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Abstract. In this study, we apply double integral transforms to solve partial

differential equation namely double Laplace and Sumudu transforms, in particular

the wave and poisson’s equations were solved by double Sumudu transform and the

same result can be obtained by double Laplace transform.
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1. introduction

The topic of partial differential equations is very important subject yet there

is no general method to solve all the PDEs. The behavior of the solutions very

much depend essentially on the classification of PDEs therefore the problem of

classification for partial differential equations is very natural and well known since

the classification governs the sufficient number and the type of the conditions in

order to determine whether the problem is well posed and has a unique solution.

It is also well known that some of second-order linear partial differential equations

can be classified as Parabolic, Hyperbolic or Elliptic however if a PDE has coefficients

which are not constant, it is rather a mixed type.In many applications of partial

differential equations the coefficients are not constant in fact they are a function
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of two or more independent variables and possible dependent variables. Therefore

the analysis to describe the solution may not be hold globally for equations with

variable coefficients that we have for the equations having constant coefficients.

On the other side there are some very useful physical problems where its type can

be changed. One of the best known example is for the transonic flow, where the

equation is in the form of(
1 − u2

c2

)
φxx − 2uv

c2
φxy +

(
1 − v2

c2

)
φyy + f(φ) = 0

where u and v are the velocity components and c is a constant, see [1].

Similarly, partial differential equations with variable coefficients are also used in

finance, for example, the arbitrage-free value C of many derivatives

∂C

∂τ
+ s2 σ2(s, τ)

2

∂2C

∂s2
+ b(s, τ)

∂C

∂s
− r(s, τ)C = 0

with three variable coefficients σ(s, τ), b(s, τ) and r(s, τ). In fact this partial differ-

ential equation holds whenever C is twice differentiable with respect to s and once

with respect to τ , see [8].

However, in the literature there was no systematic way to generate a partial differ-

ential equations by using the equations with constant coefficients, the most of the

partial differential equations with variable coefficients depend on nature of particu-

lar problems.

Recently, A. Kılıcman and H. Eltayeb in [5], introduced a new method producing

a partial differential equation by using the PDEs with constant coefficients and

classification of partial differential equations having polynomial coefficients. Later

the same authors extended this setting in [7] to the finite product of convolution of

hyperbolic and elliptic PDEs where the authors considered the positive coefficients

of polynomials.

In this study we are going to solve PDEs with variable boundary conditions by using

double integral transform methods: double Laplace transform and double Sumudu

transform.

First of all we give the following definition and during this study we use the following

convolution notation: double convolution between two continuous functions F (x, y)
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and G(x, y) given by

F1(x, y) ∗ ∗F2(x, y) =

∫ y

0

∫ x

0

F1(x − θ1, y − θ2)F2(θ1, θ2)dθ1dθ2(1.1)

for further details and properties of the double convolutions and derivatives we refer

to [3]. And also the definition of double Laplace and Sumudu transforms given by

LxLt [f(x, s)] = F (p, s) =

∫ ∞

0

e−px

∫ ∞

0

e−stf(x, t)dtdx(1.2)

where x, t > 0 and p, s complex value

and

F (v, u) = S2 [f(t, x); (v, u)] =
1

uv

∫ ∞

0

∫ ∞

0

e−( t
v
+ x

u
)f(t, x)dtdx

where x, t > 0 and u, v complex value

respectively. More details see [4] and [6]. Now since we are going to apply the

integral transform methods to PDE, first we must know the integral transform of

partial derivatives as follows: double Laplace transform of the first order partial

derivative with respect to x given by

LxLt

[
∂f(x, t)

∂x

]
= pF (p, s) − F (0, s).

Also the double Laplace transform for second partial derivative with respect to x is

Lxx

[
∂2f(x, t)

∂2x

]
= p2F (p, s) − pF (0, s) − ∂F (0, s)

∂x
,

the double Laplace transform for second partial derivative with respect to t similarly

as above given by

Ltt

[
∂2f(x, t)

∂2t

]
= s2F (p, s) − sF (p, 0) − ∂F (p, 0)

∂t
.

In a similar manner the double Laplace transform of a mixed partial derivative can

be deduced from single Laplace transform as

LxLt

[
∂2f(x, t)

∂x∂t

]
= psF (p, s) − pF (p, 0) − sF (0, s) − F (0, 0).

Similarly, the double Sumudu transform for second partial derivative with respect

to x given by

S2

[
∂2f(t, x)

∂x2
; (v, u)

]
=

1

u2
F (v, u) − 1

u2
F (v, 0) − 1

u

∂f(v, 0)

∂x
.(1.3)
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Finally, the double Sumudu transform of ∂2f(t,x)
∂t2

, given by

S

[
∂2f(t, x)

∂t2
; (v, u)

]
=

1

v2
F (v, u)− 1

v2
F (0, u) − 1

v

∂f(0, u)

∂t
.(1.4)

It is well known that in order to obtain the solution of partial differential equations

by integral transform methods we need the following two steps:

• Firstly, we transform the partial differential equations to algebraic equations

by using the double integral transform methods

• Secondly, on using the double inverse transform to get the solution of PDEs.

Now, let us solve the linear second order partial differential equations by using the

two transforms as follows:

auxx + buxy + cuyy + dux + euy + fu = g1(x; y) ∗ ∗g2(x; y)(1.5)

under boundary conditions

u(x, 0) = f1(x) ∗ f2(x), u(0, y) = w1(y) ∗ w2(y)

uy(x, 0) =
d

dx
(f1(x) ∗ f2(x)) , ux(0, y) =

d

dy
(w1(y) ∗ w2(y)) and u(0, 0) = 0

where the symbol ∗∗ means double convolution [2] and a, b, c, d, e and f are constant

coefficient, g1(x, y) is the exponential function where as g2(x, y) is a polynomial. In

this study we consider that (1.5) has a solution on using the both transforms; further

the inverse double Laplace and Sumudu transforms exists. In the next we discuss

the solution of above equation by using double Sumudu transform, but here we use

the matrix forum, before we deal with this transform we give some concept as

follows, let P (x, y) =
n∑

k=0

ak

xk
+

m∑
l=0

bl

yl
be a function which can be represented by the

following matrix product:

MP (x, y) =

(
1

x

1

x2

1

x3
...

1

xn

)
⎛
⎜⎜⎜⎜⎜⎝

a1 a2 . . . an

a2 a3 . . an 0

a3 . . an 0 0

. . . . . .

an 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

+

(
1

y

1

y2

1

y3
...

1

ym

)
⎛
⎜⎜⎜⎜⎜⎝

b1 b2 . . . bm

b2 b3 . . bm 0

b3 . . bm 0 0

. . . . . .

bm 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠



Integral transforms and PDE 113

then we see that MP (x, y)u = MP (x)u + MP (y)u where MP (x), and MP (y) define

a linear mappings in an obvious way. Now we shall write vectors u in Cn × Cm as

rows vectors or columns vectors interchangeably, whichever are convenient although,

when MP (x, y)u is to be computed and of course the vector u is written as a column

vector

MP (x, y)u =
n∑

i=1

1

xi

n−i∑
k=0

ai+kuk +
m∑

j=1

1

yj

m−j∑
l=0

bj+lul(1.6)

for any uk = (u0(y), u2(y)...un−1(y)) and ul = (u0(x), u2(x)...un−1(x)) ∈ Cn × Cm.

In particular case, we apply the double Sumudu transform for a linear second order

partial differential equation with constant coefficient.

Let g(x, y) be a continuous on (0,∞) × (0,∞), zero on (−∞, 0) × (−∞, 0) then

it is locally integrable and Laplace transformable. Let u(x, y) be differentiable on

(0,∞) × (0,∞), and satisfy

auxx + buxy + cuyy + dux + euy + fu = g(x, y)(1.7)

under the boundary conditions

u(x, 0) = f1(x) ∗ f2(x), u(0, y) = w1(y) ∗ w2(y)

uy(x, 0) =
d

dx
(f1(x) ∗ f2(x)) , ux(0, y) =

d

dy
(w1(y) ∗ w2(y)) and u(0, 0) = 0

then the transform of this equation lead us to the

A (α, β)SxSy [u(x, y)] (α, β) = SxSy [g(x, y)] (α, β) +

(
1

α

1

α2

)(
d a

a 0

)(
U(0, β)

Ux(0, β)

)

+

(
1

β

1

β2

)(
e c

c 0

)(
U(α, 0)

Uy(α, 0)

)
+ 0

where A(p, q) =
a

α2
+ bαβ +

c

β2
+ dα + eβ + f and Sumudu transform of single con-

volution and derivative of single convolution are given by

Sx [f1(x) ∗ f2(x)] = αF1(α)F2(α), Sy [w1(y) ∗ w2(y)] = βW1(β)W2(β)

and

Sx

[
d

dx
(f1(x) ∗ f2(x))

]
= α [F1(α) − F1(0)]F2(α),

Sy

[
d

dy
(w1(y) ∗ w2(y))

]
= β [W1(β) − W1(0)]W2(β),
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respectively.

Proposition 1. Let f(x, t) be n, m times differentiable on (0,∞) × (0,∞) and

f(x, t) = 0 for t, x < 0. Then for any polynomial P of degree (m, n) then dou-

ble Sumudu transform

SxSt [P (D)f(x, y)] (α, β) = P (α, β)SxSt [f(x, t)] (α, β) − MP (β)Ψ(f, n) − MP (α)Φ(f, m).

In particular

SxSt

[
∂mf

∂xm

]
=

1

αm
SxSt [f(x, t)] (α, β)

−
(

1

αm
,

1

αm−1
, ...,

1

α

)
⎛
⎜⎜⎜⎜⎜⎝

a1 a2 . . . an

a2 a3 . . an 0

a3 . . an 0 0

. . . . . .

an 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f0(0, β)
∂
∂x

f(0, β)

.

.
∂m−1

∂xm−1f(0, β)

⎞
⎟⎟⎟⎟⎟⎠

and similarly we have

SxSt

[
∂nf

∂tn

]
=

1

βn
SxSt [f(x, t)] (α, β)

−
(

1

βn
,

1

βn−1
, ...,

1

β

)
⎛
⎜⎜⎜⎜⎜⎝

b1 b2 . . . bn

b2 b3 . . bn 0

b3 . . bn 0 0

. . . . . .

bn 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f0(α, 0)
∂
∂y

(α, 0)

.

.
∂n−1

∂yn−1 (α, 0)

⎞
⎟⎟⎟⎟⎟⎠

for n = 2 and m = 2 we have

SxSt

[
∂2f

∂x2

]
(α, β) =

1

α2
SxSt [f(x, t)] (α, β) −

(
1

α

1

α2

)(
0 1

1 0

)(
f0(0, β)
∂
∂x

f(0, β)

)

and

SxSt

[
∂2f

∂t2

]
(α, β) =

1

β2
SxSt [f(x, t)] (α, β) −

(
1

β

1

β2

)(
0 1

1 0

)(
f0(α, 0)
∂
∂y

(α, 0)

)

for n = 1 and m = 1, we have

SxSt

[
∂f

∂x

]
(α, β) =

1

α
SxSt [f(x, t)] (α, β) − 1

α
f(0+, β)(1.8)
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and

SxSt

[
∂f

∂t

]
(α, β) =

1

β
SxSt [f(x, t)] (α, β) − 1

β
f(α, 0+)(1.9)

Proof. We use induction on n, m. The result is trivially true if n = 0, m = 0, and

the case n = 1, m = 1 are equivalent to (1.8) and (1.9) respectively. Suppose now

that the result is true for some n, m > 0 and let

P (x, y) =

n+1∑
k=0

ak

xk
+

m+1∑
l=0

bl

tl

having degree (n + 1, m + 1) . The first two statements follow by putting h =
∂f

∂x
,

z =
∂f

∂t
and using the induction hypothesis and (1.8) and (1.9). Now write

P (x, t) = a0 +
1

x
ζ(x) + b0 +

1

t
η(t), where ζ(x) =

n∑
k=0

ak+1

xk and η(t) =
m∑

l=0

bl+1

tl
. Then

P (
·
D)f(x, t) = a0f + ζ(

·
D)h + b0f + η(

·
D)z

and therefore the double Laplace transform given by

SxSt [P (D)f ] (p, s) = a0SxSt [f ] + SxSt [ζ(D)h] + b0SxSt [f ] + SxSt [η(D)z]

= a0SxSt [f ] + ζ(p)SxSt [h] + b0SxSt [f ] + η(s)SxSt [z]

−Mζ(p)Ψ(f, n) − Mη(s)Φ(f,m)

= a0SxSt [f ] (α, β) + b0SxSt [f ] (α, β) + ζ(α)
(

1
α

SxSt [f ] (α, β) − 1
α

f (0+, β)
)

+η(β)
(

1
β

SxSt [f ] (α, β) − 1
β

f (α, 0+)
)

−
n∑

i=1

1
αi

n−i∑
k=0

ai+k+1f
(k+1) (0+, β) −

m∑
j=1

1
βj

m−j∑
l=0

bj+l+1f
(l+1)(α, 0+)
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on using (1.6) and h = f (k+1) and z = f (l+1). The summation above can also be

written

n∑
i=1

1

αi

n−i+1∑
k=1

ai+kf
(k) (0+, β) +

m∑
j=1

1

βj

m−j+1∑
l=1

bj+lf
(l)(α, 0+)

=

n∑
i=1

1

αi

n−i+1∑
k=0

ai+kf
(k) (0+, β) +

m∑
j=1

1

βj

m−j+1∑
l=0

bj+lf
(l)(α, 0+)

−
n∑

i=1

1

αi
aif (0+, β) −

n∑
i=1

1

βj
bjf (α, 0+)

=
n+1∑
i=1

1

αi

n−i+1∑
k=0

ai+kf
(k) (0+, β) − 1

αn+1
an+1f (0+, β) −

n∑
i=1

1

αi
aif (0+, β)

+

m+1∑
j=1

1

βj

m−j+1∑
l=0

bj+lf
(l)(α, 0+) − 1

βm+1
bm+1f (α, 0+) −

n∑
i=1

1

βj
bjf (α, 0+)

= MP (α)Ψ(f, n + 1) − ζ(α)f (0+, β) + Mp(β)Φ(f, m + 1) − η(β)f (α, 0+).

Thus

SxSt [P (D)f ] (α, β) = a0SxSt [f ] (α, β) + b0SxSt [f ] (α, β) + ζ(α)
(

1
α

SxSt [f ] (α, β) − 1
α

f (0+, β)
)

+η(β)
(

1
β

SxSt [f ] (α, β) − 1
β

f (α, 0+)
)

−MP (α)Ψ(f, n + 1) − ζ(α)f (0+, β) + Mp(β)Φ(f,m + 1) − η(β)f (α, 0+)

finally we have

SxSt [P (D)f(x, y)] (α, β) = P (α, β)SxSt [f(x, t)] (α, β) − MP (β)Ψ(f, n) − MP (α)Φ(f, m).

In particular, if we consider the wave equation in the form of

utt − uxx = −3e2x+t (x, t) ∈ R
2
+

u(x, 0) = e2x + ex, ut(x, 0) = e2x + ex

u(0, t) = 2et, ux(0, t) = 3et(1.10)

then on using the above proposition we have
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A (α, β)SxSy [u(x, y)] (α, β) = − 3

(1 − β) (1 − 2α)

+

(
1

α

1

α2

)(
0 −1

−1 0

)⎛⎜⎝
2

(1 − β)
3

(1 − β)

⎞
⎟⎠

+

(
1

β

1

β2

)(
0 1

1 0

)⎛⎜⎝
2 − 3α

(1 − 2α) (1 − α)
2 − 3α

(1 − 2α) (1 − α)

⎞
⎟⎠

where A (α, β) =
1

β2
− 1

α2
by simplify and arrangement, we have

SxSy [u(x, y)] (α, β) = − 3α2β2

(α2 − β2) (1 − 2α) (1 − β)
− β2 (2 + 3α)

(α2 − β2) (1 − β)

+
α2 (2 − 3α − 3αβ + 2β)

(α2 − β2) (1 − 2α) (1 − α)
(1.11)

in the next step we replace the complex variables α, β in eq(1.11) by
1

p
,
1

q
respectively

and multiply each terms by
1

pq
then by applying the inverse transform and we

compute the poles by using MAPLE software, then we obtain the solution of eq(1.10)

as follows

u(x, t) = e2x+t + ex+t.

In the following example we apply the above proposition and double Sumudu trans-

form to the Poisson’s equation in the form of

uxx + uyy = −4ex+y sin(x + y)

u(x, 0) = ex cos(x), u(0, y) = ey cos(y)

ux(0, y) = ey cos(y) − ey sin(y)

uy(x, y) = ex cos(x) − ex sin(x),(1.12)

then on using the above proposition and inverse double Sumudu transform we obtain

the solution of eq(1.12) in the form of

u(x, y) = ex+y cos(x + y).

Thus, the same result can easily be obtained on using the double Laplace transform.
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[6] A. Kılıçman and H. E. Gadain. An Application of Double Laplace Transform and Double
Sumudu Transform, Lobachevskii Journal of Mathematics, 2009, Vol. 30, No. 3, pp. 214–223.
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