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Abstract

Let X1, X2 be independent random variables from gamma popu-
lations Π1,Π2 with common arbitrary known shape parameter α and
unknown scale parameters θ1, θ2 respectively. Suppose X(1), X(2) be the
order statistics of X1, X2 and the population corresponding to largest
X(2) observation is selected. In this paper we consider the problem of
minimax estimation of the scale parameter θM of the selected popula-
tion under the scale-invariant square-error loss function. We show that
the estimator X(2)

α+1 which is the analogue of the best scale invariant es-
timator of θ2 under the scale-invariant square-error loss, is a minimax
estimator of θM . Also, the result is extended to a subclass of the scale
parameter exponential family and the family of transformed chi- square
distributions.

Mathematical Subject Classification: 62C20; 62F07; 62F15

Keywords: Exponential Family; Family of transformed chi-square dis-
tributions; Minimax estimator; Scale-invariant square-error loss function; Se-
lected population

1 Introduction

Estimating the parameter(s) of the selected population (using a fixed selection
rule) is an important estimation problem, having wide application. The man-
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ufacture not only wants to select the most productive machine from available
k(≥ 2) machines, but he also wants an estimate of the mean output produced
by selected machine. The problem of estimation after selection has received
considerable attention by many researches in the past two decades. For a
summary of results, as well as a list of references, see Misra et al.(2006 a,b).

In estimation of scale parameter of the selected gamma population, let
Π1, Π2 be two independent gamma population with associated probability den-
sity functions

f(x|θi, α) =
1

θα
i Γ(α)

xα−1e−x/θi , α > 0, θi > 0, i = 1, 2, (1)

respectively where θ1, θ2 are unknown scale parameters and α is the common
known shape parameter. We observe Xi from Πi, i = 1, 2, and let X(1) ≤ X(2)

denote the order statistics of X1, X2. For selecting the population correspond-
ing to the larger (or smaller) θi’s, we use natural selection rule and select the
population corresponding to the X(2) (or X(1)). Therefore the scale parameter
associated with the larger and smaller selected population are given by

θM =

{
θ1 X1 ≥ X2

θ2 X1 < X2
(2)

and

θJ =

{
θ1 X1 < X2

θ2 X1 ≥ X2
(3)

respectively. Let θ = (θ1, θ2) and h(θ) be a real valued function of h(θ).
For positive integer value shape parameter α, Vellaisamy and Sharma (1988)
derived the UMVUE of θM and obtained estimators which are admissible (or
inadmissible) within a subclass of equivariant estimators under the squared-
error loss function

L(h(θ), δ) = (δ − h(θ))2 (4)

and scale-invariant squared-error loss function

L(h(θ), δ) = (
δ

h(θ)
− 1)2, (5)

where h(θ) = θM . For k ≥ 2 independent gamma populations and arbitrary
shape parameter α > 0, Vellaisamy and Sharma (1989) derived the UMVUE
of θM and showed the inadmissibility of natural estimator, Vellaisamy (1992)
obtained estimators which dominates natural estimators under the loss (4) with
h(θ) = θM or θJ and Vellaisamy (1996) showed that the UMVUE of θM (or θJ)
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is inadmissible under the loss (4) and obtained a class of dominating estimators.
Misra et al. (2006 a,b) extended the admissibility and inadmissibility results of
Vellaisamy and Sharma (1988) to the case of known and arbitrary α > 0, but
they did not extended the minimaxity results to this case. Also Nematollahi
and Motamed-Shariati (2009) derived the Uniformly Minimum Risk Unbiased
(UMRU) estimators of θM and θJ for any k ≥ 2 and α > 0, and for k = 2
obtained estimators which are admissible (or inadmissible) within a subclass
of equivariant estimators under the entropy loss function.

In this paper we consider minimax estimation of the selected scale param-
eter of two gamma populations, θM given by (2), under the scale-invariant
squared-error loss function (5) with h(θ) = θM , where the shape parameter
α > 0 is not necessary be an integer. To this end, in section 2 we show that
X(2)/(α + 1), which is the analogue of the Minimum Risk Equivariant (MRE)
estimator of θ2, is minimax for θM under the loss (5). In section 3 the re-
sult is extended to a subclass of exponential family and also to the family of
transformed chi-squer distributions introduced by Rahman and Gupta (1993).
Finally a discussion is given in section 4.

2 Minimax Estimation

Let X1, X2 be two independent random variables such that Xi, i = 1, 2 has
a probability density function (p.d.f) as in (1) and X(1) ≤ X(2) are the order
statistics of X1, X2. We want to find minimax estimator of θM give by (2)
under the loss (5).

Following Sackrowitz and Samuel-Cahn (1987), we first find the minimax
estimator in component problem for θi, i = 1, 2. So, consider the inverted-
gamma prior for θi, i = 1, 2, with p.d.f.

πr
i (θi) =

ξr

Γ(r)θr+1
i

e−ξ/θi, ξ > 0, r > 0, i = 1, 2. (6)

It is easy to see that the Bayes estimator of θi with respect to prior (6) and
under the loss (5) is

δπr
i
(Xi) =

E( 1
θi
|X)

E( 1
θ2
i
|X)

=
ξ + Xi

α + r + 1
, i = 1, 2. (7)

Also the posterior risk of δπr
i
(Xi) is

rπi
(δπr

i
, xi) = E{(δπr

i
(xi)

θi
− 1)2|xi}

=
E2( 1

θi
|xi)

E( 1
θ2
i
|xi)

− 2
E2( 1

θi
|xi)

E( 1
θ2
i
|xi)

+ 1
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= 1 − E2( 1
θi
|xi)

E( 1
θ2
i
|xi)

=
1

α + r + 1
. (8)

Since the posterior risk does not depend on xi, therefore the Bayes risk of
δπr

i
(Xi) is

r∗(πr
i ) =

1

α + r + 1
. (9)

Now consider the problem of estimation θM under the loss (5). Take the
i.i.d. priors (6) for θ1 and θ2. From (7) and using Lemma 3.1 of Sackrowitz
and Samuel-Cahn(1987) , the Bayes estimator of θM is

δI
πr(X1, X2) =

X(2) + ξ

α + r + 1
, (10)

where πr = (πr
1, π

r
2). Since the posterior risk (8) of component problem does

not depend on xi, therefore by Theorem 3.1 of Sackrowitz and Samuel-Cahn
(1987), the Bayes risk of δπrΓ(X1, X2) is equal to (9), i.e.,

r∗I(π
r) = r∗(πr

i ) =
1

α + r + 1
, i = 1, 2,

and hence

lim
r→0

r∗I(π
r) =

1

α + 1
. (11)

Now from Theorem 3.2 of Sackrowitz and Samuel-Cahn(1987), the estimator
δM(X1, X2) is minimax for θM if

R(θM , δM) < lim
r→0

r∗I(π
r) =

1

α + 1
for all θ, (12)

where R(θM , δM) is the risk function of δM under the loss (5). In the following
theorem we find the minimax estimator of θM

Theorem 2.1 let X1, X2 be two independent random variables such that

Xi, i = 1, 2 has p.d.f. (1). If X(2) = max(X1, X2), then δM (X1, X2) =
X(2)

α+1
is

minimax estimator of θM under the loss function (5).

For a proof of Theorem 2.1 we need the following lemma.
Lemma 2.1 Under the conditions of Theorem 2.1, let λ = θ2

θ1
, and for

t > 0

Gm,n(t) =
1

B(m, n)

∫ t

0
xm−1(1 − x)n−1
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and

Hm,n(t) = Gm,n(t) + Gm,n(1 − t),

then

(i) E

⎡
⎣(X(2)

θM

)k
⎤
⎦ =

Γ(α + k)

Γ(α)
Hα,α+k

(
1

1 + λ

)
,

(ii) Hα,α+1(t) = 1 +
1

αB(α, α + 1)
tα(1 − t)α,

(iii) Hα,α+2(t) = 1 +
1

αB(α, α + 2)
tα(1 − t)α,

where B(., .) is the Beta function.

Proof (i)

E

⎡
⎣(X(2)

θM

)k
⎤
⎦ =

∫ ∞

0

∫ ∞

x2

(
x1

θ1

)k xα−1
1 xα−1

2

θα
1 θα

2 Γ2(α)
e
−x1

θ1 e
−x2

θ2 dx1dx2

+
∫ ∞

0

∫ ∞

x1

(
x2

θ2

)k xα−1
1 xα−1

2

θα
1 θα

2 Γ2(α)
e
−x1

θ1 e
−x2

θ2 dx2dx1

= I1 + I2

Following Nematollahi and Motamed-Shariati (2009), using the transformation

x2 = rθ2 in the outer integral and x1 = rθ1(1−x)
x

in the inner integral of I1, it
reduces to

I1 =
Γ(2α + k)

Γ2(α)

∫ θ1
θ1+θ2

0
xα−1(1 − x)α+k−1

[∫ ∞

0

r2α+k−1e−
r
x

x2α+kΓ(2α + k)
dr

]
dx

=
Γ(α)Γ(α + k)

Γ2(α)
.

Γ(2α + k)

Γ(α)Γ(α + k)

[∫ 1
1+λ

0
xα−1(1 − x)α+k−1dx

]

=
Γ(α + k)

Γ(α)
Gα,α+k

(
1

1 + λ

)
.

Similarly

I2 =
Γ(α + k)

Γ(α)
Gα,α+k

(
λ

1 + λ

)
,

which completes the proof of part (i).

(ii),(iii) See the proof of Lemma 3.1.(iii) of Nematollahi and Motamed-Shariati
(2009).
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Proof of Theorem 2.1 To construct the minimaxity of δM , we must show
that R(θM , δM) satisfies (12). But from Lemma 2.1 we have

R(θM , δM) = E

⎡
⎣( X(2)

(α + 1)θM
− 1

)2
⎤
⎦

=
1

(α + 1)2
E

⎡
⎣(X(2)

θM

)2
⎤
⎦− 2

α + 1
E

(
X(2)

θM

)
+ 1

=
1

(α + 1)2

Γ(α + 2)

Γ(α)
Hα,α+2

(
1

1 + λ

)

− 2

α + 1

Γ(α + 1)

Γ(α)
Hα,α+1

(
1

1 + λ

)
+ 1

=
α

α + 1
Hα,α+2

(
1

1 + λ

)
− 2α

α + 1
Hα,α+1

(
1

1 + λ

)
+ 1

=
α

α + 1

{
1 +

1

αB(α, α + 2)

λα

(1 + λ)2α

}

− 2α

α + 1

{
1 +

1

αB(α, α + 1)

λα

(1 + λ)2α

}
+ 1

=
1

α + 1

{
1 +

λα

Γ(α)(1 + λ)2α

[
Γ(2α + 2)

Γ(α + 2)
− 2Γ(2α + 1)

Γ(α + 1)

]}

=
1

α + 1

{
1 − 2

(α + 1)B(α, α)

λα

(1 + λ)2α

}
.

So,

R(θM , δM) <
1

α + 1
,

which completes the proof.

Remark 2.1 Vellaisamy and Sharma (1988) showed that δM (X1, X2) =
X(2)

α+1
is minimax for θM for integer value α > 0. Their proof is only valid for

integer value α. But the above proof is based on arbitrary α > 0.

Remark 2.2 If a random sample Xij, j = 1, · · · , n derived from popu-
lation Πi, i = 1, 2 and Πi has associated p.d.f. of the from (1) and Xi =

(Xi1, · · · , Xin), i = 1, 2, then Ti = Ti(Xi) =
n∑

j=1
Xij , i = 1, 2 is complete suffi-

cient statistics for θi and Ti has a gamma distribution with parameters (nα, θi).
So, the result of Theorem 2.1 holds for this case with replacing α by nα and
Xi by Ti, i = 1, 2.
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3 Extension to Some Subclass of Exponential

Family

Following Nematollahi and Motamed-Shariati (2009), let Xi1, Xi2, · · · , Xin be
a random sample of size n from the i-th population Πi, i = 1, 2, with the joint
scale probability density function

f(xi; τi) =
1

τn
i

f
(
xi

τi

)
, i = 1, 2,

where xi = (xi1, · · · , xin). In some cases the above model reduces to

f(xi; θi) = c(xi, n)θ−ν
i e

−Ti(xi)

θi , i = 1, 2, (13)

where c(xi, n) is a function of xi and n, θi = τ r
i for some r > 0, ν is a function

of n and Ti(Xi) is a complete sufficient statistic for θi with Gamma(ν, θi)-
distribution. Examples of distributions of the from (13) are

1. Exponential(βi) with θi = βi, ν = n, Ti(Xi) =
n∑

j=1

Xij, c(xi, n) = 1,

2. Gamma(α, βi) with known α and θi = βi, ν = nα, Ti(Xi) =
n∑

j=1

Xij,

c(xi, n) =

(
n∏

i=1
xα−1

ij

)
[Γ(α)]n

,

3. Inverse Gaussian(∞, λi) with θi =
1

λi
, ν =

n

2
, Ti(Xi) =

1

2

n∑
j=1

1

Xij
,

c(xi, n) =
(

n∏
i=1

2x3
ij

)− 1
2

,

4. Normal(0, σ2
i ) with θi = σ2

i , ν =
n

2
, Ti(Xi) =

1

2

n∑
j=1

X2
ij, c(xi, n) =

(2π)−
n
2 ,

5. Weibull(ηi, β) with known β and θi = ηβ
i , ν = n, Ti(Xi) =

n∑
j=1

Xβ
ij,

c(xi, n) = βn
n∏

j=1

xβ−1
ij ,

6. Rayleigh(βi) with θi = β2
i , ν = n, Ti(Xi) =

1

2

n∑
j=1

X2
ij , c(xi, n) =

n∏
j=1

xij .
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Let Ti = Ti(Xi), i = 1, 2, and T(1) ≤ T(2) denote the order statistics of T1, T2.
To select the population with the larger (or smaller) θi’s, we naturally select
the population corresponding to the T(2) (or T(1)). Therefore the parameter
associated with the larger or smaller selected population are given by

θM =

{
θ1 T1 ≥ T2

θ2 T1 < T2
(14)

and

θJ =

{
θ1 T1 < T2

θ2 T1 ≥ T2
(15)

respectively. Since Ti, i = 1, 2 has a Gamma(ν, θi) distribution, therefore we
can use Remark 2.2 and extend the result of section 2 to the subclass of
exponential family (13) by replacing α by ν and Xi by Ti. Hence a minimax

estimator of θM is give by
T(2)

ν + 1
. For example in weibull(ηi, β) distribution, a

minimax estimator of

ηβ
M =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηβ
1

n∑
j=1

Xβ
1j ≥

n∑
j=1

Xβ
2j

ηβ
2

n∑
j=1

Xβ
1j <

n∑
j=1

Xβ
2j

is

max

⎛
⎝ n∑

j=1

Xβ
1j ,

n∑
j=1

Xβ
2j

⎞
⎠

n + 1
.

The result of section 2 can be extended to some other families of distri-
butions which do not necessarily belong to a scale family, such as Pareto or
Beta distributions. A family of distributions that includes these distributions
as special cases, is the family of transformed chi-square distributions which is
originally introduced by Rahman and Gupta (1993). They considered the one
parameter exponential family

f(xi, ηi) = eai(xi)b(ηi)+c(ηi)+h(xi), i = 1, 2 (16)

and showed that −2ai(Xi)b(ηi) has a Gamma(m
2
, 2)- distribution if and only

if

2c′(ηi)b(ηi)

b′(ηi)
= m. (17)

When m is an integer, −2ai(Xi)b(ηi) follows a chi-square distribution with m
degrees of freedom. They called the one parameter exponential family (16)
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which satisfies (17), the family of transformed chi-square distributions. For
example Beta, Pareto, Exponential, Lognormal and some other distributions
belong to this family of distributions (see Table 1 of Rahman and Gupta,
1993).

Now it is easy to show that if condition (17) holds then the one parame-
ter exponential family (16) is in the form of the scale parameter exponential
family (13) with ν = m

2
, Ti(Xi) = ai(Xi) and θi = − 1

b(ηi)
. Hence with these

substitutions, we can extend the result of section 2 to the family of transformed
chi-square distributions.

4 Discussion

In previous sections we find a minimax estimator of the scale parameter θM

of the selected gamma population under the scale-invariant squared-error loss
function (5) when the common shape parameter α is arbitrary and known.

Another parameter that is interested in selection problems, is θJ which is
given in (3) and (15). Unfortunately, we can not derive a minimax estimator
for this parameter under the scale-invariant squared-error loss function (5).
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