
ANALYTICAL SCIENCES   FEBRUARY 2010, VOL. 26 147

1 introduction

Photoemission spectroscopy has developed to one of the most 
powerful tools to study electronic and surface structures.1  This 
review article discusses basic features of photoemission theory 
based on many-body scattering theory.  More sophisticated 
theory can be developed on the basis of nonequilibrium Green’s 
functions2–4 and quantum electrodynamics.5  These approaches 
are very powerful; however, they requires more theoretical 
background.  Here, we rather extensively use the simple and 
direct method; the many-body scattering theory6–9 is still widely 
applicable as demonstrated below.  Also, we restrict to 
nonrelativistic framework.  Relativistic photoemission theory is 
found in other references.10,11

2 Basic Photoemission Theory

At first we introduce some formal scattering theory for later 
discussion.9  Let t  be a solution of the Schrödinger equation 
(hereafter we use atomic units; me = e =  = 1),

i
t

H t∂
∂

−



 = .0  (1)

The total Hamiltonian H = H0 + V is assumed to be time 
independent, and the state t  approaches to the unperturbed 
state t 0 at t → –`, which is a solution of the unperturbed 

Schrödinger equation,

i
t

H t∂
∂

−



0 0

0= .  (2)

Our problem is to relate t  to t 0.  The Eq. (1) can also be 
written as

i
t

H t V t∂
∂

−



0 = .  (3)

For convenience, we introduce a retarded Green’s function that 
satisfies an equation

i
t

H G t t t t∂
∂

−



 − ′ − ′+

0 ( ) = ( )δ  (4)

with the boundary condition G+(t – t′) = 0 (t < t′).  Using the 
relation dθ(t – t′)/dt = δ(t – t′), the Green’s function is written 
as

G t t i t t e+ − − ′− ′ − − ′( ) = ( ) .( )θ iH t t0  (5)

The desired integral equation is then given as

t t G t t V t t+ +
−

++ − ′ ′ ′∫= ( ) ,
0 `

`
d  (6)

where the state t +  automatically satisfies the retarded boundary 
condition.

Now we substitute t +  = a+ e–iEat into Eq. (6) where a+  is a 
eigenstate of the full Hamiltonian H.  The corresponding 
stationary state for the unperturbed Hamiltonian H0 is a e–iEat.   
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We should note that both a+  and a  have the same energy 
eigenvalue Ea because they have continuous spectra

( ) = ,

( ) = .

H E a

H E a

−
−

+
a

a

0

00  (7)

Then we have

a a i i H E t Ve a t e

a e

+
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aE H i
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+

0 η .
 

(8)

When eht replaced by 1, Eq. (8) is well known as the Lippmann–
Schwinger equation:

a a G E V a+ + ++= ( ) ,0 a  (9)

where the free Green’s function G0
+ is defined as 

G E
E H i0

0

1+

− +( ) = .η  (10)

We have a formal solution for the state a+

a a G E V a
i

E H i
a

+ ++

− +

= ( )

= ,

a

a

η
η

 
(11)

where the full Green’s function G+ is defined as

G E
E H i

+

− +( ) = 1
η .  (12)

Let consider the transition a → b (a ≠ b).  Because of the 
orthogonality b a = 0, we have an expression for the amplitude 
from Eq. (8),

b a b G E V a e t+ + += 0 ( ) .a
η  (13)

We thus can calculate the transition rate wa→b, in the limit 
h → 0,

w
t

b a

b V a E E

a b

a b

d
d→

+

+→ −

=
2

2
2π δ ( ).

 
(14)

We introduce the T matrix defined by

T b a b V a b T E a( , ) ( )= =+
a  (15)

which simplifies Eq. (14)

w b T E a E Ea b a a b→ −= 2
2

π ( ) ( ).δ  (16)

Substituting Eq. (11) into Eq. (15), we have an operator equation 
for T,

T E V VG E V
V VG E V VG E VG E V

( ) ( )
( ) ( ) ( )

=
=

+
+ + +

+

+ + +
0 0 0 

== V VG E T E+ +
0 ( ) ( )  (17)

where we have used the relation between the full Green’s 
function G and T
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G

+ + + + + + +

+ + +
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+ + +
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=
=
=

0 0 0 0 0 0

0 0

0



++ + +G TG0 0 .  (18)

In the first-order approximation, the transition rate is represented 
by

w b V a E Ea b a b→ ≈ −2
2

π δ ( )  (19)

which is known as Fermi’s golden rule.  The other solution of 
Eq. (1) is also important, the one that satisfies a different 
boundary condition: t −  approaches to the state t 0 at t → `.  
The corresponding stationary state a−  satisfies an equation 
similar to Eq. (11):

a
i

E H i
− −

− −=
η

ηa
.  (11′)

3 XPS Theory including Lifetime Effects

The basic formula Eq. (16) for the transition intensity is quite 
general.  In this section, we apply it to study photoemission 
processes.

We consider a Hamiltonian which describes the electron-
photon interaction in addition to electron-electron interactions, 
electron-nucleus interactions:

H H H V t= p r+ + ( ).  (20)

Hp is the many-body Hamiltonian for the target, which is written 
as the sum of nuclear kinetic energy, TN and the electronic 
Hamiltonian, He
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(21)

The Hamiltonian for the free photon field Hr is given in terms of 
the electric and magnetic field operators E and B

H t tr d= 1
8

2 2

π ( ( ) ( )) .E r B r r+∫  (22)

We now introduce the vector potential operator for a free photon 
field,

A r e k
k

k
k r( ) = ( ( ) . .),( )t c a s e h c2π ω

ω ks
s

i tk

Ω∑ ⋅ − +  (23)

where h.c. means hermitian conjugation of the first term, and 
e(ks) is the photon polarization vector of the wave vector k and 
polarization s.  From the transverse condition ∇·a = 0, we have 
a relation

k e k⋅ ( ) = .s 0  (24)

When a photon propagates in the direction k̂, the polarization 
vector e is normal to k (s = 1, 2).  The volume of normalization 
box is W, aks and a†ks are the photon annihilation and creation 
operators in the state ks which follow the boson commutation 
relations
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We can rewrite Eq. (22) by the use of these operators

H a a ckr
s

k s k= , = .s
†∑ +



k

k kω ω1
2  (26)

In Eq. (20), V(t) is the interaction operator between the target 
and photons.  The nuclear masses are much heavier than the 
electron mass, so the direct nucleus-photon interaction can be 
neglected compared with the electron-photon interaction:

V t
c

t
c

t( ) = ( ) ( ).1 1
2 2

2∑ + ∑⋅
i

i i
i

ip A r A r  (27)

Here the second quantized expression of the first term of 
Eq. (27) is also shown to clarify the physics used in it:
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c
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where we have used

T s x x x xr s

s

d( ) = ( ) ( ) ( ), = ( , ),
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†k r r

r
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∫ ∆

∆
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(29)

y(x) and y†(x) are the annihilation and creation operators for 
the electron field.  The operator V1 describes a one-photon 
process such as X-ray absorption and emission, whereas the 
second term of Eq. (27),

V t
c

t2 2
21

2
( ) = ( )∑

i
iA r  (30)

describes two photon creation and annihilation because of 
aksak′s′, a†ksa

†
k′s′ terms, and X-ray scatterings because of a†ksak′s′, 

aksa
†
k′s′.  Thus V2 can be neglected in the photoemission analyses.

In order to apply the scattering theory developed in Sec. 2, we 
notice that

V t e V e1 1( ) = ,iH t iH tr r−  (31)

because the time dependence of the vector potential operator a 
is simply akse–iwkt.  We thus can consider the Hamiltonian (20) as 
the interaction representation of the time-independent 
Hamiltonian

H H Vp r+ + 1.  (32)

Let specify the initial state and the final state: In the initial 
state a (ks) photon comes into the target (molecule or solid) in a 
ground state, 0 0; .†k ks a s=   In the final state, a photoelectron 
with momentum p excited from a deep orbital c and the deep 
core hole state n* which finally decays with fluorescence X-ray 
emission or Auger electron emission.  In order to calculate the 
photoemission amplitude accompanying fluorescence emission 
with k′s′ photon n s T E s*, ; ( ) ; ,p k k′ ′ 0  we introduce the 
projection operators, Pi: P1 is the projector to the deep hole 
state, P0 to the no hole state, P2, P3,  to the hole state shallower 
than the deep hole state.  They satisfy

PP P Pi j ij j
i

i= , = .δ ∑ 1  (33)

And we also define a projection operator

Q P1 1= 1−  (34)

The projected states by Q1 have free particles such as photons 
or  scattering electrons.  To apply partial sum technique, it is 
convenient to use the new unperturbed Hamiltonian H0 and its 
perturbation Vd,

H P H P H0 = ,i p i r
i

+∑  (35)

V Q H P P H Q Vd p p= .1 1 1 1 1+ +  (36)

We should note that Q1VdQ1 = P1VdP1 = 0.  Our calculations are 
reduced to Q1TQ1 as discussed before:8

Q TQ Q V PG PV Q1 1 = 1 d 1
+

1 d 1.  (37)

By the use of Eq. (18) and of the fact that G0 is the diagonal 
with respect to P1 and Q1, we have by use of the abbreviations 
V = Vd and G0 = G0

+

PG P P G G VG P
PG VG VG

1 1 1 0 0 0 1

1 0 0
2

0
41

+ + +
+ +

= ( )
= ( ) ( )
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0
1
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1
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1
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E H E
P− − ∑+( )

,
 

(38)

where we notice that for odd n, P1(VG0)nP1 = 0, and (AB)–1 = 
B–1A–1.  We define self-energy Σ+

∑+( ) =

=

E PVQ G Q VP
i

1 1 0 1 1

2
∆( ) − Γ( ).Ε Ε  (39)

The second form of Eq. (39) is obtained by the use of the 
relation (x + ih)–1 = P(1/x) – iπδ(x).  The real and imaginary 
part of Σ, Δ and Γ are the energy-dependent Hermitian operators, 
which describe the energy shift and lifetime width.

By the use of Eq. (38), we obtain the photoemission amplitude 
decaying to fluorescence emission

n s T E s

n a Q V PG E PV Q

∗

∗
′ ′

+
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= , ( )
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a
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†
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.∗
′ ′ +− − Σ

 (40)

By use this amplitude, we can obtain the intensity measuring 
photoelectrons with momentum p associated with fluorescence 
decay, after we sum over the all possible fluorescence and target 
states,
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where Σ± are approximated by c-numbers and Σ– = Σ+*.  The 
photoemission intensity I r

ks includes the finite lifetime effects.  
We can rewrite Eq. (41) as the convolution of the photoemission 
intensity without lifetime effects I`

ks (lifetime is `) and a 
Lorentzian,

I
I

k
kp

p
s

r r s

k

d
/

( ) =
( , )

( )
,ω ω

ω ω2 42 2π
Γ

Γ∫ − +
`

 
(42)

I m T s E Ek p p ks r
m

m p
`( , ) = , ( ) ( ),ω δ ε ω2 0

2

0π ∗ ∗∑ + − −  (43)

where Γ = Γr + ΓA, Γr and ΓA are the lifetime broadenings 
contributed from fluorescence and Auger decays.  In the above 
derivation, we assume that Γ is constant.  In the case of Auger 
decay after the photoemission, we obtain IA

ks(p) in the similar 
way; we use ΓA in Eq. (42) instead of Γr.  Summing over these 
two terms, we obtain the total photoemission intensity measuring 
photoelectrons with momentum p,

I
I

k
kp

p
s

s

k

d
/

( ) =
( , )

( )
.ω ω

ω ω2 42 2π
Γ

Γ∫ − +
`

 (44)

4 XPS Theory without Lifetime Effects

In this section we discuss a powerful technique to calculate the 
intensity I`

ks.  The main ingredients are a damping photoelectron 
wavefunction under the influence of the optical potential.  That 
intensity is directly calculated by the amplitude

T m s m T s`( , ; , ) , ( ) .* *p k p k0 0= r  (45)

After the photoemission, the core hole potential Vc and the 
many-body Hamiltonian for the valence electrons Hv work to 
relax the valence electron states: ( ) .*H V m E mv c v

*
m
v*

v+ =   The 
photoelectron emission state m*,p  is related to the unperturbed 
state as shown by Eq. (11′), and the amplitude is given in terms 
of the valence states of the target mv

*  influenced by the core 
hole

T m s m V G E T s

V V

`( , ; , ) ( ( )) ( ) ,∗ − ∗ +p k kp0 1 0=

=

v m r

m e

φ

ss v es v− ∗ ∗m V m ,  (46)

where Ves is the interaction between the photoelectron and 
particles in the solid.  We define the Green’s function

G E
E H i

E E E

( ) = ,

= ,

1

0

− +
+ = +∗

η
ω εk m

v
p  (47)

where the total Hamiltonian H includes all interactions except 
for the those responsible for the lifetime effects.  Photoelectron 
function φp

− is a solution of one-electron Hamiltonian he
m and 

satisfy the minus boundary condition.  As discussed in Sec. 2, 
φp

− approaches to the plane wave φp
0  in the remote future.  We 

thus have to use φp
− for the photoelectron wave function:

h

h Z m V m

e
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p

e
m

v es v

φ ε φp p

r R
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= ,

= ,
2

2
α

αα  
(48)

where he
m is the Hermitian operator and cannot describe the 

damping of photoelectron propagation.  The mean free path of 

the photoelectrons is the smallest around 50 – 100 eV.  We 
should go one step further to handle the photoelectron wave 
damping in solids.

Let us again introduce the projection operators 
P m m Q P= = .v v and∗ ∗ −1   We can rewrite

V P Q V P Q
QV Q PV Q QV P PV P

m m

m m m m =
= ( ) ( )
= ( ).

+ +
+ + 0  (49)

This relation yields from Eq. (46)
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1 1
1

+ + +
+ +

m m
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Here we use a new unperturbed Hamiltonian H  and its 
perturbation V ,

H H V

H H V QV Q h

V PV Q QV P

=

=
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+
+ + +

+
v c m e

m

m m  (51)

The inelastic fluctuation potential V  is an important factor to 
describe the extrinsic losses.  Green’s function corresponding to 
the Hamiltonian H  is defined as


G E

E H i
( ) = .1

− + η  (52)

By the use of relations, PV PV Q PVm m= =   and G G GVG= ,� � � � �+ +
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Only the even powers of V  in the first bracket on the right side 
are non-vanishing; they give rise to
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(54)

where Σm is the optical potential defined similar to Eq. (39)

∑m v
*

v( ) = .*E m VGV m    (55)

The left side of the transition amplitude (46) is thus written,
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where a new one-electron function ψ p
−  is defined as

ψ η
ε

φp p
−

−
−−

− − ∑
=

( )
.

i
h Ep e

m
m

 (57)

This one-electron wave function is the solution of the equation,

[ ( )] = ,h Ee
m

m p+ ∑− − −ψ ε ψp p  (58)
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which satisfies the minus boundary condition, and damps under 
the influence of the non-Hermitian operator Σ –

m.  In the transition 
amplitude (46) we have

T s cr s v( ) ,k k0 0≈ ∆  (59)

where 0v  is the valence electron state which is not affected by 
the core-hole potential.  We thus obtain a practical formula for 
the transition amplitude (46)
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0 1 0
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*

s
n

nk  (60)

where Sn is the intrinsic amplitude defined by use of the 
annihilation operator b for the deep core level c,

S n n bn v
*

v v
*= = .0 0  (61)

The operator m VG nv
*

v
*1+    works on the photoelectron during 

the extrinsic transitions n mv
*

v
*→ .  For example, the main 

photoemission peak is described by the amplitude
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c S VG n

` ( , ; , ) =* *0 0

00
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−∆ + ∑ ∆s
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v
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v
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kks nc S .
 

(62)

The first term describes the direct photoemission from the deep 
core orbital c  where valence electrons relax to the state 0v

*  
influenced by the core hole potential Vc (S0 ≈ 1).  The 
photoelectron wave ψ p

−  propagates to the surface and out to a 
detector with momentum p.  The second term describes the 
second order processes where first the target is simultaneously 
excited to nth state with the amplitude Sn, and then deexcited 
from the nth state to the 0th state during the propagation in the 
solid.  We can usually neglect the second term because it is of 
the order of 10–2 of the first term.  In case of the loss band, the 
intrinsic and the extrinsic amplitudes are in the same order, and 
the strong interference is expected.  Please refer to a recent 
work.12

5 X-ray Photoelectron Diffraction Theory

To discuss the main photoemission peak, one needs to calculate 
only the first term of Eq. (62).  In this section we discuss 
multiple scattering theory to calculate the amplitude ψ p k

− ∆ s c .  
The damping photoelectron function ψ p

−  is related to φp
−  from 

Eq. (11)

ψ φ ε εp p
− − + ∑ += v*

p p[ ( ) ( )].1 0 0E g  (63)

The photoelectron function φp
−  is related to the plane wave 

φp
0 , (Te = –∇2/2),
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where the kinetic energy and the averaged static potential V0 
from the target state 0v

*  with a deep hole on c are used,

V V Z
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*
es v
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α

αr R  (65)

The relation between ψ p
−  and φp

0  is obtained by using the 
relation g = ĝ + ĝ Σ 0g,

ψ φ ε εp p
− + + ∑ += v*

p p
0

0 0 01[ { ( )} ( )].V E g  (66)

We can safely approximate the imaginary part of the optical 
potential Σ 0 as a constant –iγe/2 when the photoelectron energy 
is large enough.  Within this approximation, we have
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2
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e
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(67)

where VT is the Herimitian part of the total potential for the 
photoelectrons.  Going back to the process to derive Eq. (66), 
we obtain the relation between ψ p

−  and the damping plane 
wave f′p

ψ φ ε εp p
− ′ += [ ( ) ( )].1 V gT p p  (68)

One-electron Green’s function with damping is defined as

g
T i0

1
2

( ) = .ε ε γ− +e e/  (69)

By using the relation g = g0 + g0VTg and the T matrix,

V g V g g V g
V g g V g g V g V g

T T T

T T T T

= ( )
= ( )

0 0

0 0 0 0 0 0

+
+ + +

== ( )
= .

V V g V g
Tg

T T T+ +0 0

0



 (70)

Therefore we can simplify the relation Eq. (68) as

ψ φp p
− ′ += [ ].1 0Tg  (71)

In order to obtain multiple scattering series, it is useful to 
express the total potential VT as the sum of each atomic potential 
Vα.  By use of the relation T = VT + VTg0VT + , we have

T V V g V V g V g V= .∑ + ∑ + ∑ +
α

α
αβ

α β
αβγ

α β γ0 0 0   (72)

The second and higher terms have scattering terms on the same 
site, like Vαg0Vα.  We now define site-t matrix on the site α

t V V g V V g V g Vα α α α α α α= .+ + +0 0 0   (73)

By use of the site-t matrix, the total T matrix given by Eq. (72) 
can be rewritten

T t t g t t g t g t= .∑ + ∑ + ∑ +
≠ ≠ ≠α

α
α β

α β
α β γ

α β γ0 0 0   (74)

The deep core orbital c is strongly localized on the X-ray 
absorbing site A: The excited photoelectrons propagate to the 
surrounding sites.  We thus pick up the site-t matrix expansion

1 10 0 0+ + + ∑ + ∑ +
≠ ≠ ≠

Tg t g t g t g t g= ,
( ) ( )

A
A

A
A

A
α

α
β α

β α   (75)

where gA is the one-electron Green’s function that fully includes 
the potential effects on the site A:
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g g g t gA A( ) = ( ) ( ) ( ).ε ε ε ε0 0 0+  (76)

We obtain the photoemission amplitude

ψ φ φ φ
φ φ

p k p k

p k

− −

≠

≠

+ ∑ ′

+ ∑

∆ ∆
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α
α

α β

s c =
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A s ct g

≠≠
−

′ +

= ′ +
A

A s

A A

)
,

( ),

φ φ

φ φ

p k

p p

t g t g

t g

cβ α ∆0

01



 (77)

where φAp
−  is the photoelectron wave function for the potential 

on the X-ray absorbed atom A.  The first term of Eq. (77) 
describes the direct photoemission amplitude without suffering 
any elastic scattering (direct term).  The second term is the 
single scattering amplitude scattered from the site α (single 
scattering term).  The third term describes the double elastic 
scattering at α and β (double scattering term).  For practical 
purposes we write each of them in angular momentum 
representations.  The direct term Z1 is explicitly written by

Z

Y M

1 =

= ( ˆ ) ,

φ φA s c

L
L LLc

p k

k

−

∑
∆

 (78)

where L is the abbreviated form of the pair of angular 
momentum, L = (l,m).  In the dipole approximation, the 
photoexcitation matrix element MLLc excited by linearly 
polarized light parallel to the z axis is given by

M i e l G L L

l R kr R

l

l

l
LL

i
c c

c

c

A= ( ) ( ),

( ) = ( )

2 10π
δ−

∫

ρ

ρ ll r r rc d( ) ,3
 (79)

where δl
A is the phase shift of lth partial wave at site A, and 

Rl(kr) and Rlc are the radial parts of φAp
−  and fc labeled by the 

orbital angular momentum l and lc.  Gaunt integral G L L( )c10 =
Y Y YL 10 Lc d(ˆ) (ˆ) (ˆ) ˆ*r r r r∫  is responsible for the angular momentum 

selection rule of the photoexcitation.  The single-scattering term 
Z2 is explicitly written by

Z t g

e Y

2 =

=
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∑ ∑
≠

≠
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α
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(80)

where rαA is the position vector of the scatterer α measured 
from the emitter A.  The angular momentum representation of 
the site-t matrix tl

α(k) at site α is given by

t k e
ikl

lα
δα

( ) = − −2 1
2

i

 (81)

in terms of the phase shift δl
α at site α and the photoelectron 

wave number k.  The propagator GL′L(krαA) describes electron 
propagation from the site A with L to the site α with L′.  In 
terms of X = tG, we obtain the general renormalized multiple 
scattering XPD amplitude,

M

e Y X X XA

( )

= ˆ
k

kk R∑ + + + +− ⋅
′

′
′∑

α
α × [ ]i

L
LL

L L( ) 1 2 3  αα

α

αα

A
LL

i

LL
L L L

A

c

A ( )

M

e Y X= ∑ ∑ −− ⋅

′
′

−
′

k R k̂ [( ) ]1 1 MMLLc,  (82)

X t k G klLL
A

LL A′ ′ −α α
α

αβ= ( ) ( )( ),R 1 δ  (83)

where X is a square matrix, in which a matrix element is labeled 
by a set of atomic sites (A, α, β,) and angular momentum L, 
whose matrix dimension is N(lmax + 1)2 for the cluster of N 
atoms and maximum angular momentum lmax.  The full multiple 
scattering is taken into account by use of the inverse matrix 
(1 – X)–1 .

In order to calculate the amplitude (82), we have to use 
sophisticated optical potential Σ 0 (see Eq. (55)) for which some 
approximations have been developed, such as the 
Hedin–Lundqvist potential13 and its nonlocal version.14

6 Depth Distribution Function

In this section, we apply the XPD theory developed in the 
previous section to calculate the mean free path and depth 
distribution functions (DDF).15  The imaginary part, γe, of the 
nonlocal potential Σ 0 is responsible for the photoelectron 
damping, which typically weakly depends on the space.  The 
expansion in terms of Eq. (69) naturally describes the 
photoelectron wave propagation with damping.  The complex 
momentum k′ is thus defined by the principal value

′ + + ′k i k i= 2(ε κk rΓ0 ) , ( ).� k k  (84)

In the high energy region (εk  γe), κ is approximated by

κ γ
= e

0Im
k k
∼ 1 Σ .  (85)

The expression gives the widely used inelastic mean free path 
(IMFP) formula.7

We can calculate the DDF starting from the first principle 
many-body quantum mechanical multiple scattering theory by 
use of ab	 initio optical potential.  Figure 1 shows the DDF 
calculated from cylindrical bcc models, where all multiple 
scatterings inside these cylindrical clusters are fully taken into 
account.  Incident X-ray polarization is parallel to the surface 
normal.  The intensity from the third layer in the cylinder 
models is much larger than that from the chain model.  The 
calculated DDF converges at the eighth sheet.  This result 
clearly shows that the chain models successfully predict a peak 
in DDF due to focusing elastic scatterings, whereas they are 
poor in describing the decay profile of the DDF, in particular at 
z > 10 Å.  The asymptotic behavior of f(z) at large z is well 
described by a simple exponential law

φ φ λ( ) ,z e∼ 0
−z/ d  

where λd is the dressed IMFP, which effectively includes the 
elastic scattering effects.  This law does not work at small z, as 
seen before.

7 resonant Photoemission Theory

In this section we study resonant photoemission.  The direct 
approach described above is not easily acailable to discuss these 
processes, and an alternative approach is more useful to study 
the resonant processes.  As the alternative approach, 
first-principle XPS theories based on Keldysh Green’s functions 
have been developed.4,16  These theories give formally exact 
perturbation expansions of the photoemission intensity.  
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The  present authors have used skeleton expansion in terms 
of  renormalized one-electron Green’s functions.  Further 
refinements to include radiation field screening are also 
proposed.5  We obtain the photoemission intensity including the 
radiation field screening vertex,

I f g i f X g i f Z g

E N
 p p p

− − −+ +
× + −

∆ n n n

p n

( ) ( )
( (

ω ω
δ ε

2

1)) ( )),− −ω E N0  (86)

where the hole and particle Dyson orbitals gn and fp
– and the 

resonant operators X(ω) and Z(ω) are defined in our previous 
paper.17  The scattering particle Dyson orbital fp

– is basically the 
same as the damping photoelectron wave function yp

– used in 
the above sections.  We note that the first term is corresponding 
to the photoemission amplitude Eq. (77).  The second and the 
third term describe the resonant effects.  We also note that the 
third term is the contribution from the radiation field screening.

By using this framework, we can systematically study, in 
particular, not only the radiation field screening but also the 
dynamically polarized part in the screened Coulomb propagator.  
They play a crucial role in the resonant processes.  In particular, 
multi-atom resonant photoemission (MARPE) is a good example 
to study these effects.  MARPE occurs when photon energy is 
tuned to be a core-level absorption edge of an atom neighboring 
to the absorbing atom A, so that MARPE permits direct 
determination of near-neighbor atomic identities.18,19  In MARPE 
calculations we can neglect the second term of Eq. (86) because 
of the small overlap between emitter and surrounding atoms.  
The polarization part Wp of the screened Coulomb interaction 
(W = v + Wp) depends on energy, where v is the bare Coulomb 
potential, which is energy-independent.  We demonstrated the 
importance of Wp to obtain intense MARPE values comparable 
with the observed one.19  Figure 2 shows the O 1s MARPE 

spectra calculated near the Mn L-edge.  The broken line 
calculated without Wp gives weak MARPE whose relative 
intensity to the main photoemission band is about 2%.  In 
contrast to this result, the solid line calculated with Wp gives a 
prominent peak comparable with the experimental one (~12%),19 
and still shows a Fano-like asymmetric shape.  In this case we 
have used the parameter γ = –2 eV to obtain a good agreement 
with the experimental result.  We have also demonstrated the 
importance of the structure surrounding the emitter.  For 
example, high symmetric local structure such as Oh symmetry 
around the X-ray absorbing atom gives rise to no MARPE 
signal.16  The detailed discussion is found in our previous 
papers.16,20

8 Concluding remarks

We review the photoemission theory based on the general 
scattering theory which provides lifetime effects, mean free 
path, and multiple scattering series from first principles.  We 
should stress the importance of a consistent many-body theory 
to explain, for example, the mean free path and the electron 
yield calculations in consistent ways.
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