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Abstract

A method for computing an approximate inverse preconditioner of
a matrix A which all eigenvalues have negative real parts is proposed.
The approximate solution of the special Sylvester matrix equation AX +
XA = I, which is an approximate inverse preconditioner of matrix A,
is obtaining by the successive approximations method. Some numerical
experiments on test matrices from Harwell-Boing collection for compar-
ing the numerical performance of the new method with an available
well-known algorithm are presented.
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1 Introduction.
In this paper, we consider the solution of large and sparse systems of linear

equations
Ax=1b (1)

by means of iterative techniques. It is widely known that the preconditioning
techniques have an important role in improving the performance of the Krylov
subspace methods.Of various preconditioners, sparse approximate inverse pre-
condioners have recently recieved much attention since they are much suited
for parallel implementation. There are some kinds of sparse approximate in-
verse precondioners such as Frobenius norm minization [7], factorized sparse
approximate inverse [2],and rank-one update methods [3]. The main propose of
this paper is to obtain an approximate inverse preconditioner P of A such that
PA =~ [ by computing an approximate solution of special Sylvester equation

AX + XA =1 (2)
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where A € R™" is a given matrix, [ € R"*" is identity matrix and X € R™"
is unknown solution matrix. we shall henceforth that all eigenvalues of matrix
A have negative real parts (that is A is stable ) and large and sparse. Then
the unique solution X of equation (1) is given by [1, 6]

X:—/ &mﬁﬁ:—/(ﬁwﬁ (3)
0 0

and iterative methods are more appropriate for determining X. In this paper,
we use method of successive approximations to obtain the approximate solution
of equation (2). We know that the Sylvester equation(2) has a unique solution
for X if and only if the matrices A and — A have no eigenvalues in common,i.e.

Ai(A) = Aj(=A) # 0 (4)

where X\;(A), \i(=A), i = 1,....,n are the eigenvalues of A and —A respec-
tively , see [5]. Therefore, we can obtain an approximate inverse preconditioner
for the matrix A which has no symmetry eigenvalues.

This paper is organized as follows.In section 2 we explain the method of suc-
cessive approximations for solving the Sylvester matrix equations. The parallel
implementation of this method is demonstrated in section 3. In section 4, we
give AINV preconditioner. In section 5 some numerical examples are tested.
The conclusion remarks is given in section 6.

2 Method of Successive Approximations.
Let the matrices A, X and I in equation (2) be partitioned into the form

A A o Ay
ac | B Amo A )
Ay Ay o A
X X X1 Ly Lo I,
¥ = X'21 X'22 e X'2u = 1?1 1?2 e ]?u (6)
Xul XMZ qu If;l [;.»2 [l;ﬂ

where the blocks A, ;, X; ; and I; ; are square matrices of order I: thus n = pl.
We consider the following splitting of matrix A:

A= M+ N. (7)

We assume that the symmetric matrix M + M7 is negative definite. Thus,
M is stable [4, 8]. Let X be an approximation to the unique solution X of
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equation (1), k =0,1,2,---. The method of successive approximations can be
written as
MXED L xEDpr — 1 - Nx® — x BN (8)

where X© is an arbitrary initial matrix approximation to the exact solution.
In order to study the convergence of this method, we note that equation (2)
can also be written in the form

MX+XM=1I—-NX—XN. (9)

Since the matrix M is stable, the solution of (2) can also be written in the form
X = —/ eM(I — NX — XN)eMat (10)
0

Since the matrix M is stable, equation (8) has a unique solution given by the
formula

0

Then from (10) and (11) we obtain
B — / M(NE® + B® N)eM gt (12)
0

where E®) = X — X®*) is the error associated with the k-th iterate of (8).
Thus, about the convergence of the method (8), the following theorem holds.

Theorem 1. Let A and M are stable matrices. Thus the method (8) converges
to the solution X of (1) for all X© if

[NV 2

Ta) | <1, (13)

where,

1
u(M) = 5AW(M + M7T).

Proof. Since the matrix A is stable, the unique solution of the equation (2)
can be written as follows (see [5])

X=- [Cehpar
0

Since the matrix M is also stable, the unique solution of the equation (9) is
given by the following formula

XD — / N M(T — NX® — Xx®N)eM gy
0
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So, we have
kD) / M (NE® + EVN)eM dt (14)
0

where E®) = X — X®) is the error associated with the k-th iterate of (8). Let
u and v denote the left and the right singular vectors of unit length of E®*+1)
such that (see [5])

T By =|| E®HD |, (15)

Combining (14) and (15), we obtain

| BED (=] T / M(T = NXW X0 N)Megpy |
0

= / (eMu)T(1 — NX® — XBNY(eMy)dt | .
0

By using Cauchy-Schwartz inequality, we have
I B4 o) NE® 4 BON o ([l ¥ o )
0
Using again Cauchy-Schwartz inequality, we obtain
[ el et o de< ([T Band [ e 2 an
0 0 0

By noting that || €M tu [|o<|| €M ||y and || €Nt [|2<|| €M ||2, we have

o0

e T 1 L
I B0 o B o (1N 2+ ¥ [ e anb( [ o an?
0

0
(16)
Since, by hypothesis, the symmetric matrix M + M7 is negative definite the

following bounds

H eMTt H2§ eu(MT)t

H eMt HQS eM(M)t

|oner g ar

0

|nes g a
0

> T
/ | MR dt <
0

can be used to estimate

and

respectively. Thus

2| u(M) |
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and

P 1
Fe™ 13 dt < o
/0 ’ 2 [ p(M) |

We conclude from (16) that

N
|| F(k+1) H2§ |H H2 H k) ||2 (17>

p(M) |
Thus the method (8) is convergent to the solution X of (2) for all X if

Nl
() |

O
3 Parallel Implementation.
When we implement the iterative method (8) on parallel computer a suitable
choice of M in the splitting (7) of A is

M = di(lg{AH, AQQ, Ty ANM} (18)

In this case, at each iteration k of the method (8) we must solved a set of
Sylvester equations of the form

A X+ XAy = Lj — (NXP 4+ X*N)y (19)

for i,j = 1,---,u, where (NX* + X*N),; is the block (7,;) of the matrix
(NX* + X*N),; partitioned commensurately with the block structure of I.
Generally, equation (19) is small, dense Sylvester equation that can be solved
directly for X;; using direct method [1].

When p is even, another interesting splitting of the matrices A is

, Arn Apo Ass  Asy A, 11 A
M=d ' ’ ’ , p=1,p p=1,p
zag{{ Ag,l A2,2 :| ’ |: A473 A4,4 :| ’ ’ [ AMM,l Au:u ]}
(20)

it reduce the method (8) to solving a set of Sylvester equations of the form

Ay A X5 X541 n
Aisg A Xitts Xip1s+1

As+1,s As+1,s+1

Es Es—&—l
) ) 21
{Fm,s FZH,SH] 21

Xl,s Xl,s+1 As,s As,s-ﬁ-l _
Xl+1,s XlJrl,erl

l,s = 1,3,---,u— 1 and Fjis the block (i,7) of the matrix I — (NX* +
XF*N). These equations can be solved simultaneously by a direct method on
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a parallel computer. An analogous set of independent Sylvester equations can
be obtained if we choose

A22 A23 :| |: AlL—Q,u—Q A;L—Q,u—l

M = diag{AH, |: A32 A33 7Auu} (22)

Aufl,u72 Aufl,ufl

With splitting (18), (20) and (21), method (8) has a high inherent parallelism.
Now, by computing an approximate solution of the special Sylvester equation
(2), we can produce a new inverse preconditioner for a linear system with
coefficient matrix A having eigenvalues with negative (or positive ) real parts.
Thus, we can propose the following algorithm.

Algorithm 3.1. Successive approximations method for computing an
approximate inverse preconditioner SAINV.

1. Choose an integer number u, a tolerance € and matrix A of order n.

2. Set | = n/p. Partition the matrices A, X and I into the form (5) and (6).
3. Split matrix A of the form (7). Split matrix M of the form (18).

4. By using the successive approximations method, obtain an approximate
solution X, of the equation (19), such that || I — AX,p, — XopaA ||F< €.

5. Set P = X,,,.Use a dropping strategy for the columns of P.

6. EndDo.

Note that, in the step 3 of above algorithm, if we split matrix M of the form
(20), then we must solve the equation (21) in step 4.

4 AINYV Preconditioner.
The construction of the AINV preconditioner is based on an algorithm which
computes two sets of vectors {z;}?; and {w;}",, which are A-biconjugate,
i.e., such that wlAz; = 0 if and only if ¢ # j. Given a nonsigular matrix
A € R™" there is a close relationship between the problem of inverting A
and computing two sets of A-biconjugate vectors {z;} , and {w;}" . If we
introduce the matrices
7 = [z1,29, ..., 2n) and W = [wy, wa, ..., wy,]
then

WTAZ = diag{p1,pa, ..., pn},

where
Di = wiTAzi # 0.

It follows that W and Z are necessarily nonsingular and

zw!

At =zD'wT = Z o

i=1

Hence, the inverse of A is known if two complete sets of A-biconjugate vec-
tors are known. Assuming that A has an LU factorization, matrices W and
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Z whose columns are A-biconjugate can be explicitly compared by means of a
bicojugation process applied to the standard basis vectors ey, ..., e,. It is easy
to see that Z = U~! and W = L~7 where A = LDU with L and U unit
lower and upper triangular and D diagonal. If a! denotes the ith row of A,
the biconjugation procedure to compute Z can be written as follows.

Algorithm 4.1 Left-looking AINV algorithm

1. Let z%o) = ey, p§°> = a.

2. For i=2, ... .n Do:

3. zfo) =e;

4 For j=i, ... ,i-1 Do:

5 pgjfl) _ a;fzi(rl)

. - (-1 o

6. ZZ(J) _ ZZ(J D _ szil))zj(q 1)
J

7. EndDo

] p('iq) _ T,

9. EndDo

The computation of W is identical, expect that a! is replaced by ¢!, where c¢;
is the ith column of A. Note that Z and W are computed incompletely, by re-
moving elements less than prescribed drop tolerance. This leads to incomplete
factors Z ~ Z, W ~ W and D =~ D, and the factorized approximate inverse
takes the from M = ZD~'WT. For more details see [2]. There exist several
other approximate inverse techniques, but in this paper we limit ourselves to a
comparison between AINV and the new preconditioner that is the approximate
solution of special Sylvester matrix equations which computed by successive
approximate method.

5 Numerical Experiments.

The numerical experiments were performed on a set of sparse matrices drawn
from the Harwell-Boining collection. These matrices originate from a variety
of applications such as oil reservoir simulation, circuit design, semiconductor
device modeling, etc. For all examples, we used the stopping criterion

| b— Az [lo< 10712

and the maximum number of iterations allowed set to 2500. The right hand
side of Ax = b is taken such that the exact solution is x = [1,1,...,1]T. The
solution of above sparse linear systems, by restarted generalized minimum
residual method ( GMRES(m)) [9],is considered.

Table. Test problems(nnz(A)=nonzeros in matrix, and results for GMRES(m),
GMRES(m) with AINV and SAINV (we choose € = 0.1 in Algorithm 3.1)

preconditioners). Timings are in seconds.
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matrix n |nnz(A) | 1| m| T1 | Iterl | T2 | Iter2 || T3 | Iter3
besstk01 | 48 224 2| 4 ] 1.09 | 2500 || 1.01 | 808 || 1.02 | 36
nosl 237 627 3| 2 - T 6.15 | 2455 || 5.06 | 1180
bus494 | 494 1080 |2 10 - T 195 | 1748 || 214 | 1421
nos6 675 1965 | 5 | 10| 76.5 | 2500 || 65.5 | 441 || 62.5 | 142
bus685 | 685 | 1967 |5 4 | - | 1 T 142 | 1321
nos7 729 2673 | 9|20 | 128 | 1943 || 196 | 2455 || 107 | 1272
nos2 957 2547 | 3| 8 || 145 | 2500 || 143 | 1857 || 141 15
bus1138 | 1138 | 4054 |2 | 8 - T 657 | 2035 || 577 | 1528

In above Table we present the results of test runs with GMRES(m) and pre-
conditioned GMRES(m) with the approximate inverse preconditioners AINV
and SAINV. For these three methods we give the number of iterations for con-
vergence by Iterl, Iter2 and Iter3 respectively. Also, we refer the set-up times
for the GMRES(m) iterations, the preconditioned GMRES(m) with AINV and
SAINV iterations by T1, T2 and T3 respectively. A T means failure to attain
convergence within 2500 iterations.

6 Conclusions.

We have proposed a technique (which refer by SAINV )for constructing a pre-
conditioner for general linear systems with coefficient matrix A which has the
eigenvalues with negative (or positive) real parts. Also, in this paper we have
presented the results of experiments, with two implementation of the sparse
approximate invers preconditioners AINV and SAINV. Based on our exper-
iments, we conclude that these techniques are comparable from the point of
view of robustness and rate of convergence, with SAINV being somewhat better
on average. Finally, it was found that the computation of the preconditioner is
much more expensive for SAINV than for AINV, but it was observed that the
situation could be different in a parallel implementation. We conclude that
both techniques offer excellent potential for use on high-performance comput-
ers.
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