differential subordination with generalized derivative operator. (to appear in AJMMS)
- [8] M.Darus and K.Al-Shaqsi, Differential sandwich theorem with generalised derivative operator. International Journal of Computational and Mathematical Sciences, 2(2) (2008): 75-78.

Received: March, 2009