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Abstract 
 
   In this paper, we develop an accurate and efficient Haar wavelet method for 
well-known Cahn-Allen equation. The proposed scheme can be used to a wide class 
of nonlinear equations. The power of this manageable method is confirmed.  
Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, 
convenient, small computation costs and computationally attractive. 
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1. Introduction 
 

Nonlinear phenomena appear in a wide variety of scientific applications such 
as plasma physics, solid state physics, optical fibers, biology, fluid dynamics and 
chemical kinetics. Nonlinear wave phenomena of dispersion, dissipation, diffusion, 
reaction and convection are very essential in nonlinear wave equations. A variety of  
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powerful methods, such as inverse scattering method [1,23], bilinear transformation 
[15], the tanh–sech method [21,24,28], extended tanh method [8,9,25], sine–cosine 
method [3,26], homogeneous balance method [10] and Exp-function method [4,14] 
were used to develop nonlinear dispersive and dissipative problems. Tascan and 
Bekir [22] have established the travelling wave solutions of the Cahn-Allen equation 
by using first integral method. Recently, Haar wavelets have been applied extensively 
for signal processing in communications and physics research, and have proved to be 
a wonderful mathematical tool. In solving ordinary differential equations by using 
Haar wavelet related method, Chen and Hsiao  [7] had derived an operational matrix 
of integration based on Haar wavelet. Lepik [18,19,20] had solved higher order as 
well as nonlinear ODEs and some nonlinear evolution equations by Haar wavelet 
method. Hariharan et al. [13] have introduced a Haar wavelet method for solving 
Fisher’s equation. 

 
We introduce a Haar wavelet method for solving the Cahn-Allen equation with the 
initial and boundary conditions, which will exhibit several advantageous features: 

i) Very high accuracy fast transformation and possibility of 
implementation of fast algorithms compared with other 
known methods. 

ii) The simplicity and small computation costs, resulting from 
the sparsity of the transform matrices and the small number 
of significant wavelet coefficients. 

The method is also very convenient for solving the boundary value problems, 
since the boundary conditions are taken care of automatically. 

 
Beginning from 1980’s, wavelets have been used for solution of partial differential 
equations (PDE). The good features of this approach are possibility to detect 
singularities, irregular structure and transient phenomena exhibited by the analyzed 
equations. Most of the wavelet algorithms can handle exactly periodic boundary 
conditions. The wavelet algorithms for solving PDE are based on the Galerkin 
techniques or on the collocation method.  
 
Evidently all attempts to simplify the wavelet solutions for PDE are welcome. One 
possibility for this is to make use of the Haar wavelet family. Haar wavelets (which 
are Daubechies of order 1) consists of piecewise constant functions and are therefore 
the simplest orthonormal wavelets with a compact support. A drawback of the Haar 
wavelets is their discontinuity. Since the derivatives do not exist in the breaking 
points it is not possible to apply the Haar wavelets for solving PDE directly. There 
are two possibilities for getting out of this situation. One way is to regularize the Haar 
wavelets with interpolating splines (e.g. B-splines or Deslaurier-Dabuc interpolating 
wavelets). This approach has been applied by Cattani [6], but the regularization 
process considerably complicates the solution and the main advantage of the Haar 
wavelets-the simplicity gets to some extent lost. The other way is to make use of the  
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integral method, which was proposed by Chen and Hsiao [7]. There are discussions 
by other researchers [5,12,16,17].  

 The paper is organized the following way. For completeness sake the Haar 
wavelet method is presented in Section 2. Function approximation is presented in 
Section 3. The method of solution of the Cahn-Allen equation is proposed in Section 
4. Concluding remarks are given in Section 5.   
  
 
2.  Haar wavelets 
 
 Haar functions have been used from 1910 when they were introduced by the 
Hungarian mathematician Alfred Haar [11]. Haar wavelets are the simplest wavelets 
among various types of wavelets. They are step functions (piecewise constant 
functions) on the real line that can take only three values. Haar wavelets, like the 
well-known Walsh functions (Rao 1983), form an orthogonal and complete set of 
functions representing discretized functions and piecewise constant functions. A 
function is said to be piecewise constant if it is locally constant in connected regions. 
 
The Haar transform is one of the earliest examples of what is known now as a 
compact, dyadic, orthonormal wavelet transform. The Haar function, being an odd 
rectangular pulse pair, is the simplest and oldest orthonormal wavelet with compact 
support. In the mean time, several definitions of the Haar functions and various 
generalizations have been published and used. They were intended to adopt this 
concept to some practical applications as well as to extend its in applications to 
different classes of signals. Haar functions appear very attractive in many 
applications as for example, image coding, edge extraction, and binary logic design. 
 
After discretizing the differential equations in a conventional way like the finite 
difference approximation, wavelets can be used for algebraic manipulations in the 
system of equations obtained which lead to better condition number of the resulting 
system.  
 
The previous work in system analysis via Haar wavelets was led by Chen and Hsiao 
[7], who first derived a Haar operational matrix for the integrals of the Haar function 
vector and put the application for the Haar analysis into the dynamical systems. Then, 
the pioneer work in state analysis of linear time delayed systems via Haar wavelets 
was laid down by Hsiao, who first proposed a Haar product matrix and a coefficient 
matrix. Hsiao and Wang [16] proposed a key idea to transform the time-varying 
function and its product with states into a Haar product matrix.  

The orthogonal set of Haar function ( )ih t is shown in Fig.1. This is a group of 
square waves with magnitudes of 1±  in certain intervals and zeros elsewhere. 
 For applications of the Haar transform in logic design, efficient ways of 
calculating the Haar spectrum from reduced forms of Boolean functions are needed. 
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The Haar wavelet family for [0,1]t∈  is defined as follows.   
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Integer 2 ( 0,1,2... )jm j J= =  indicates the level of the wavelet;  

0,1, 2,..... 1k m= − is the translation parameter. Maximal level of resolution is J. The 
index i  is calculated according the formula 1i m k= + + ; in the case of minimal 
values. 1, 0m k= = we have 2i = , the maximal value of i  is 12 2Ji M += = . It is 
assumed that the value 1i =  corresponds to the scaling function for 
which [ ]1 1 0,1h in≡ . Let us define the collocation points 

( 0.5) / 2 , ( 1, 2....2 )lt l M l M= − =  and discretise the Haar function ( );ih t  in this way 
we get the coefficient matrix ( , ) ( ( ))i lH i l h t= , which has the dimension 2 2M M× . 
 
 The operational matrix of integration P, which is a 2M square matrix, is 
defined by the equation 

       
0

( ) ( )
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il iPH h t dt= ∫               (2) 

 
0 0

( ) ( )
lt t

il iQH dt h t dt= ∫ ∫                          (3)  

The elements of the matrices H, P and Q can be evaluated according to (1), (2) and 
(3). 
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         8

32 16 8 8 4 4 4 4
16 0 8 8 4 4 4 4
4 4 0 0 4 4 0 0
4 4 0 0 4 4 0 01
1 1 2 0 0 0 0 064
1 1 2 0 0 0 0 0
1 1 0 2 0 0 0 0
1 1 0 2 0 0 0 0
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Chen and Hsiao [7] showed that the following matrix equation for calculating the 
matrix P of order m  holds 
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  where O  is a null matrix of order   
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It should be noted that calculations for ( )mP  and ( )mH must be carried out only once; 
after that they will be applicable for solving whatever differential equations. Since H  
and 1H − contain many zeros, this phenomenon makes the Haar transform must faster 
than the Fourier transform, and it is even faster than the Walsh transform. This is one 
of the reason for rapid convergence of the Haar wavelet series. 
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 Fig. 1. First eight Haar functions 
 
 
 

3. Function approximation 
  
             Any function 2( ) [0,1)y x L∈  can be decomposed as 

  
0

( ) ( )n n
n

y x c h x
∞

=

=∑                       (5) 

where the coefficients nc are determined by  

  
1

0

2 ( ) ( )j
n nc y x h x dx= ∫                       (6) 

Where 2 , 0, 0 2 .j jn k j k= + ≥ ≤ <  Specially 
1

0
0

( ) .c y x dx= ∫  
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 The series expansion of ( )y x contains an infinite terms. If ( )y x is piecewise 
constant by itself, or may be approximated as piecewise constant during each 
subinterval, then ( )y x  will be terminated at finite terms, that is  

  ( )

1

( )
0

( ) ( ) ( )
m

T
n n m m

n
y x c h x c h x

−

=

= =∑                     (7) 

Where the coefficients ( )
T
mc and the Haar function vector ( ) ( )mh x are defined as  

   ( ) 0 1 1[ , ,...., ]T
m mc c c c −=   

 and  ( ) 0 1 1( ) [ ( ), ( ),....., ( )]T
mmh x h x h x h x−=   where ‘T’ means transpose and 

2 jm = . 
 
 
4.  The method of solution of the Cahn-Allen equation 
  
    We study the nonlinear parabolic PDE given by 
 .n

t xxu u u u= − +             (8) 
with the initial condition ( ,0) ( ), 0 1u x f x x= ≤ ≤  

      and the boundary conditions 0 1(0, ) ( ), (1, ) ( ), 0u t g t u t g t t T= = < ≤  
       For 3n =  Eq. (8) becomes Cahn-Allen equation [2]. It arises in many 
scientific applications such as mathematical biology, quantum mechanics and plasma 
physics. It is well known that wave phenomena of plasma media and fluid dynamics 
are modeled by kink shaped and tanh solution or bell shaped sech solutions [27]. 

Let us divide the interval (0,1] into N equal parts of length (0,1] /t NΔ =  and 
denote ( 1) , 1, 2,.....st s t s N= − Δ = . We assume that ( , )u x t′′& can be expanded interms 
of Haar wavelets as formula 

 
1

( ) ( )
0

( , ) ( ) ( ) ( )
m

T
s n m m

n

u x t c n h x c h x
−

=

′′ = =∑&           (9) 

where .  and  '  means differentiation with respect to t  and x  respectively, the row 
vector ( )

T
mc  is constant in the subinterval 1( , ]s st t t +∈  

 Integrating formula (9) with respect to t  from st  to t and twice with respect to 
x  from 0 to x , we obtain 
  
  ( )( )( , ) ( ) ( ) ( , )T

s m smu x t t t c h x u x t′′ ′′= − +                     (10) 

 ( ) ( )( )( , ) ( ) ( ) ( , ) (0, )

[ (0, ) (0, )] (0, )

T
s m s sm m

s

u x t t t c Q h x u x t u t

x u t u t u t

= − + −

′ ′+ − +
         (11) 

 

( ) ( ) ( )( , ) ( ) (0, ) (0, )T
m m mu x t c Q h x xu t u t′= + +& & &                      (12) 
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 By the boundary conditions, we obtain 

   
0 1

0 1

(0, ) ( ), (1, ) ( )

(0, ) ( ), (1, ) ( )
s s s su t g t u t g t

u t g t u t g t

= =

′ ′= =& &
 

Putting 1x = in formulae (11) and (12), we have 

( ) ( )( ) 1 0 1 0(0, ) (0, ) ( ) ( ) ( ) ( ) ( ) ( ) (13)T
s s m s sm mu t u t t t c Q h x g t g t g t g t′ ′− = − − + − − +

           ( )1 ( ) ( ) 0(0, ) ( ) ( ) ( )T
m mmu t g t c Q h x g t′′ ′= − −&           (14) 

Substituting formulae (13) and (14) into formulae (10)-(12), and discretizising the 
results by assuming 1,l sx x t t +→ →  we obtain 
 ( )1 1 ( ) ( )( , ) ( ) ( , )T

l s s s m m l l su x t t t c h x u x t+ +′′ ′′= − +                       (15) 

( )1 1 ( ) ( ) 0 0 1

1 ( ) ( ) 1 0 1 1 0

( , ) ( ) ( ) ( , ) ( ) ( )

[ ( ) ( ) ( ) ( ) ( )] (16)

T
l s s s m m l l s s sm

T
l s s m m l s s s s

u x t t t c Q h x u x t g t g t

x t t c P f g t g t g t g t
+ + +

+ + +

= − + − +

+ − − + − − +

( )1 ( ) ( ) 0 1 ( ) ( ) 1 1 0 1( , ) ( ) ( ) [ ( ) ( )] (17)T T
l s m m s l m m s smu x t c Q h x g t x c P f g t g t+ + + +′ ′ ′= + + − + −&

                         
Where the vector f  is defined as 
   

( 1)

[1, 0,......,0 ]T

m elements

f
−

= 14243  

In the following the scheme 
3

1 1 1 1( , ) ( , ) ( , ) ( , )l s l s l s l su x t u x t u x t u x t+ + + +′′= − +&                         (18) 
which leads us from the time layer st  to 1st +  is used. 
 Substituting equations (15)-(17) into the equation (18), we gain 

 ( )( ) ( ) ( ) ( ) 1 1 0 1 0 1

3
1 1 1

( ) [ ( ) ( )] ( )

( , ) ( , ) ( , )

T T
m m l l m m s s sm

l s l s l s

c Q h x x c P f g t g t g t

u x t u x t u x t
+ + +

+ + +

′ ′ ′+ − + − +

′′= − +
           (19) 

 
From formula (19) the wavelet coefficients ( )

T
mc can be successively calculated.  

Computer simulation was carried out in the cases 32m =  and 64m = , the computed 
results were compared with the exact solution, more accurate results can be obtained 
by using a larger m .  
 
The exact solution of Eq. (8) in a closed form is given by 

 ( )
0

2 3 2
2 2

1,

1
x t c

u x t

e
⎛ ⎞

− + +⎜ ⎟⎜ ⎟
⎝ ⎠

=

+

,   where 0c is integration constant. 
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Fig.2 Comparison between exact and Haar solution of the Cahn-Allen 

equation x = 10 and k = 12.5 
 

 
Our results can be compared to Wazwaz’s results [27]  
  
All the numerical experiments presented in this section were computed in double 
precision with some MATLAB codes on a personal computer System Vostro 1400 
Processor x86 Family 6 Model 15 Stepping 13 Genuine Intel ~1596 Mhz. 
 
 
5. Conclusion 
 

The theoretical elegance of the Haar wavelet approach can be appreciated 
from the simple mathematical relations and their compact derivations and proofs. It 
has been well demonstrated that in applying the nice properties of Haar wavelets, the 
differential equations can be solved conveniently and accurately by using Haar 
wavelet method systematically. In comparison with existing numerical schemes used 
to solve the nonlinear parabolic equations, the scheme in this paper is an 
improvement over other methods in terms of accuracy. It is worth mentioning that  
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Haar solution provides excellent results even for small values of m ( 16m = ). For 
larger values of m (i.e., 32m = , 64m = , 128m =  and 256m = ), we can obtain the 
results closer to the real values. The main goal of this work is to apply the Haar 
wavelet method to the well-known Cahn-Allen equation that appears in many 
scientific applications. The work also confirmed the power of the Haar wavelet 
method in handling nonlinear equations in general. This method can be easily 
extended to find the solution of all other non-linear parabolic equations. Another 
benefit of our method is that the scheme presented here, with some modifications, 
seems to be easily extended to solve model equations including more mechanical, 
physical or biophysical effects, such as nonlinear convection, reaction, linear 
diffusion and dispersion.  
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