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Abstract

We study the probability distribution of the biggest gap between
two consecutive choices in an m-tuple of distinct integers, assuming the
m-tuple is chosen uniformly from within the range 1, . . . , n > m, or, in
other words, in the winning set of an m/n lottery game. We further
study the asymptotic behavior of its mean and variance.
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1 Introduction

The game of lottery is popular the world over. In the m/n lottery game, the
player chooses m integers from among the integers 1, . . . , n > m, the order of
choice being unimportant; the lottery organizers choose publicly m numbers
uniformly at random in the same way, and if they turn out to be the same
numbers as the ones the player chose, the player wins. The specific values
of m and n vary from lottery to lottery, but m = 6 and n = 49 appears to
be a popular choice for many national lotteries. In practice, the lottery is
hardly ever a win/lose game, as various lesser winning prizes are commonly
awarded to the player according to how many chosen numbers the player and
the organizers have in common.

The media usually publish the winning set of numbers, along with (simple)
statistics on the number of times each particular number from 1 to n has
appeared in the winning set. The lottery is, however, an opportunity to carry
out much more sophisticated statistical/probabilistic studies, such as the ones

1The author is also affiliated with the School of Electronic, Electrical & Mechanical
Engineering, University College Dublin, Ireland.
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already presented in various papers in the mathematical literature [2, 5, 6, 7].
In a previous work of ours [2], in particular, we studied the following question:
“What is the probability that, out of m > 0 numbers drawn uniformly randomly
from the range 1, . . . , n, where n ≥ m, at least two are consecutive, or, more
generally, that no two numbers are closer than k integers apart?”

The answer turned out to be a non-trivial exercise in constrained combina-
torics, and rather surprising as well, to the extent of being almost paradoxical,
as it showed that the chosen numbers tend to form clusters much more of-
ten than we would intuitively expect: for example, in the case m = 6 and
n = 49, almost half of the time the winning sets contain consecutive integers!
In this work, we propose to study the related question of how far apart two
consecutive choices are likely to be:
“What is the probability that, out of m > 0 numbers drawn uniformly ran-
domly from the range 1, . . . , n, where n > m (and subsequently sorted), two
consecutive such choices lie k integers apart or further?”

In other words, in our previous work we studied the smallest gap between
two consecutive choices; we now study the largest gap between two consecutive
choices. Both of these problems are actually problems in discrete probability
only motivated by the game of lottery, in line with the tradition of the devel-
opment of probability theory out of problems originating in games of chance.

2 The result

Let us choose an m-tuple (X1, . . . , Xm) uniformly randomly out of the m-
tuples in the range 1, . . . , n > m; without loss of generality we assume Xi < Xj

whenever i < j. For a given integer k, we define the event Xi+1−Xi ≥ k by Ai,
i = 1, . . . , m−1. We define the new random variable Y = max

i=1,... ,m−1
(Xi+1−Xi),

and we seek p(k, m, n) = P(Y = k).

2.1 The probability distribution

Let us start by computing

P (k, m, n) = P(Y ≥ k) = P(∪m−1
i=1 Ai) =

N(∪m−1
i=1 Ai)(
n
m

) . (1)

The Inclusion-Exclusion Principle [1] gives:

N(∪m−1
i=1 Ai) =

m−1∑
i=1

N(Ai) −
∑

1≤i1<i2≤m−1

N(Ai1 ∩ Ai2) +

∑
1≤i1<i2<i3≤m−1

N(Ai1 ∩ Ai2 ∩ Ai3) − . . . (2)
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We first observe that there are

(
m − 1

l

)
ways to choose l out of m−1 indices.

In order to compute N(Ai1 ∩ . . . ∩ Ail), we note that, for any set of choices
satisfying the event Ai1 ∩ . . . ∩ Ail, choices i1, . . . , il are each followed by at
least k − 1 integers, none of which lies among our choices. An equivalent way
then for making such a choice is to consider n− l(k− 1) “white balls” ordered
on a line, choose m among them at random, insert k − 1 “black balls” in the
line after each one of the choices i1, . . . , il, and finally drop the colors and
order the balls consecutively from 1 to n. It follows that

N(Ai1 ∩ . . . ∩ Ail) =

(
n − l(k − 1)

m

)
, (3)

hence finally that

N(∪m−1
i=1 Ai) =

m−1∑
l=1

(−1)l−1

(
m − 1

l

)(
n − l(k − 1)

m

)
(4)

and that

P (k, m, n) = P(∪m−1
i=1 Ai) =

=

(
m−1∑
l=1

(−1)l−1

(
m − 1

l

)(
n − l(k − 1)

m

))/(
n

m

)
. (5)

In the expressions above we follow the usual convention that

(
n

m

)
= 0 if

n < m. The following facts are easily verified:

• P (1, m, n) = 1, P (k, m, n) > 0 for 1 ≤ k ≤ n−m+1, and P (k, m, n) = 0
for k ≥ n − m + 2.

• The nonzero terms in the sum for a given k > 1 correspond to 1 ≤ l ≤
min

(
m − 1,

⌊
n − m

k − 1

⌋)
and to 1 ≤ l ≤ m − 1 for k = 1.

Consequently, the probability p(k, m, n) = P(Y = k) can be computed as

p(k, m, n) = P (k, m, n) − P (k + 1, m, n) =

=

(
m−1∑
l=1

(−1)l−1

(
m − 1

l

)[(
n − l(k − 1)

m

)
−
(

n − lk

m

)])/(
n

m

)
(6)

for k ≥ 1. Note that p(k, m, n) = 0 for k ≤ 0.
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2.2 Asymptotics, mean value, and variance

For large n, (6) can be simplified, as, setting x = n − lk, it follows that(
x + l

m

)
−
(

x

m

)
=

(
x

m

)[
(x + 1) . . . (x + l)

(x − m + 1) . . . (x − m + l)
− 1

]
≈
(

x

m

)
lm

x
, (7)

and hence that

p(k, m, n) ≈
(

m−1∑
l=1

(−1)l−1

(
m − 1

l

)(
n − lk

m

)
lm

n − lk

)/(
n

m

)
. (8)

Expanding the binomial coefficients using their factorial representation and
using the approximation

(n − lk − 1)!

(n − lk − m)!
≈ (n − lk)m−1

+ , (9)

valid for n � m, yields the further simplification that

p(k, m, n) ≈
(

m−1∑
l=1

(−1)l−1 (n − lk)m−1
+

(l − 1)!(m − 1 − l)!

)/(
n

m

)
, (10)

where (x)+ = x if x > 0 and (x)+ = 0 if x ≤ 0.

In order to compute the mean value μ = E(X) =
∑
k≥1

kp(k, m, n) of this

probability distribution, we first consider the sum

n/l∑
k=0

k(n − lk)m−1 ≈
∫ n/l

0

x(n − lx)m−1dx =
1

l2

∫ n

0

(n − y)ym−1dy =
nm+1

l2m(m + 1)
,

(11)

whereby, using the approximation

nm+1(n − m)!

n!
≈ n, (12)

valid for n � m, we finally obtain

μ ≈ n

m + 1

m−1∑
l=1

(−1)l−1

l

(
m − 1

l

)
=

n

m + 1

m−1∑
l=1

1

l
. (13)
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The last equality is by no means evident, though it is a known combinatorial
identity. To prove it, start with the well known binomial identity:

(x + y)m =

m∑
l=0

(
m

l

)
xlyn−l = ym +

m∑
l=1

(
m

l

)
xlyn−l ⇔

(x + y)m − ym

x
=

m∑
l=1

(
m

l

)
xl−1yn−l. (14)

Then take the anti-derivative with respect to x and set y = 1 to obtain∫ x

0

(u + 1)m − 1

u
du =

m∑
l=1

(
m

l

)
xl

l
. (15)

Set further x = −1 to obtain

m∑
l=1

(
m

l

)
(−1)l−1

l
=

∫ 0

−1

(u + 1)m − 1

u
du =

=

∫ 1

0

um − 1

u − 1
du =

∫ 1

0

m−1∑
i=0

uidu =
m−1∑
i=0

∫ 1

0

uidu =
m∑

i=1

1

i
. (16)

This proves the identity.
Our asymptotic analysis shows that the mean value of X is asymptotically

linear in n (assuming n � m); this result agrees with our observations in
numerical simulations. In particular, note that this result is valid for all m,
not just large m.

In order to compute the variance σ2 = E(X2) − μ2, we follow a similar
procedure. We first consider the sum

n/l∑
k=0

k2(n − lk)m−1 ≈
∫ n/l

0

x2(n − lx)m−1dx =

=
1

l3

∫ n

0

(n − y)2ym−1dy =
2nm+2

l3m(m + 1)(m + 2)
, (17)

and, using this with (10), we obtain that

E(X2) ≈ 2n2

(m + 1)(m + 2)

m−1∑
l=1

(
m − 1

l

)
(−1)l−1

l2
=

=
2n2

(m + 1)(m + 2)

m−1∑
i=1

1

i

i∑
j=1

1

j
. (18)
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Hence the asymptotic variance is

σ2 = E(X2) − μ2 ≈ n2

m + 1

⎡
⎣ 2

m + 2

m−1∑
i=1

1

i

i∑
j=1

1

j
− 1

m + 1

(
m−1∑
i=1

1

i

)2
⎤
⎦ , (19)

and therefore the standard deviation is also asymptotically linear in n, assum-
ing n � m. Again, we stress that this result is valid for all m, not just large
m.

In both (11) and (17), in order to approximate the sum by an integral, we
made use of the Euler summation formula [4].

The asymptotic forms for μ and σ we have obtained are still rather com-
plicated, but simpler forms can be obtained if we focus on large values of m
(namely assuming that m � 1), by simplifying the discrete sums appearing in
the two expressions (note that the current expressions are accurate for all m,
as long as n � m). We will make use of the well known asymptotic expansion
[4]

H(n) =
n∑

i=1

1

i
= ln(n) + γ +

1

2n
− 1

12n2
+

1

120n4
+ O(n−6), (20)

where γ = 0.5772156649 . . . is the Euler-Mascheroni constant. It follows im-
mediately that

μ =
n

m + 1
(γ + ln(m − 1)), (21)

but, in order to simplify σ2, we also need an asymptotic expression for the sum
m−1∑
i=1

H(i)

i
:

m−1∑
i=1

H(i)

i
=

m−1∑
i=1

(
ln(i)

i
+

γ

i
+

1

2i2
− 1

12i3
+

1

120i5
+ . . .

)
≈

≈
m−1∑
i=1

ln(i)

i
+ γH(m − 1) + α ≈

m−1∑
i=2

ln(i)

i
+ γ(γ + ln(m − 1)) +

1

2
α, (22)

where

α = ζ(2) − 1

6
ζ(3) +

1

60
ζ(5) + . . . (23)
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is a constant and ζ denotes Riemann’s ζ-function. Applying further Euler’s
summation formula on the remaining sum we get

m−1∑
i=2

ln(i)

i
=

m−2∑
i=1

ln(i + 1)

i + 1
≈
∫ m−1

0

ln(x + 1)

x + 1
dx − 1

2

ln(m)

m
=

=
1

2

(
ln2(m) − ln(m)

m

)
, (24)

whence, only keeping terms asymptotically larger than 1,

σ2 ≈ n2

(m + 1)2

[
m + 1

m + 2
ln2(m) + 2

m + 1

m + 2
(γ2 + γ ln(m − 1) + α/2)

− γ2 − 2γ ln(m − 1) − ln2(m − 1)

]
. (25)

We now observe that

m + 1

m + 2
ln2(m) − ln2(m − 1) ≈ − ln2(m)

m + 2
− 1

m2
and 2γ

ln(m − 1)

m + 2
(26)

are asymptotically negligible compared to 1, whence

σ2 ≈ n2

(m + 1)2
(α + γ2) ≈ 1.795

n2

(m + 1)2
. (27)

To sum up,

• the probability distribution of Y is given by (6);

• the asymptotic behavior of its mean and variance is given by (13) and
(19), respectively, assuming n � m;

• assuming further that n � m � 1, the asymptotic behavior of its mean
and variance can be further simplified and is given by (21) and (27),
respectively.

Figure 1 shows how the mean and the standard deviation of Y , along with
their asymptotic estimates (21) and (27), vary with m and n. For fixed m and
varying n, the estimates are linear in n and are very good approximations of
the actual quantities, only off by a small constant. For fixed n and varying
m, however, we verify that the estimates are accurate only as long as m 	 n;
beyond this, the curves diverge.
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Figure 1: Mean value (left) and variance (right) of the probability distribution
of Y along with the estimates (13) and (19) for m = 6 and 6 ≤ n ≤ 150 (top
row) and for n = 50 and 2 ≤ m ≤ 50 (bottom row).

3 Attempts to approximate the probability dis-

tribution

3.1 Simplification of the original formulas

Can we get a simpler closed form solution for (6) or (10), in particular not
involving a sum? Revisiting (10), expanding the binomial coefficients, and
using the approximation that

(n − lk)m−1
+

(n − m)!

n!
≈ 1

n

(
1 − lk

n

)m−1

+

≈ 1

n
e−lk(m−1)/n1l<n/k(l), (28)

which grows less and less accurate as the product kl approaches n, we obtain

p(k, m, n) ≈ m

n

min(m−1,n/k)∑
l=0

(−1)l−1l

(
m − 1

l

)
e−lk(m−1)/n. (29)
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In order to sum this in closed form, we use m− 1 as the upper limit in the
sum independently of k (which is a rather extreme approximation step):

min(m − 1, n/k) ≈ m − 1 for all k. (30)

Revisiting the binomial identity in (14), using m − 1 in place of m and differ-
entiating with respect to x yields

(m − 1)(x + y)m−2 =

m−1∑
l=1

(
m − 1

l

)
lxl−1ym−1−l. (31)

Use y = 1 and x = −e−k(m−1)/n to obtain

(m − 1)(1 − e−k(m−1)/n)m−2 =
m−1∑
l=1

(
m − 1

l

)
l(−1)l−1e−lk(m−1)/nek(m−1)/n,

(32)

whence

p(k, m, n) ≈ (m − 1)
m

n
e−k(m−1)/n(1 − e−k(m−1)/n)m−2. (33)

In order to find the most likely value kml, we set x = e−k(m−1)/n, then set the
derivative of x(1 − x)m−1 with respect to x equal to 0, finding x = 1/(m − 1)
as the only root, and then set

e−kml(m−1)/n =
1

m − 1
⇔ kml = n

ln(m − 1)

m − 1
. (34)

Hence, the (approximate) most likely value of k is close to μ and also asymp-
totically linear in n; this result also agrees with our observations in numerical
simulations that the peak of the probability distribution is very close to the
mean. Unfortunately, a direct comparison of the graphs of (6) and (33) (see
Figure 2) reveals that the latter is not a very good approximation of the former
(it may not even be a proper probability distribution, as its terms may not
be summable to 1), as it exhibits a much heavier tail, and hence that (30) is
not a valid approximation, though both curves have the same basic features:
they both start with zero values, decay to zero values, and have a single local
(hence global) maximum.

3.2 Negative binomial fit

Getting back to (33), let us perform the approximation

e−k(m−1)/n ≈
(

1 − m − 1

n

)k

and 1 − e−k(m−1)/n ≈

≈ 1 −
(

1 − m − 1

n

)k

≈ k
m − 1

n
, (35)
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valid when m 	 n, which leads to the approximation

p(k, m, n) ≈ km−2(m − 1)
m

n

(
1 − m − 1

n

)k (
m − 1

n

)m−2

≈

≈ km−2(m − 1)
(
1 − m

n

)k (m

n

)m−1

. (36)

Setting

p = m/n, (37)

p is the probability of choosing an integer out of the range 1, . . . , n, when m
such integers are chosen in total. Therefore,

p(k, m, n) ∼ (1 − p)kpm−1, (38)

which is the probability mass function of the negative binomial distribution.
This implies that, as long as m 	 n, p(k, m, n) follows approximately a nega-
tive binomial distribution, whose full mass function is

pnb(k) =

(
k + r − 1

r − 1

)
pr(1 − p)k, (39)

and expresses the probability that, in k + r independent and identically dis-
tributed trials of an experiment with success probability p, exactly r successes
occur with the last success occurring at trial k + r; the formula remains valid,
however, for non-integer values of r. In order to fit the best possible nega-
tive binomial distribution to our original distribution, we use the mean and
variance of the former

μnb = r
1 − p

p
, σ2

nb = r
1 − p

p2
(40)

and match them to those of the latter:

μnb = μ, σ2
nb = σ2. (41)

It follows that

p =
μ

σ2
≈ m + 1

n

H(m − 1)

2m+1
m+2

∑m−1
i=1

H(i)
i

− H2(m − 1)
and r = μ

p

1 − p
. (42)

The estimate for p agrees with the cruder previous estimate (37), with the
exception of the factor involving the harmonic numbers.

Figure 2 compares the various distributions for Y we have proposed so far,
namely the exact distribution (6), the approximation (33), and the negative
binomial fit (39), for two sets of parameters: for the first set n = 150 and m = 6
we see that the binomial fit is almost identical to the exact distribution, while
for the second set n = 50 and m = 10 we see that the binomial fit is a good
but not perfect approximation. In both cases, the approximation (33) is very
far from the exact distribution, though its peak (most likely value) is quite
accurate, as we saw above.
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Figure 2: Comparison of the various distributions proposed for Y , for n = 150
and m = 6 (left), and for n = 50 and m = 10 (right): the exact distribution
(6), the approximation (33), and the negative binomial fit (39).

4 Comparison with actual lottery data

In order to verify the correctness of our derivation of (6), we compare it against
actual lottery data collected from the website of the Italian national lottery
http://www.lottomatica.it, which uses n = 90, m = 5. The advantage of the
Italian national lottery over other national lotteries is that it has been running
under the same rules since 1939: the archives contained 45221 winning sets
till March 2009. Figure 3 shows the distribution of Y against the histogram of
the data: the match is virtually exact.

5 Some joint probability distributions

In addition to the random variable Y defined in the beginning of Section 2,
and in the same context, let us define Z = min

i=1,... ,m−1
(Xi+1−Xi). We shall now

endeavor to define the joint probability distribution of Y and Z, and more
specifically P(Y ≥ K, Z ≥ k) with K ≥ k ≥ 1. To begin with, any choice of m
integers in the range 1, . . . , n that satisfies both conditions has the property
that between any two consecutive choices lie at least k−1 non-chosen integers,
and there are, of course, exactly m − 1 such pairs of consecutive choices. We
can then remove (m − 1)(k − 1) integers, and by renumbering we reach an
m-tuple chosen within the range 1, . . . , n − (m − 1)(k − 1) with a maximal
distance between consecutive choices of at least K−k+1. Conversely, starting
with such an m-tuple, adding k − 1 “spaces” after each one of the first m − 1
choices, and renumbering, including the spaces, consecutively, we obtain an
m-tuple in the the range 1, . . . , n with the two original properties. It follows
from (5) that:
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Figure 3: Comparison of the histogram of Y over the winning sets of the Italian
lottery, which uses n = 90 and m = 5, versus the theoretical distribution of Y
for this parameters as given by (6).

P(Y ≥ K, Z ≥ k) =

=

(
m−1∑
l=1

(−1)l−1

(
m − 1

l

)(
n − (m − 1)(k − 1) − l(K − k)

m

))/(
n

m

)
, (43)

while the probability mass function can be obtained by the formula:

P(Y ≥ K, Z ≥ k) = P(Y ≥ K, Z ≥ k) − P(Y ≥ K + 1, Z ≥ k)

− P(Y ≥ K, Z ≥ k + 1) + P(Y ≥ K + 1, Z ≥ k + 1), (44)

a result of the Inclusion-Exclusion Principle.

Incidentally, by setting K = k, (43) also proves that

P(Z ≥ k) = P(Y ≥ k, Z ≥ k) =

(
n − (m − 1)(k − 1)

m

)/(
n

m

)
, (45)

which was the subject of study of a previous work of ours [2].

We can now find the joint probability distribution of Y , Z, X1, and Xm

using the formula:

P(Y ≥ K, Z ≥ k, X1 ≥ s, Xm ≤ S) =

= P(Y ≥ K, Z ≥ k|X1 ≥ s, Xm ≤ S)P(X1 ≥ s, Xm ≤ S). (46)
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Using (44), we see that the effect of setting X1 ≥ s and Xm ≤ S is effectively
to use S − s + 1 in place of n in the numerator, whence

P(Y ≥ K, Z ≥ k|X1 ≥ s, Xm ≤ S) =

=

(
m−1∑
l=1

(−1)l−1

(
m−1

l

)(
S−s+1−(m−1)(k−1)−l(K−k)

m

))/(
n

m

)
. (47)

Applying the same substitution, we see immediately that

P(X1 ≥ s, Xm ≤ S) =

(
S − s + 1

m

)/(
n

m

)
. (48)

Combining the three formulas,

(
n

m

)2

P(Y ≥ K, Z ≥ k, X1 ≥ s, Xm ≤ S)

/(
S−s+1

m

)
=

=

(
m−1∑
l=1

(−1)l−1

(
m−1

l

)(
S−s+1−(m−1)(k−1)−l(K−k)

m

))
(49)

6 Conclusion

Assuming (X1, . . . , Xm) is an integer m-tuple without repeated entries chosen
uniformly from within the range 1, . . . , n, so that n ≥ m, and so that Xi < Xj

whenever i < j, what is the probability distribution of Y = max
i=1,... ,m−1

(Xi+1 −
Xi)? We found the exact form of this distribution in the form of a sum involv-
ing binomial coefficients, which we were unable to simplify further. In terms
of the popular game of chance known as the lottery, we seek the maximal dis-
tance between two consecutive choices in the winning set of numbers of the
lottery (assuming the choices are sorted increasingly and that the winning set
is chosen uniformly randomly).

We then turned our attention to the calculation/estimation of the mean
value and standard deviation of this probability distribution. We were suc-
cessful in finding asymptotic formulas valid for n � m, both linear in n,
which we simplified even further under the assumption that n � m � 1. We
also attempted to find a simplified expression approximating the probability
distribution, and some asymptotic manipulation suggested that the standard
negative binomial distribution might be a good candidate: fitting the negative
binomial with the correct mean and standard deviation, we observed that the
fit is indeed good as long as n � m.

We tested our result against real lottery data collected from the website
of the Italian national lottery: the resulting histogram matched perfectly the
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distribution we derived. This result can be used to test for tampering with
lottery results, based on the law of large numbers, along the lines we followed
in [3]. We finally formulated some joint probability distributions involving Y
and Z = min

i=1,... ,m−1
(Xi+1 − Xi).
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