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Abstract

In this paper stationary irreducible aperiodic finite state Markov
chains are considered. We investigate time reversibility of these chains
and a statistical tool for characterizing their time reversibility is pro-
posed. It is shown that this test has asymptotically the Chi- squared
distribution under null hypothesis. Our simulations also confirm the
proposed test. Two empirical examples are given, one of them on gaso-
line price markups, involves observed states, and the other on price level
series for different countries.
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1 Introduction

A stationary process is said to be time reversible if its finite dimensional distri-
butions are all invariant to the reversal of time indices. Indeed time reversibility
implies certain symmetries that are broken in time irreversible processes. If
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we characterize the nature of the observed time reversibility, we will be guided
in how to model or use the processes.

Time reversibility is an important concept especially in economics and
physics. It has been a topic of great interest ever since the work by Burns
and Mitchell (1946). Variety of researches in economics found evidence of
time irreversibility in observed time series. For example in the case that infla-
tion is positive, the real prices of goods rise suddenly and fall slowly, then it
seems that the fitted model to the prices will be time irreversible.

Ramsey and Rothman (1996) introduced a statistical tool for identifying
time irreversible stochastic processes that is named the symmetric-bicovariance
function. In the Ramsey and Rothman test, we have to calculate a complicated
and asymptotic estimator for variance and the prerequisite of the test is that
the data must posses finite sixth moment, but such a condition may be too
restrictive for financial data.

Hinich and Rothman (1998) and Robinson (1991) have introduced different
tests for time reversibility with special circumstances. Chen, Chou and Kuan
(2000) proposed a class of tests for time reversibility that did not have any
moment restrictions. Their proposed test is based on characteristic functions,
depending on a weighting function. After that Chen and Kuan (2001), Fong
(2003) and Noel (2003) are the authors who try to show the time series which
they considered are time irreversible.

Cheng (1999) provided a basic theorem which gave a necessary and suffi-
cient condition for time reversibility of stationary linear processes and did not
require existence of moments of order higher than two.

Markov chains with some kind of symmetric transition probability matrices,
as used by Neftci (1984) and Rothman (1990) are examples of time irreversible
processes. Markov chains which are time reversible have different applications
with respect to the time irreversible Markov chains and construction of them
are in different ways. For example in metropolis algorithm, the Markov chain
constructed is reversible and Gibbs samples with a systematic scan, use a
Markov chain that is not time reversible. So, identifying the time reversibility
of a Markov chain plays an important role.

It is clear that using the test of time reversibility in general is not the best
way for Markov chains and it is better to find a test for Markov chains.

McCausland (2007) proposed a decomposition of the matrix of joint prob-
ability transition [P (Xt−1 = i, Xt = j)]i,j of a finite state Markov chain for
characterizing the time irreversibility, but testing time reversibility of time
series with Markov property has been left.

In this paper a statistical tool for characterizing time reversibility in sta-
tionary irreducible Markov chains or in time series with Markov property is
introduced. This paper proceeds as follows. In Section 2 we introduce some
notations and give some preliminary results. In Section 3 the test statistic
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of time reversibility is introduced and its asymptotic distribution is derived.
Simulation results are reported in Section 4 and Section 5 presents result from
two empirical applications. The first, on gasoline price markups, involves di-
rectly observed states and the second is on price level time series in different
countries. In Section 6 the power of the proposed test in a special case will be
approximated.

2 Preliminary

Let {Xt; t = 0, 1, . . .} be an irreducible aperiodic stationary finite state Markov
chain with a transition probability matrix P , and the stationary distribution π.
Denote by S = {1, 2, . . . , m} , the state space. Unless otherwise mentioned,
to avoid repetition, the terminology of Markov chain will mean irreducible
aperiodic discrete time stationary finite state Markov chain throughout the
rest of this paper.

Definition 2.1. A discrete time stationary processes {Xt; t = 0, 1, . . .} is
time reversible if for every positive integer n,

(X0, X2, . . . , Xn)
d
= (Xn, Xn−1, . . . , X0) .

(The notation
d
= means identical distribution.)

Remark 2.1. It is easy to show that a Markov chain is time reversible if

and only if for every integers n and m, (Xn, Xm)
d
= (Xm, Xn) or equivalently

the matrix P and the stationary distribution π satisfy the detailed balance
equations:

π (i)Pij = π (j)Pji ∀ i, j = 1, 2, . . . , m

In this paper we try to provide a suitable method for testing H0 : The
Markov chain is time reversible versus H1 : The Markov chain is time irre-
versible. To propose a test statistic, first we will investigate properties of the
time reversible Markov chains.

For a realization x0, x1, . . . , xn−1, xn of the Markov chain, let nij be the

number of observed direct transitions from i to j and ni. =
m∑

j=1

nij , from which

it follows that
m∑

i=1

m∑
j=1

nij = n. The m×m matrix [nij]
m
i,j=1 is called the transition

count of the chain.
Bartlett (1950) has shown that the maximum likelihood estimator of Pij

in a simple Markov chain is P̂ij =
nij

ni·
and π̂(i) = ni·

n
. These estimators are
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consistent, thus for consistency of estimation we will have

π̂(i)P̂ij
Pr→ π (i)Pij .

(
Pr→ denotes convergence in probability.) Since π̂(i)P̂ij =

nij

n
, it seems rea-

sonable that if the Markov chain is time reversible, nij − nji would be small
enough. Using this idea we derive a new test statistic of time reversibility.

3 Test Statistic

Let {Xt; t = 0, 1, . . .} be a Markov chain on state space S. For i, j ∈ S, define

Yt (i, j) = I t
ij − I t

ji t = 1, 2, ... (3.1)

where I t
ij = I{(i,j)}(Xt−1, Xt), such that I{(i,j)} is an indicator function taking

the value one at (i, j) and the value zero elsewhere. As Yt(i, j) is a function of
Xt and Xt−1 and {Xt; t = 0, 1, . . .} is a stationary Markov chain, {Yt (i, j) ; t =
1, 2, ...} is a stationary second order Markov chain with state space {−1, 0, 1}
and E [Yt (i, j)] = π (i) Pij − π (j)Pji.

For a realization of length n+1 from {Xt; t = 0, 1, . . .},
n∑

t=1

yt (i, j) = nij −
nji, where y1 (i, j) , y2 (i, j) , . . . , yn (i, j) is the corresponding realization of
{Yt (i, j) ; t = 1, 2, ...}. Hence under time reversibility, we expect a special

behavior from
n∑

t=1

yt (i, j) and so our main result is finding the asymptotic

distribution of the test statistic which will be constructed based on Sn (i, j) ,
where Sn (i, j) = Y1 (i, j) + · · · + Yn (i, j).

It is easy to show that

V ar (Sn (i, j)) = n
[
π (i) Pij + π (j)Pji − (π (i) Pij − π (j) Pji)

2] (3.2)

− 2

n−1∑
k=1

(n − k) [π (i) PijP
(k−1)
ji Pij + π (j) PjiP

(k−1)
ij Pji

− π (i) PijP
(k−1)
jj Pji − π (j)PjiP

(k−1)
ii Pij − (π (i) Pij − π (j)Pji)

2].

Where P
(k)
ij denotes the probability that the chain goes from state i to state j

in k transitions.

Definition 3.1 Let {Xt; t = 0, 1, . . .} be a stochastic process and αn be a
number such that

|P (A ∩ B) − P (A) P (B)| ≤ αn,
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for A ∈ σ (X0, . . . , Xk), the σ-field generated by X0, . . . , Xk, and B ∈ σ (Xn+k, . . . )
and k ≥ 0, n ≥ 1. Suppose that αn → 0 as n → ∞. In this case {Xt; t = 0, 1, . . .}
is said to be α−mixing. The idea being that Xk and Xn+k are approximately
independent for large n.

In the next proposition by α−mixing property of {Yt(i, j); t = 0, 1, . . .} we
will find asymptotic distribution of Sn (i, j).

Proposition 3.1. For the stationary second order Markov chain {Yt (i, j)}t≥1,
defined by (3.1), let Sn (i, j) = Y1 (i, j) + · · ·+ Yn (i, j), then

1

n
V ar (Sn (i, j)) → σ2 (i, j) = V ar (Y1 (i, j)) + 2

∞∑
k=1

Cov (Y1 (i, j) , Yk+1 (i, j)) ,

(3.3)

where the series converges absolutely. Moreover,

i) If σ (i, j) > 0, then [Sn (i, j) − E (Sn (i, j))]/
√

n
L→ N(0, σ2 (i, j)).

ii) If σ (i, j) = 0, then [Sn (i, j) − E (Sn (i, j))]/
√

n
Pr→ 0.

(
L→ denotes convergence in distribution.)

Proof. The Markov chain {Xt; t = 0, 1, . . .} is α−mixing with αn = mρn

such that ρ is a constant and 0 < ρ < 1, [Billingsley, 1998, page 364]. By
this fact we can show that for fix i, j ∈ S, the stationary second order Markov
chain {Yt(i, j); t = 0, 1, . . .} defined by (3.1) is α−mixing with αn = mρn−1.
Indeed if A ∈ σ (Y1, . . . , Yk) and B ∈ σ (Yn+k, Yn+k+1, . . . ) , there exists A− ∈
σ (X0, . . . , Xk) and B− ∈ σ (Xn+k−1, Xn+k, . . . ) such that

|P ((Y1, . . . , Yk) ∈ A, (Yn+k, Yn+k+1, . . . ) ∈ B) − P ((Y1, . . . , Yk) ∈ A)

× P ((Yn+k, , Yn+k+1, . . . ) ∈ B)|
= |P ((X0, . . . , Xk) ∈ A−, (Xn+k−1, Xn+k, . . . ) ∈ B) − P ((X0, . . . , Xk) ∈ A−)

× P ((Xn+k−1, Xn+k, . . . ) ∈ B−)|
≤ mρn−1.

The fact that αn = O(n−5) and using Theorem (27.4) of Billingsley (1995),
imply the equation (3.3) and part (i), and Chebychev’s inequality proves part
(ii). �

If σ̂2 (i, j) is a consistent estimator of σ2 (i, j) , Proposition 3.1 and Slutsky
Theorem imply

Sn (i, j) − E (Sn (i, j))√
nσ̂ (i, j)

L→ N(0, 1). (3.4)
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In the case that the chain is time reversible, we have

σ2 (i, j) = 2π (i) Pij[1 + Pij

∞∑
n=0

(P
(n)
ji − P

(n)
ii ) + Pji

∞∑
n=0

(P
(n)
ij − P

(n)
jj )]. (3.5)

Where two series converge absolutely. In fact there is a constant a > 0 such
that

∣∣∣P (n)
ji − P

(n)
ii

∣∣∣ ≤
∣∣∣P (n)

ji − π(i)
∣∣∣ +

∣∣∣P (n)
ii − π(i)

∣∣∣ ≤ aρn.

Also E (Sn (i, j)) = 0, therefore

Sn (i, j)√
nσ̂ (i, j)

L→ N(0, 1).

This fact and the next proposition guide us to the proposed test statistic.

Proposition 3.2. Suppose that the Markov chain {Xt; t = 0, 1, . . .} is
time reversible and Sn (., .) is defined as Proposition 3.1. If for i < j and k < l
in the state space of S, {i, j} 
= {l, k} and σ (i, j)σ (k, l) > 0, then

lim
n→∞

Cov (Sn (i, j) , Sn (k, l))

n
= 2π(k)Pkl[Pij

∞∑
n=0

(P
(n)
li − P

(n)
ki ) − Pji

∞∑
n=0

(P
(n)
lj − P

(n)
kj )].

(3.6)

Proof. The proof is similar argument as led to (3.3) in Proposition 3.1.
In this case if we set Xt := Yt (i, j) − Yt (k, l) in Theorem (27.4) of Billingsley
(1995), the limiting V ar (Sn (i, j) + Sn(k, l)) /n is achieved. Make using the
limit of V ar (Sn (., .)) /n in Proposition 3.1 and time reversibility of the chain,
the equality is proved.�

Theorem 3.1. Suppose that the Markov chain {Xt; t = 0, 1, . . .} is time
reversible and Sn (., .) is defined as Proposition 3.1. Also suppose that T =
{(i, j) ∈ S; i < j, σ(i, j) = 0}. Then the random vector S ′

n = (Sn (i, j) /
√

n;
i = 1, 2, · · · , m−1, j = i+1, · · · , m , (i, j) /∈ T ) is asymptotically d-dimensional

normal, Nd(0, Δd), for which d = m(m−1)
2

−z, where z is the number of members
of T, and Δd is asymptotic covariance matrix of Sn which can be achieved by
Proposition 3.1 and 3.2. (The prime means transpose.)

Proof. It is enough to show that any linear combinations of the compo-
nents of S ′

n, (b, S ′
n) =

∑
i,j

bi,jSn (i, j) /
√

n is asymptotically normal. The proof
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is similar argument as led to part (i) in Proposition 3.1. In this case, in The-
orem (27.4) of Billingsley (1995), if we take Xt :=

∑
i,j

bi,jYt (i, j) , the theorem

is proved.�

Now suppose that Δ̂d is a consistent estimator for Δd. Under conditions of
Theorem 3.1,

X2 = S ′
nΔ̂−1

d Sn (3.7)

has asymptotically the Chi-squared distribution with d degree of freedom. X2

is our proposed test statistic.
Note that determining d and invertibility of Δ̂d must be considered. Sn

must be restricted to those indices i and j for which nij 
= 0 or nji 
= 0 and

the consistent estimator Δ̂d must be invertible. This test statistic under null
hypothesis have the Chi-squared distribution with d degrees of freedom. So
for testing the time reversibility hypothesis of Markov chains, we reject H0 if
X2 > χ2

1−α (d).

4 Simulation

In this section, we investigate the finite sample performance of the proposed
test statistic X2 by simulation. Δd has been estimated by replacing Pij and

π(i) with P̂ij and π̂(i), respectively in (3.6) and (3.7) and P̂
(k)
ij will be the

(i, j)th element of the matrix P̂ k, the kth power of the matrix P̂ . So the
elements of Δ̂d are as follows,

Δ̂d((i, j), (i, j)) = 2π̂ (i) P̂ij[1 + P̂ij

∞∑
n=0

(P̂
(n)
ji − P̂

(n)
ii ) + P̂ji

∞∑
n=1

(P̂
(n)
ij − P̂

(n)
jj )],

Δ̂d((i, j), (k, l)) = 2π(k)P̂kl[P̂ij

∞∑
n=0

(P̂
(n)
li − P̂

(n)
ki ) − P̂ji

∞∑
n=0

(P̂
(n)
lj − P̂

(n)
kj )].

First, we generate a stationary finite state Markov chain of lenght n + 1
with the known transition probability matrix P = [Pij ] and the stationary
distribution π = [π]i,j. Second, we compute the transition count n = [nij ] and

calculate our proposed test statistic X2 and its corresponding p-value.

Example 4.1. Consider an Ehrenfest model of diffusion with Pi,i+1 =
1 − i

m
, Pi,i−1 = i

m
for 0 ≤ i ≤ 5 which is is a known reversible Markov chain.
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We are interested in testing the time reversibility of this chain by using our
statistic. We generate the chain of lenght n+1, and compute its corresponding
X2 and compare it with χ2 (5). The results are given in Table 1. As expected,
the time reversibility isn’t rejected with p-value more than 0.995.

Table 1: The results of the Ehrenfest
model of Example 1.

n+1 X2 p-value
50 0.0615 > 0.995
100 0.1991 > 0.995
200 3.89 × 10−2 > 0.995
500 9.97 × 10−3 > 0.995
1000 1.8 × 10−2 > 0.995

Example 4.2. Our simulation has been based on n + 1 iterations of the
irreversible Markov chain with following transition probability matrix :

P =

⎡
⎣

0 0.6 0.4
0.1 0.8 0.1
0.5 0 0.5

⎤
⎦

The results of simulations are collected in Table 2.

Table 2: The results in the irreversible
Markov chain of Example 2.

n+1 X2 p-value
50 19.7911 < 0.005
100 25.208 < 0.005
200 32.821 < 0.005
500 443.37 < 0.005
1000 175.51 < 0.005

As we see, the null hypothesis of time reversibility of this irreversible
Markov chain is rejected at less than the 0.005 level.

Example 4.3. Consider the random walk on an undirected weighted graph
with nodes labelled E = {1, 2, . . . , 10} and weights w(i, j) = i+j for 1 ≤ i, j ≤
10. We simulate n + 1 times and we observe the results in Table 3.
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Table 3: The results of the random
walk Markov chain of Example 3.

n+1 X2 p-value
200 42.65 > 0.995
500 43.3 > 0.995
1000 50.69 > 0.995
5000 44.8 > 0.995
10000 44.53 > 0.995

The random walk on an undirected weighted graph is time reversible (Cover
and Thomas, 1991, page 68). As expected, the proposed test statistic can not
reject the null hypothesis of reversibility at level of more than 0.995 that is a
strong evidence of time reversibility in this Markov chain.

5 The Real Data

The first real data investigates the time irreversibility of gasoline price mark-
ups. The data are the same as those used in McCausland (2007) that collected
by the government of Ontario. They are 270 weekly observations of retail price
rt and wholesale price wt for gasoline from November 27, 1989 to September
25, 1994. rt is an average for a sample of gasoline stations in Windsor, Ontario
and Canada. wt is the price charged for large scale purchases of unbranded
gasoline at the terminal in Toronto and Ontario.

McCausland (2007) divided the mark-up rt/wt into six bins and modelled
the evolution of the mark-up bin st as a stationary regular 6-state Markov
chain. We use these computations and calculate this following transition count:

n =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 3 1 0 0 0
4 23 1 13 2 1
0 15 43 19 1 1
0 1 32 68 9 1
0 1 2 11 4 1
0 0 0 1 3 3

⎤
⎥⎥⎥⎥⎥⎥⎦

According to the proposed statistic, X2 = 98.65 and by comparison it with
χ2 (0.95, 12) = 21.0, the null hypothesis is rejected. Also p-value is less than
0.005 that it is a strong evidence of rejection the reversibility hypothesis.

The second real data investigates the time reversibility of Backus and Ke-
hoe international data set. We examined price level series for different coun-
tries.These four countries were: Australia, Canada, the United kingdom and
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the United States. Data sources and data for each country can be found in the
appendix of Backus and Kehoe (1992). First we compute raw first differences
and selected the part of series that can model them as a stationary regular
Markov chain , then divide them into some bins according to the range of
raw first difference and model the evaluation of the price bin as a stationary
regular finite state Markov chain. For each series, we calculate the proposed
test statistic and its corresponding p-value. The results are given in Table 4.

Table 4: The result of test statistic for the price level time series.

Country Year Number of state X2 df P-value
Australia 1861-1972 12 48.88 66 0.96
Canada 1870-1973 7 19.37 17 0.25

The United Kingdom 1870-1980 12 33.94 23 0.07
The United States 1869-1974 7 11.53 15 0.71

As we see in Table 4, the price levels in the related period which are sta-
tionary, are time reversible at significant level 0.05.

6 Power of the test in special cases

In this section we approximate the power of the proposed test in simulated
data. As the hypotheses of the test is complex and the distribution of the test
statistic under irreversibility is unknown, computing the power is not possible.
So the power of test has been approximated in simple cases. We have performed
100 replicates for each data set with n size. For each one we have used the
testing procedure and then have counted the number of rejecting.

In Example 4.1 the reversibility of an Ehrenfest Markov chain has been
investigated. In this part we simulate a realization with size n from a Markov
chain with the following transition probability matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1
5

0 3
5

1
5

0 0
0 2

5
0 3

5
0 0

0 0 3
5

0 2
5

0
0 0 0 4

5
0 1

5

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

which is irreversible but close to the reversible Ehrenfest Markov chain. In
every replication, we produce n realization of Markov chain and calculate the
proposed test statistic and compare the corresponding p-value to 0.05. This
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steps has been replicated 100 times. In every step, the time reversibility hy-
pothesis r times has been rejected and with this way, we estimate the power
of the test by r

100
. The observations in Table 5 shows that the proposed test

statistic is a powerful test.

Table 5: The result of the power of rejection in
the changed Ehrenfest model.

n 500 1000 2000
r

100
0.74 0.92 1
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