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Abstract

We consider samples with monotone missing data, drawn from a
normal population to test if the covariance matrix is equal to a given
positive definite matrix. We propose an imputation procedure for the
missing data and give the exact distribution of the corresponding like-
lihood ratio test statistic from the classical complete case.
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1 Introduction

The problem of missing data is an important applied problem, because missing
values are encountered in many practical situations (see [4]). Two commonly
used approaches to analyze incomplete data are the likelihood based approach
and the multiple imputation. The imputation method is to impute the missing
data to form complete data and then use the standard methods available for
the complete data analysis. For a good exposition of the imputation procedures
and validity of imputation inferences in practice, we refer to [6].

In this paper we consider samples with monotone missing data pattern.
Let (X1, . . . , Xn)t be a random vector with multivariate normal distribution
Nn(μ, Σ),where the mean vector μ and the covariance matrix Σ are unknown.
Suppose that we have k1 + · · ·+ kn independent observations, k1 of which are
on (X1, . . . , Xn)t, k2 - on (X2, . . . , Xn)t and so on, kn on the random variable
Xn. Assume that kj ≥ 0 and mj = k1 + · · · + kj > j, j = 1, . . . , n. The data
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can be written in the following pattern, known as a monotone pattern

x1,1 · · · x1,m1

...
...

xn−1,1 · · · xn−1,m1 xn−1,m1+1 · · · xn−1,mn−1

xn,1 · · · xn,m1 xn,m1+1 · · · xn,mn−1 · · · xn,mn

. (1)

In the literature on inference for μ and Σ, it is noticeable that the exact
distributions of μ̂ and Σ̂, the maximum likelihood estimators of μ and Σ, have
remained unknown. This problem is basic to inference with incomplete data
when large samples are infeasible or impractical (see [1]). In [1] the authors
initiate a program of research on inference for μ and Σ with the goal of deriving
explicit results analogous to those existing in the classical complete case.

In this paper we consider hypotheses H0 : Σ = Σ0 against Ha : Σ �= Σ0,
propose an imputation procedure for the missing data in (1) and give the
exact distribution of the corresponding likelihood ratio test statistic from the
classical complete case.

2 Preliminary Notes

We shall use the following known propositions, which can be found in [5].

Proposition 2.1 Let the n × 1 random vector x be normally distributed
according to x ∼ Nn(μ, Σ), then the m × 1 random vector y, obtained by
the linear transformation y = Ax + c, where A denotes an m × n matrix of
constants with full rank m and c an m× 1 vector of constants, has the normal
distribution y ∼ Nm(Aμ + c, AΣAt).

Proposition 2.2 Let the n × 1 random vector x be normally distributed
according to x ∼ Nn(μ, Σ), then xtAx, where A is an n×n matrix of constants
has noncentral chi-square distribution χ′2(rankA, μtAμ), if and only if the
matrix AΣ is idempotent.

Proposition 2.3 If A is idempotent, then rankA = trA.

Proposition 2.4 If the n×n matrix A with rankA =r is idempotent, then
In − A is also idempotent with rank(In − A) =n − r.

Proposition 2.5 Let the n×1 random vector x be normally distributed ac-
cording to x ∼ Nn(μ, Σ), then the linear form Ax and the quadratic form xtBx
with the positive definite or positive semidefinite matrix B are independent, if
and only if AΣB = 0.
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Let A be a real square matrix of order n. Let α and β be nonempty
subsets of the set Nn = {1, . . . , n}. By A[α, β] we denote the submatrix of
A, composed of the rows with numbers from α and the columns with numbers
from β. When β ≡ α, A[α, α] is denoted simply by A[α].

The Bellman gamma distribution is a matrix variate distribution, which
is a generalization of the Wishart and the matrix gamma distributions. The
next definition is given in [3]. By Γ∗

n(a1, . . . , an) is denoted the generalized

multivariate gamma function, Γ∗
n(a1, . . . , an) = πn(n−1)/4

n∏
j=1

Γ
(
aj − 1

2
(j − 1)

)
,

for aj > 1
2
(j − 1), j = 1, . . . , n.

Definition 2.6 A random positive definite matrix U (n×n) is said to follow
Bellman gamma type I distribution, denoted by U ∼ BGI

n (a1, . . . , an; C), if its
probability density function is given by

n∏
i=1

(det C[{i, . . . , n}])ai−ai−1

Γ∗
n(a1, . . . , an)

(det U)an−(n+1)/2

n∏
i=2

(det U[{1, . . . , i − 1}])ai−ai−1

etr(−CU),

where C (n×n) is a positive definite constant matrix, a0 = 0 and aj > 1
2
(j−1),

j = 1, . . . , n.

3 Main Results

Let us replace the missing values in (1) by zero and denote the obtained matrix
by X,

X =

⎛
⎜⎜⎜⎝

x1,1 · · · x1,m1 · · · 0 0 · · · 0
...

...
...

...
...

xn−1,1 · · · xn−1,m1 · · · xn−1,mn−1 0 · · · 0
xn,1 · · · xn,m1 · · · xn,mn−1 xn,mn−1+1 · · · xn,mn

⎞
⎟⎟⎟⎠ (2)

Theorem 3.1 Let the matrix X, defined by (2) presents the observations
(1) on a random vector (X1, . . . , Xn)t with multivariate standard normal dis-
tribution Nn(0, In). Then the matrix W = XXt has Bellman gamma type I
distribution BGI

n

(
m1

2
, . . . , mn

2
; 1

2
In

)
.

Proof. Let W = (wi,j) be the matrix W = XXt and let wi = (w1,i, . . . ,
wi−1,i)

t, i = 2, . . . , n. Let us denote by zi the vector of available observa-
tions on Xi, i.e. zi = (xi,1, . . . , xi,mi

)t, i = 1, . . . , n. Let Xi be the ma-
trix Xi = X[{1, . . . , i}, {1, . . . , mi+1}], i = 1, . . . , n − 1. The distribution
of zi is Nmi

(0, Imi
), i = 1, . . . , n. Since wi = Xi−1zi and Xi−1X

t
i−1 =
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W[{1, . . . , i − 1}], according to Proposition 2.1 the distribution of wi, i =
2, . . . , n is Ni−1(0,W[{1, . . . , i − 1}]) under the condition that the matrix
Xi−1 has fixed elements. It is easy to see that

W[{1, . . . , i}] =

(
W[{1, . . . , i − 1}] wi

wt
i wi,i

)
.

Let

w(i) = wi,i −wt
i(W[{1, . . . , i − 1}])−1wi, (3)

i.e.

w(i) =
detW[{1, . . . , i}]

detW[{1, . . . , i − 1}] , i = 2, . . . , n. (4)

For i = 2, . . . , n, w(i) can be written in the form

w(i) = zt
i zi −zt

i X
t
i−1(Xi−1X

t
i−1)

−1Xi−1zi = zt
i[Imi

−Xt
i−1(Xi−1X

t
i−1)

−1Xi−1]zi.

Since
Xi−1[Imi

− Xt
i−1(Xi−1X

t
i−1)

−1Xi−1] = Xi−1 −Xi−1 = 0,

according to Proposition 2.5, wi is independent of w(i) under the condition that
the matrix Xi−1 has fixed elements. Additionally, since the matrix Xt

i−1(Xi−1

Xt
i−1)

−1Xi−1 is idempotent, from Proposition 2.3 we have that

rank(Xt
i−1(Xi−1X

t
i−1)

−1Xi−1) = tr(Xt
i−1(Xi−1X

t
i−1)

−1Xi−1) = tr(Ii−1) = i−1.

Hence, according to Proposition 2.4 the matrix Imi
−Xt

i−1(Xi−1X
t
i−1)

−1Xi−1 is
also idempotent with the rank mi−i+1. Now, applying Proposition 2.2 we get
that w(i) has chi-square distribution χ2 (mi − i + 1), again under the condition
that the matrix Xi−1 has fixed elements. The conditional distributions of w(i)

and wi depend only on the elements of the matrix W[{1, . . . , i−1}]. Therefore
the joint density of w1,1, w(2), w2, . . . , w(n), wn will have the form

w
m1
2

−1

1,1 e−
1
2
w1,1

2
m1
2 Γ

(
m1

2

)
n∏

i=2

⎛
⎝ w

mi−i+1

2
−1

(i) e−
1
2
w(i)

2
mi−i+1

2 Γ
(

mi−i+1
2

) e−
1
2
wt

i(W [{1,... ,i−1}])−1wi

(2π)
i−1
2 (det W [{1, . . . , i − 1}]) 1

2

⎞
⎠.

By the transformation of the variables w(i) into wi,i by means of (3) with
det J = 1 we get the distribution of the elements wi,j of W, which using (4)
can be written in the form

1

2
m1+···+mn

2 Γ∗
n

(
m1

2
, . . . , mn

2

) (det W )[mn−(n+1)]/2

n∏
i=2

(det W [{1, . . . , i − 1}])(mi−mi−1)/2

etr

(
−1

2
W

)
.
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Consequently, according to Definition 2.1 W ∼ BGI
n

(
m1

2
, . . . , mn

2
; 1

2
In

)
. �

Let zi be the vector of available observations on Xi in (1), i.e. zi =
(xi,1, . . . , xi,mi

)t, i = 1, . . . , n. Let us denote by z̄i the mean of the elements
of zi, i = 1, . . . , n. Consider the data matrix

X =

⎛
⎜⎜⎜⎝

x1,1 · · · x1,m1 · · · z̄1 z̄1 · · · z̄1
...

...
...

...
...

xn−1,1 · · · xn−1,m1 · · · xn−1,mn−1 z̄n−1 · · · z̄n−1

xn,1 · · · xn,m1 · · · xn,mn−1 xn,mn−1+1 · · · xn,mn

⎞
⎟⎟⎟⎠ ,

(5)

in which we substitute z̄1, . . . , z̄n−1 for the missing values in 1, . . . , n− 1’th
row respectively of the data in (1).

Theorem 3.2 Let the matrix X, defined by (5) presents the observations
(1) on a random vector (X1, . . . , Xn)t with multivariate normal distribution
Nn(μ, In). Let xi, i = 1, . . . , mn be the column vectors of the matrix X, x̄ be
the vector x̄=(z̄1, . . . , z̄n)t and S be the matrix

S =

mn∑
i=1

(xi − x̄)(xi − x̄)t. (6)

Then x̄ and S are independent, x̄ ∼ Nn(μ, diag(m−1
1 , . . . , m−1

n )) and S has
Bellman gamma distribution BGI

n

(
m1−1

2
, . . . , mn−1

2
; 1

2
In

)
.

Proof. Let Θ be an orthogonal mn × mn matrix of the form:

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
mn

θ1,2 · · · θ1,m1 θ1,m1+1 · · · θ1,m2 · · · θ1,mn

1√
mn

θ2,2 · · · θ2,m1 θ1,m1+1 · · · θ1,m2 · · · θ1,mn

...
...

...
...

...
...

1√
mn

θm1,2 · · · θm1,m1 θ1,m1+1 · · · θ1,m2 · · · θ1,mn

1√
mn

0 · · · 0 θm1+1,m1+1 · · · θm1+1,m2 · · · θ1,mn

...
...

...
...

...
...

1√
mn

0 · · · 0 θm2,m1+1 · · · θm2,m2 · · · θ1,mn

1√
mn

0 · · · 0 0 · · · 0 · · · θ1,mn

...
...

...
...

...
...

1√
mn

0 · · · 0 0 · · · 0 · · · θmn,mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The all elements in the first column of Θ are equal to 1√
mn

. In columns from

2 to m1, the last mn −m1 elements are equal to zero. In columns from mj + 1
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to mj+1, j = 1, . . . , n − 1 the last mn − mj+1 elements are equal to zero and
the first mj elements are equal to each other. It can be easily checked that
such orthogonal matrix exists and even is not unique. Let Y = (yi,j) be the
matrix Y = XΘ. Then Y Yt = XΘΘtXt = XXt. Let us denote by yi,
i = 1, . . . , mn the column vectors of Y. It is easy to see that y1 =

√
mn x̄.

Therefore the matrix S, defined by (6) can be written in the form

S =
mn∑
i=1

xix
t
i − mnx̄x̄t = XXt − y1y

t
1 = Y Yt − y1y

t
1 =

mn∑
i=2

yiy
t
i. (7)

Since the matrix Θ is orthogonal, θt
1 θi = 0 for i = 2, . . . , mn, where θi, i =

1, . . . , mn denote the column vectors of Θ. Therefore, the sum of elements of θi

equals to zero, i = 2, . . . , mn. Hence it follows that E(yi) = 0, i = 2, . . . , mn.
It can be checked that in the matrix Y the all elements, lying on the places of
the missing data in (1) are equal to zero.

Let yk,s, s �= 1 be a nonzero element of Y. Then 1 < s ≤ mk, therefore the
last mn −mk elements of the vector θs are equal to zero. Let the vector θs has
m nonzero elements, then

yk,s = xk,1θ1,s + · · ·+ xk,mθm,s. (8)

The distribution of yk,s as a linear combination of independent normal dis-
tributed random variables is also normal. The variance of yk,s is

V ar(yk,s) = θ2
1,sV ar(xk,1) + · · · + θ2

m,sV ar(xk,m) = θ2
1,s + · · ·+ θ2

m,s = 1.

For k = 1, . . . , n

yk,1 =
√

mnz̄k =

√
mn

mk
(xk,1 + · · ·+ xk,mk

). (9)

Consequently yk,1 is also a linear combination of the observations in the k’th
row of (1) and hence is normally distributed,

E(yk,1) =

√
mn

mk
[E(xk,1) + · · ·+ E(xk,mk

)] =
√

mnμk,

where μk is the k’th coordinate of the mean vector μ and

V ar(yk,1) =
mn

m2
k

[V ar(xk,1) + · · · + V ar(xk,mk
)] =

mn

mk
.

Since (X1, . . . , Xn)t ∼ Nn(μ, In), the vectors z1, . . . , zn are independent.
Consequently, if k1, . . . , kp are different integers from the interval [1, n] and
yk1,s1, . . . , ykp,sp are nonzero elements of the matrix Y, then they are indepen-
dent. Hence for i = 1, . . . , mn the nonzero elements of the vector yi have joint
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multivariate normal distribution. For i = 2, . . . , mn it is Nn−j(0, In−j), where
j is the biggest integer, such that mj < i (m0 = 1). Since y1 =

√
mn x̄, the

distribution of x̄ is Nn(μ, diag(m−1
1 , . . . , m−1

n )). From (8) and (9) it follows
that if yk,s1, . . . , yk,sp are arbitrary nonzero elements of Y, then they have
joint multivariate normal distribution. Moreover, (8) and (9) can be written
in the form

yk,s = (xk,1 − μk)θ1,s + · · · + (xk,m − μk)θm,s, s �= 1,

yk,1 = (xk,1 − μk)

√
mn

mk
+ · · · + (xk,mk

− μk)

√
mn

mk
+ μk

√
mn.

Hence for s > 1

Cov(yk,1, yk,s) = E(yk,1yk,s) = E(xk,1 − μk)
2θ1,s

√
mn

mk
+ · · ·

+ E(xk,m − μk)
2θm,s

√
mn

mk
= (θ1,s + · · · + θm,s)

√
mn

mk
= 0

and for 1 < s < q

Cov(yk,s, yk,q) = E(yk,syk,q) = E(xk,1 − μk)
2θ1,sθ1,q + · · ·

+ E(xk,m − μk)
2θm,sθm,q = θ1,sθ1,q + · · ·+ θm,sθm,q = 0.

Therefore yk,s1, . . . , yk,sp are independent and hence the vectors y1, . . . ,
ymn are independent. Consequently from (7) and Theorem 3.1 the Theorem
follows. �

For the data in (1), let us consider the hypotheses H0 : Σ = Σ0 against Ha :
Σ �= Σ0, where Σ0 is an arbitrary positive definite matrix of size n. It is shown
in [4], that the testing problem is invariant under a suitable transformation of
the data in (1) and without loss of generality we can assume that Σ0 = In,
where In is the identity matrix of size n.

It is easy to see that under H0 : Σ = In, the maximum likelihood estima-
tions for the missing values in the j’th row in (1) are equal to z̄j, j = 1, . . . , n.
The matrix 1

(mn−1)
S is actually the empirical covariance matrix, obtained from

the data matrix (5).
Let us consider the modified likelihood ratio test statistic λ∗,

λ∗ = (e/mn)nmn/2(detS)(mn−1)/2e−(trS)/2,

which is unbiased in the classical case of fully observed data matrix (see [2]).

Theorem 3.3 Under H0 : Σ = In, λ∗ is distributed as the product

K (ζ1 . . . ζn−1)
(mn−1)/2η1 . . . ηn,
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where K is the constant K = (e/mn)nmn/2 2n(mn−1)/2, ζ1, . . . , ζn−1, η1, . . . ,
ηn are mutually independent random variables, ζj has Beta distribution Beta (

(mj+1 − j − 1)/2, j/2), j = 1, . . . , n − 1 and ηj ∼ ξ
(mn−1)/2
j e−ξj , where ξj is

Gamma distributed G((mj − 1)/2, 1), j = 1, . . . , n.

The proof of Theorem 3.3 will appear in a subsequent paper “Stochastic
representations of the Bellman gamma distribution”.

Since Theorem 3.3 give the exact distribution of the test statistic λ∗, the
test procedure, suggested in this paper is proper for small samples.
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