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Abstract 

This paper presents a complementary technique for empirical analysis of 
financial ratios and bankruptcy risk. Within this new framework, we 
propose the use of a new measure of risk, the Generalized Risk Box 
(GRB) measure. This method would be a general methodological 
guideline associated with financial data, including solving some 
methodological problems concerning financial ratios such as non-
proportionality, non-asymmetry and non-scalability. In this paper, 
bankruptcy prediction and better accuracy rates obtained with GRB 
approach in compare to employing common ratios. This paper also 
suggests a Robust Logit method, which extends the Logit model by 
taking outlier into account. We employ Logit and Robust Logit 
Regression to assess our new method and sample forecast performances. 
Accuracy results show Robust Loigt method is substantially superior to 
the Logit method in financial studies.   
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1 Introduction 
 
Corporate failure prediction has been stimulated both by private and government 

sectors all over the world (Charitu et al., 2004). Business failure prediction has been 
one of the major research domains in financial researches to evaluate the financial 
health of companies (Grice and Dugan, 2001). Moreover, company failure may inflict 
negative shocks for each of the shareholders, thus the total cost of failure will be large 
regarding to economic and social costs (Shumway, 2001). Bankruptcy prediction 
models have been proven necessary to obtain a more accurate statement of firm’s 
financial situation (Keasey and Watson, 1991). 
     Beaver (1967) predicted corporate failure through the combined use of 
sophisticated quantitative using selected financial ratios. Altman (1968) extended this 
narrow interpretation by investigating a set of financial ratios as well as economic 
ratios as possible determinants of corporate failures using multiple discriminant 
analysis, named the Z-score model. Since Altman (1968), literature on predicting 
bankruptcy has witnessed numerous extensions and modifications. However, none of 
them had a perfect predictor functional form and all procedures utilised use of 
common ratios without any theoretical basis. Previous researchers all emphasized that 
financial ratios have significant effect on bankruptcy risk, return, credit risk, 
commercial risk, market and economic conditions2.  

Trimming the sample ratios, eliminating negative observations, and use of various 
transformations such as logarithms and square roots to achieve more normal 
distributions were done by some studies (Canbas et al., 2004). While attempts have 
been made to solve problems of using accounting-based financial ratios in statistical 
analysis, none has been entirely successfully developed in quantitative and objective 
systems for bankruptcy prediction (Andres et al., 2005). However, most of these 
attempts have utilised use of common ratios, which may exceeded cost of errors in 
the analysis and problem of mis-specification. In general, no equally convenient or 
superior alternative transformed ratio has been developed and applied3 . 

Some researchers made correction for univariate non-normality and tried to 
approximate univariate normality by transforming the variables prior to estimation of 
their model. Deakin (1976) used logarithmic transformation for the lack of normality 
for distributions, and then Foster (1986) used square root and lognormal 
transformation of financial ratios. However, logarithmic and square root 
transformation may also be arbitrary (So, 1987). The rank transformation used by 
Kane et al., (1996) reported improvement in fit and less biased results by linear  
                                                 
2 For more details about financial ratios properties, see Watson (1990) and Tippett (1990).  
3 Some exposition of weaknesses in the use of common ratios such as scaling, proportionality and symmetric 
effects are provided in Bahiraie et al. (2008) and Azhar and Elliott (2006). 
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models with transformed data set. Logarithmic and rank transformations and square 
roots are even more difficult to interpret because they can alter the natural monotonic 
relationships among data (Canbas et al. 2004). Recently Ooghe, et al., (2005) used 
Logit transformation to achieve better accuracy.  

In the other hand, there are many methods to estimate the probability of 
bankruptcy but none of them have taken the outliers into account when there is a 
discrete dependent variable. Outliers which can seriously distort the estimated results 
have been well documented regression model. Some researchers approximate 
univariate normality by 'trimming' by the method known as 'outlier deletion', which 
involves segregating outliers with reference to normal distribution (Ezzamel et al., 
1990). Although methods and applications that take outliers into account are well 
known when the dependent variables are continuous (Rousseeuw, 1983; Rousseeuw 
and Yohai, 1984), few have conducted empirical studies when the dependent variable 
is binary. Atkinson and Riani (2001), Flores and Garrido (2001) have developed the 
theoretical foundations as well as the algorithm to obtain consistent estimator in Logit 
model with outliers, but they do not provide applied studies. If outliers indeed exist 
when the dependent variable is binary, the conventional Logistic model might be 
biased. In summary, there is no general guideline concerning the appropriate data 
representation which is able to solve ratio difficulties. Respectively there is a need of 
regression method application in order to take outliers into account. Furthermore, 
none of the previous attempts had perfect prediction in the functional form. While all 
of procedures utilizing the use of common ratios without considering numerator and 
denominator of each ratio in specific, which are the most essential factor concerning 
each ratio value. In view of these shortcomings and the frequently used ratios and 
statistical techniques in failure prediction modelling based on current knowledge of 
failing firms, we construct a new type of ratio representation named Generalized Risk 
Box (GRB). For regression procedure, we employed robust logistic regression in 
order to take outliers into account in bankruptcy predictions. 

Our first objective in this paper is to propose a new approach, which involves data 
representation, followed by illustrating the use of this methodology for measuring 
financial risk in ratio analysis and prediction bankruptcies. The second aim of this 
paper is to predict bankruptcy probability with the consideration of outliers. We apply 
method of Atkinson and Riani (2001). According to literature, our paper is the first 
one that using the Robust Logit model for financial data and bankruptcy predictions. 

The remainder of this paper proceeds as follows. Section 2 discusses summary of 
statistical Robust Logit Regression methods of prediction and its general framework. 
In section 3, we briefly derive our new method, the Generalized Risk Box (GRB). 
Subsequently, changes in each risk components associated with changes in GRB 
coordinates will be viewed geometrically. Section 4 illustrates an empirical 
application of Logit Regression (LR) and Robust Logistic Regression (RLR) as 
classification methods and we summarise and conclude in Section 5. 
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2 Robust Logistic regression as Statistical Method of Prediction  
 
Since Altman (1968), MDA is a prevalent technique in bankruptcy prediction in 

terms of classification or prediction ability among traditional models (Aziz and Dar, 
2006). Some studies have found Logit model superior to MDA (Gu, 2002). However, 
the research by Aziz and Dar, (2006) has shown that the two models are equally 
efficient. Robust statistics provides an alternative approach to classical statistical 
methods. Robust methods provide automatic ways of detecting, down weighting (or 
removing), and flagging outliers, largely removing the need for manual screening. 
There are various definitions of "a robust statistic". A robust statistic is resistant to 
errors in the results produced by deviations from assumptions. The median is a robust 
measure of central tendency, while the mean is not; for instance, the median has a 
breakdown point of 50%, while the mean has a breakdown point of 0% (Maronna et 
al., 2006). The median absolute deviation and inter-quartile range are robust measures 
of statistical dispersion, while the standard deviation and range are not. Trimmed 
estimators and Winsorised estimators are general methods to make statistics more 
robust. The basic tools used to describe and measure robustness are, the breakdown 
point, the influence function and the sensitivity curve. Intuitively, the breakdown 
point of an estimator is the proportion of incorrect observations an estimator can 
handle before giving an arbitrarily large result4.  

Historically, several approaches to robust estimation were proposed, including R-
estimators and L-estimators. However, M-estimators now appear to dominate the 
field as a result of their generality, high breakdown point, and their efficiency (Huber, 
1981). M-estimators are a generalization of maximum likelihood estimators (MLE). 
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1
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ψ =  if ρ  has a derivative5. It can be shown that 

M-estimators are asymptotically normally distributed, so that as long as their standard 
errors can be computed, an approximate approach to inference is available. It can be 
shown that the influence function of an M-estimator T  is proportional to ψ  (Huber,  
                                                 
4 See Huber, (1981) and Maronna et al. (2006) for more details.  
5 Notice that M-estimators do not necessarily relate to a probability density function. As such, off-the-shelf 
approaches to inference that arise from likelihood theory can not, in general, be used. 
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1981). Which means we can derive the properties of such an estimator (such as its 
rejection point, gross-error sensitivity or local-shift sensitivity) when we know its ψ 
function. The classical MLE for generalized linear models can be highly influenced 
by outliers. In all of the above models the explanatory vectors ix can be highly 
influential outliers. 

The Robust Library in S-Plus software enables us to robustly fit Generalized 
Linear Models (GLIM) for response observations , 1,2,...iy i n= , which may follow 
one of the Poisson or Binomial distributions. The Binomial Distribution is 

( )( ) (1 ) ii n jj j
i i i

n
P y j

j
μ μ −⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 for 0,1,... ij n= where 0 1iμ≤ ≤ and in is the number of 

binomial trials for observation iy . When 1in = , the observations are called iy Bernoulli 
trials. The expected value of iy for the Binomial distribution is related to iμ  

by i
i

i

y
E
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⎛ ⎞
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i i i ipx x x x=  of P  independent 

explanatory variables, and corresponding vector 1, 2( , ..., )T
pβ β β β= of unknown 

regression coefficients, from which software form the linear predictor T
ixη β= . The 

linear predictor η and the expected value iμ are related through the link function g 
which maps iμ  to ( )igη μ= . The inverse link transformation 1g − maps η  
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. In the Bernoulli distributions, the 

response iy is either 0 or 1, and so can not be an outlier. In the general Binomial 
model when in is large, the iy can also be outliers in cases where the expected values 

of iy
n

 are small. Thus, in the general Binomial cases, influential iy outliers need for a 

robust alternative to the MLE. Regarding misclassification results which are 
important in our research we used misclassification model approach to estimate iβ  
instead of Cubif or Mallows approaches, as a solution of the estimating 

equation
1

. .( ( , )) 0
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1 1( 1, ) ( ) 1 2 ( ) ( , )T T T
i i i i iP y x g x g x F xβ γ β β γ− −⎡ ⎤= = + × − =⎣ ⎦  with 1g − . This estimator, 

introduced by Copas (1988), has properties similar to those of the Mallows-type 
unbiased bounded influence estimates. 
 

3 Methodology: Generalized Risk Box Method (GRB) 
 
Following the static framework proposed by Bahiraie et al. (2008) which is a two-

dimensional box, we introduce a new generalized geometric device named the 
Generalized Risk Box (GRB). This new approach allows visualization of evolution of 
transformation that is associated with ratio values in which pair values of each risk 
ratios ( , )i iX Y are represented as Cartesian coordinates. For expositional purposes 
suppose our proxy for risk chosen is employed by iX  as numerator and iY  as 
denominator values of i

i

X
Y

 ratio. For any number of firms, 1, 2,3,...,i n∀ = , proposed 

Generalized Risk Box iGRB  is defined as a function of iX  and iY . Consider a square 
two-dimensional space that captures all changes in numerator iX  and denominator iY , 
for any firm i and any period t where X and Y can be positive, negative or zero6. Let 
the risk flows for any hypothetical firm i  consist of the set of all X and Y for n 
years 1, 2,3,...,t n∀ = . Ratio values are usually available at uniform discrete time 
intervals, annually, quarterly. The dimensions of the GRB are central with respect to 
max( )X  and max( )Y . The essential ingredient is that the length of any side is set at 
two times the maximum of largest absolute changes value of whichever is bigger 
from the numerator or denominator values recorded during the considerable period t.  
Correspondingly, the total area of GRB for i t∈  is 2 max(max ) 2iX L× = if the 
largest absolute value is from iX  or 2 max(max ) 2iY L× = if the largest value is from 

iY  values where L is the length of one side of a GRB. iY  values are depicted on the 
vertical axis ( )Y±  and iX  values on the horizontal axis ( )X±  as labeled in Figure 1 as 

max( )X±  and max( )Y± . When comes down to it, the actual values of maxX±  and 

maxY± depends on which of the two is largest, and this value will then be applied to 
both axes to ensure a perfect square. One of the primary innovations of the GRB 
index is the scaling and ranking ability factor that stems directly from the GRB 
construction and is two times the absolute maximum of the largest change for the 
period of study which is 2(L). Please note that X or Y  value in the denominator and 
numerator will only be equal when either X  or Y  is also the largest value during the 
period of study. 

                                                 
6  It is applicable to any level of aggregation such as cross-country studies, cross sector, and ratios. 
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Figure 1: Generalized Risk Box 

 
 
 
Assume that  
(i) Changes are a monotonically increasing function  
(ii) Risk values requirements for both iX values and iY  values are equal.  

Measure of Generalized Risk Box that satisfies for n firms 1,2,3,...,i n∀ =  is given by:   
1
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X Yi iX Yi i iL X Yn n
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−
= − =  

Thus the GRB index has a range ( 1 1)iGRB− < <  . 
 
In order to show the Geometrical relation between ( , )i iX Y and GRB consider the 

proposed measure of Generalized Risk Box:  
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In order to have scaled measure, scaling will be done by the largest value for a given 
data set that allows us to observe the progress of risk changes. We have: 

2(max{max | |, max | |}) 2
i i i i

i
n n

X Y X Y
X Y L

GRB − −
= =  which is a scaled measure. 

For partial presentation we will have 1
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 is similar but opposite to that in the lower sector i
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∂

∂

⎛ ⎞
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. Hence, 

the GRB index exhibits proportional scaled. 
 
 

4 Illustrative Empirical Application 
 
4.1 Data collection and mean comparison 

 
 
The database used in our illustrative empirical study consists of 200 Iranian 

companies from Tehran Stock Exchange (TSE). 50 companies went bankrupt under 
bankruptcy law of Iranian companies’ act 1970, which a firm is bankrupt when its 
total value of retained earning is equal or greater than 50% of its listed capital. 150 
companies are "matched" companies from the same period of listing 1998-2005. 
Bankrupt companies are indicated as 1 and non-failed companies as 0. Thus, a firm 
will have a higher failure probability and will be classified into failing group if its 
score is higher than cut-off point in each approach. 

In this study base on the financial ratios successfully identified by past studies 
and availability, 40 indices been built by using balance-sheet data. Ratios and 
significances on mean differences for each group is tested and presented in Table 1. 
These indices reflect different aspects of firm structure and performance such as 
liquidity, turnover, operating structure and efficiency, capitalization and finally 
profitability. 
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Table 1: Variables employed and comparison of means in two groups 
 
  Original Ratios Transformed Ratios 

# 
Definition 
of 
variables 

Means of non-
bankrupt 

companies 

Means of 
bankrupt 

companies 

TEGM 
(Sig level) 

Means of 
non-

bankrupt 
companies 

Means of 
bankrupt 

companies 

TEGM 
(Sig level) 

1 EAIT/TA 0.21985 0.05165 0.000 -0.39008 -0.47417 0.025 
2 TD/SE 2.32591 2.99969 0.051 0.17897 0.33310 0.043 
8 R/S 0.53916 0.01808 0.000 -0.29721 -0.49609 0.023 
4 TD/TA 0.64600 0.78450 0.011 -0.17700 -0.10775 0.000 
5 CL/SE 2.07355 2.60760 0.874 0.13713 0.28837 0.211 
6 CL/TD 0.87258 0.83419 0.234 -0.06371 -0.08290 0.323 
7 OA/TA 0.54037 0.62549 0.201 -0.22981 -0.18725 0.083 
8 R/S 0.64792 0.40207 0.445 -0.28176 -0.31233 0.527 
9 R/Inv 64191.96287 60.03362 0.000 -0.00444 -0.12682 0.000 
10 SE/TD 0.81727 0.33380 0.000 -0.17897 -0.33310 0.025 
11 E/TA 0.37868 0.24421 0.041 -0.31066 -0.37789 0.000 
12 CA/CL 1.37059 1.13940 0.567 0.07046 0.03709 0.000 
13 QA/CL 0.88108 0.49283 0.002 -0.14017 -0.25456 0.311 
14 QA//CA 0.59121 0.44456 0.001 -0.20439 -0.27772 0.000 
15 NFA/TA 0.22169 0.22309 0.976 -0.38916 -0.38846 0.005 
16 WC/TA 0.11022 0.06320 0.696 -0.44489 -0.46840 0.313 
17 CL/TA 0.56389 0.65641 0.000 -0.21806 -0.17179 0.000 
18 POC/SE 0.53201 0.57998 0.199 -0.23447 -0.10467 0.008 
19 RE/TA 0.06492 -0.02391 0.000 -0.46754 -0.51196 0.078 
20 EAIT/SE 0.53080 0.17283 0.410 -0.24864 -0.46834 0.000 
21 EAIT/S 0.27192 -0.04296 0.000 -0.36405 -0.50608 0.000 
22 EBIT/TA 0.17862 0.00639 0.000 -0.41069 -0.49680 0.000 
23 D/EAIT 2.02476 0.92434 0.311 -0.11523 0.24383 0.072 
24 OI/S 0.28441 -0.01012 0.000 -0.35780 -0.49572 0.874 
25 MVE/TA 0.04992 0.05746 0.008 -0.47504 -0.47127 0.006 
26 EBIT/IE 4496.20577 -43.01149 0.000 0.59907 0.55253 0.213 
27 OI/TA 0.19620 0.02240 0.000 -0.40190 -0.48880 0.107 
28 Ca/S 0.18568 0.05238 0.000 -0.43579 -0.47381 0.000 
29 GP/S 0.35047 0.09577 0.000 -0.32476 -0.45211 0.214 
30 S/SE 3.01240 3.06662 0.072 0.20837 0.29016 0.844 
31 S/NFA 10.53526 5.98830 0.893 0.33491 0.31069 0.034 
32 S/CA 1.37378 1.07683 0.006 0.06508 0.00171 0.000 
33 S/WC 14.68814 5.10868 0.213 0.40842 0.44656 0.008 
34 S/TA 0.88013 0.75620 0.107 -0.08629 -0.12527 0.002 
35 S/Ca 37.35053 121.39542 0.005 0.43579 0.47381 0.000 
36 IE/GP -0.32201 -1.87164 0.087 -0.57508 -0.60523 0.405 
37 Ca/CL 0.17422 0.05219 0.002 -0.41614 -0.47391 0.292 
38 Ca/TA 0.08993 0.03416 0.009 -0.45503 -0.48292 0.023 
39 S/GP 4.81397 24.35715 0.000 0.32476 0.45211 0.125 
40 BVD/MVE 81.75837 73.27468 0.032 0.46128 0.46254 0.043 
 
BVD: Book Value of  Dept.; CA: Current assets; EAIT: Earning after income and taxes; GP: Gross profit; Inv: 
Inventory; MVE: Marked value of equity; NI: Net income; OI: Operational income; QA: Quick assets; RE: 
Retained earnings; SC: Stock capital; TA: Total assets; Ca: Cash flow; CL: Current liabilities; EBIT: Earnings 
before interest and taxes; IE: Interest expenses; LA: Liquid assets; NFA: Net Fixed assets; OA: Operating asset;  
POC: Paid on capital; R: Receivables; S: Sales;  SE: Shareholders’ equity; TEGM: Test of equity of group mean. 
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Following recent research by Bahiraie et al. (2009), for primary variable selection and 
testing each variable’s effectiveness on discriminating power, CartProEx V.6.0 
software with Mahalanobis D2 measure was used. Table 2 reports selected variables 
that produced greatest effectiveness on separation for each groups to have more stable 
and well-balanced model. 
 
 
Table 2: Significant variables in each sample  
 
Original Ratios GRB Method 
CR/TA EBIT/S 
QA/CA QA/CA 
OI/TA TD/TA 
CF/GP MVE/TA 
SE/TA  

 
 

4.2 Regression results 
 
Subsequently, selected variables coefficients are regressed using Logistic and 

Robust Logistic Regression to illustrate that this new transformation will produce 
more accurate prediction equation and can be used as an alternative for common 
ratios. Results show that robust logit model outperforms logit model in both data sets. 
Table 3 report the estimated results using the Logit and the Robust Logit models, 
respectively. When the Logit model is used, less coefficients show are significant 
compare to Robust Logit model. Alongside, the psudo-R2 is higher for the Robust 
Logit models in both approaches, suggesting that in-sample fitting is much better in 
the Robust Logit model than in the Logit model. 
 
Table 3: Estimated Results for Logit and Robust Logit models 
 

  Logit Robust Logit 
 Models Coefficient t-Value Coefficient t-Value 

Original 
Ratios 

Constant -0.3600 -0.7506 17.0487** 2.1627 
CR/TA 1.6195 1.1766 10.2357* 1.7913 
QA/CA -13.1535*** -4.1651 -34.2707** -2.2311 
OI/TA -0.5519** -2.0683 -2.1146** -2.3319 
CF/GP -0.4227 -0.5858 -12.3312** -2.0225 
SE/TA 0.6539** 2.0013 2.344*** 4.6586 
psudo-R2 0.5941  0.7539  

GRB 
Method 

Constant 0.2134 0.0342 1.4303 * 1.9953 
EBIT/S 1.6349 ** 2.1142 8.3259 ** 2.9488 
QA/CA 5.7633 * 1.5935 6.5205 ** 2.3285 
TD/TA -2.5894 -0.4968 -1.8580 *** -5.7351 
MVE/TA 7.5318 0.1936 5.7025  0.2132 
psudo-R2 0.6816 0.8936 

(*, **, *** denote significant at 10%, 5% and 1% level, respectively) 
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Specific company is classified as distressed if the calculated probability from models 
is more than 0.5, otherwise it would be non-distressed. 
 
4.3 K-fold cross-validation 

 
In order to observe the effects of biasness, we conduct the K-fold cross validation 

procedure. Each one of the subsets is then in turn as testing set after all other sets 
combined have been training set on which a tree has been built. This cross validation 
procedure allows mean error rates to be calculated which gives a useful insight into 
classifiers decision. This technique is simply k-fold cross validation whereby k is 
number of data instances. This has advantage of allowing the largest amount of 
training data to be used in each run and conversely means that the testing procedure is 
deterministic. With large data sets, this is computationally infeasible however and in 
certain situations, the deterministic nature of testing results in weir errors. Further, k-
fold crosses validation primary method for estimating turning parameters, dividing 
the data into k equal parts. For each 1, 2,...,k k= fit the model with parameters to the 
other k-1 parts and the kth part as testing sample. In our experiment, we set our 
sample to 5-fold accuracy results. Table 4 represents the comparison of 5-fold 
accuracy results. 
 
 
Table 4: The transformed ratios still outperform original ratios 
 
 Original Ratios GRB Approach 

Items Logit Robust Logit Logit Robust Logit 
1 57.23 % 69.30 % 66.15 % 82.27 % 
2 56.17 % 69.73 % 65.48 % 82.13 % 
3 57.94 % 68.61 % 63.74 % 82.51 % 
4 57.29 % 70.52 % 66.03 % 81.94 % 
5 57.71 % 69.89 % 66.34 % 82.72 % 

Average 57.26 % 69.61 % 65.54 % 82.31 % 
 

Results highlight the following evidences that under transformation process better 
classification accuracy results achieved while Robust Logit model outperforms Logit 
model. 

 

5 Conclusion 
 
The properties of GRB methodology may be a general guideline for ratios 

analysis, financial analysis and bankruptcy prediction in which there is no arbitrary 
conditioning, because the numbers of transformations are equal the number of 
observations. Furthermore, the natural distribution of GRB transformation ensures  
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data are not skewed and should be more robust to the assumptions of Gaussian 
statistical methods. In addition, GRB can be applied equally to variety of 
distributional forms, thus making the technique particularly useful in ratio analysis 
where a diverse set of distributional functions have been identified. Because new 
transformations GRB is naturally bounded and unaffected by distance between 
observations, outlier effect if present will be reduced. Similarly, distance data 
containing white noise and the sensitivity and power of statistical test are improved. 
Negative values will be transformed to specific variation, thus removing the necessity 
of deletion of negative data used in previous studies. Besides, proportionality is a 
theoretical assumption that may not in fact hold and the degree of departure varies 
across industries and size classes. Thus if the relationship between elements of a ratio 
is constant over time, size and industry, then the proportionality effect will be 
satisfied for ratios by using GRB method. Finally, with the use of pooled data across 
time, the GRB method will reduce effects of history and maturation across 
population. In summary, as we can observe from the prediction results in next 
section, we suggest the use of this new methodology for ratio analysis, which can 
provide a conceptual and complimentary methodological solution to many problems 
associated with the use of ratios. 
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