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Abstract

A model for structured populations with a two-phase life cycle has
been derived in [2], also we proved there the existence of a branch of
positive equilibrium points in the positive cone. In this paper we study
the stability of the positive equilibria using the inherent net reproductive
number n as the bifurcation parameter.
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0.1 INTRODUCTION

One of the most important characteristics of populations is dispersal. It is

noticed that individuals move in their habitat for several reasons, including

crowding, searching for food, environmental fluctuations, diseases, etc., and

this movement can greatly affect the dynamics of the population. Dispersal

was incorporated into population models since long time, for examples see

[4 − 16, 19, 20]. In the earlier models, dispersal was modeled by reaction-

diffusion equations. Recently, many studies emphasized on the fact that in

most annual plants populations and many kinds of insects the cycle of life

is divided into two distinct stages. In the first stage, the populations grow

and produce offsprings, and in the second stage, the newborns disperse within

their habitat. This led Kot and Schaffer [10] to model such populations by

integro-difference equations that are discrete in time and continuous in space.

In Kot-Schaffer model individuals are treated as identical. However, in most

populations individuals can vary greatly with respect to characteristics that
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affect their growth , reproduction and dispersal. In [2], we introduced a model

that based on Kot and Schaffer, but we consider structured populations. In

structured models individuals are classified with respect to characteristics such

as age, weight, body size, etc. and the resulting classes are tracked dynamically,

for a good book on structured populations see [3]. In [2] we proved the existence

of a branch of positive equilibria and we studied the stability properties of this

branch from the bifurcation point of view.

Our main purpose in this paper is to prove that the bifurcating branch

of positive equilibria extends globally by applying the Rabinowitz bifurcation

theory using the inherent net reproductive number as the bifurcation param-

eter.

Now, we outline our model that was derived in [2]: Suppose that the

individuals of a population are categorized into a finite number of classes

(e.g., by chronological age or some measure of body size). Let Ω ∈ Rn be

a compact subset which denotes the spatial habitat where the population

lives and disperses. Assume that the individuals are not allowed to leave

Ω. Let xi (t, s), for i = 1, 2, ..., m, denote the density of individuals at the

location s ∈ Ω who belong to the i−th class at time t = 0, 1, · · · . Let
−→x (t, s) = (x1 (t, s) , ... , xm (t, s))T where xi : I × Ω −→ R+, and I is the

set of nonnegative integers in the interval [0,∞). Here the unit of time is

equal to the dispersal period. Let tij (−→x (t, ν) , ν) be the expected fraction of

j−class individuals at position ν who survive and transfer to class i per unit

of time. Then at time t +1 the density of individuals in class i at position s is

m∑
j=1

∫
Ω

kij (s, ν) tij (−→x (t, ν) , ν) xj (t, ν) dν ,

where the kernels kij (s, ν) give the probability that an individual at position

ν at time t will settle at position s by the end of the dispersion period. Let

fij (−→x (t, ν) , ν) be the expected number of surviving i−class offspring at place

ν per j−class individuals per unit of time. Then at time t + 1 the number of

offspring in the i−class at the position s is

m∑
j=1

∫
Ω

lij (s, ν) fij (−→x (t, ν) , ν) xj (t, ν) dν

where lij (s, ν) is the probability that an i−class newborn of individual in the

j−class at position ν will settle at position s after the dispersion period. Now

at time t + 1 the total number of individuals in class i at position s is given

by the following equation:
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xi (t + 1, s) =

m∑
j=1

∫
Ω

kij (s, ν) tij (−→x (t, ν) , ν) xj (t, ν) dν

+
m∑

j=1

∫
Ω

lij (s, ν) fij (−→x (t, ν) , ν) xj (t, ν) dν (3.1)

where i = 1, 2, ..., m. The system of equations (3.1) may be put in the matrix

system

−→x (t + 1, s) =

∫
Ω

T (s, ν,−→x (t, ν))−→x (t, ν) dν +
∫

Ω

F (s, ν,−→x (t, ν))−→x (t, ν) dν (3.2)

where T = (kijtij) and F = (lijfij) for 1 ≤ i, j ≤ m. The functions tij and

fij have [0,∞) × Ω as their domains, and their ranges lie in [0,∞) and (0, 1]

respectively.

To this end, we mention some definitions and facts; A kernel of an inte-

gral operator is called admissible if it generates a compact linear operator. A

nonnegative admissible kernel k (s, t) is said to be of positive type if for each

nonnegative continuous function φ (s), not identically zero, there exist an it-

erated kernel k(n) (s, t) such that
∫

G
k(n) (s, t)φ (t) dt > 0, (s ∈ G). Here k(n)

is defined as follows:

k(n) (s, t) =

∫
G

· · ·
∫

G

k (s, t1) · · · k (tp−1, t) dt1 · · · dtp−1

where t1, ...,tp−1 are from G. A sufficient condition for the kernel k (s, t) to

be of positive type is that k(n) (s, s) > 0; for some n ≥ 1. So, every Fredholm

linear operator with positive kernel is of positive type.

The nonlinear operator A : L2 (Ω) → L2 (Ω) is of Hammerstein type if it

has the form

A (x (v)) =

∫
Ω

k (u, v) f (x (v) , v) dv

where f : R × Ω → R, and k : Ω × Ω → R. This operator may be considered

as a composition of the Fredholm linear operator
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B =

∫
Ω

k (u, v)φ (v) dv

and the nonlinear substitution operator F (x) = f (x (v) , v), where B, F :

L2 (Ω) → L2 (Ω), and f : R×Ω → R. A necessary and sufficient condition for

the substitution operator F to act from L2 (Ω) to itself is that f is continuous

and |f (x, v)| ≤ a (v) + b |x| for some a (v) ∈ L2 (Ω) and constant b > 0.

Moreover, if F acts from L2 (Ω) to itself, then it is bounded and continuous.

Since in biological applications we are interested in solutions that belong

to the positive cone K+ of L2 (Ω)m we will restrict our domain to an open set

of L2 (Ω)m that contains the positive cone K+.

1 MAIN RESULTS

Let X be a real Banach space with a total ordered cone X+ and L : X → X

be a linear operator. L is called strongly positive if Lx > 0 whenever x > 0.

Let us denote by ρ (L) the spectral radius of L, which is the radius of the

smallest circle that contains all the eigenvalues of L. The Krein-Rutman The-

orem states that a compact, strongly positive linear operator T has a positive,

strictly dominant, algebraically simple eigenvalue ρ (T ) associated with a posi-

tive eigenvector, and no other eigenvalue has a nonnegative eigenvector. More-

over, the dual operator T ∗ also has ρ (T ) as an algebraically simple eigenvalue

associated with a strictly positive eigenvector x∗. Also, if S : X → X is an-

other compact linear operator with Sx ≥ Tx for all x ≥ 0, then ρ (S) ≥ ρ (T ),

and if Sx ≥ Tx for all x > 0, then ρ (S) > ρ (T ). This is called the com-

parison principle. For proofs of all these results (see [21]) (pp. 291-293). let

A, B : H → H be linear operators and X a Banach space, then we have

(AB)∗ = B∗A∗ (a)

(A + B)∗ = A∗ + B∗ (b)

(
A−1

)∗
= (A∗)−1 . (c)

We will use these properties in the proof of the following Theorem.
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Theorem 2.1. Let X be a real Banach space, and N , M : X → X be

compact linear operator. Assume I−N is invertible. Then, under the following

assumptions

1. M(I − N)−1 and its dual have positive simple, dominant eigenvalue n

that associated

with positive eigenvectors y ≥ 0, ω∗ > 0,

2. N + cM is strongly positive for all real numbers c > 0, we have n < 1 if

and only if

r < 1, and n > 1 if and only if r > 1. (Therefore, n = 1 if and only if

r = 1). Here

r = ρ (N + M).

Proof. By Krain-Rutman Theorem N + M has a positive, strictly domi-

nant, algebraically simple eigenvalue r = ρ (N + M), which is associated with

a unique (up to a constant multiple) positive eigenvector. From (1), ω∗ > 0

is an eigenvector associated with n so that (M(I − N)−1)
∗

= nω∗. The dual

properties (a), (c) and (b) imply

(I − N∗)−1 M∗ω∗ = nω∗.

Apply I − N∗ to both sides of this equation and divide by n to get 1
n
M∗ω∗ =

(I − N∗)ω∗ or

(
N∗ +

1

n
M∗

)
ω∗ = ω∗

which is equivalent to

(
N +

1

n
M

)∗
ω∗ = ω∗. (i)

By assumption (2), N + 1
n
M is strongly positive compact linear operator, so

by Krain-Rutman Theorem it has a positive eigenvector associated with a

simple strictly dominant positive eigenvalue. Moreover,
(
N + 1

n
M

)∗
has the

same simple dominant eigenvalue associated with a strictly positive eigenvec-

tor. Since ω∗ > 0, and from equation (1), it is associated with the eigen-

value 1, then 1 is the dominant eigenvalue of
(
N + 1

n
M

)∗
. Thus, 1 is the

dominant eigenvalue of N + 1
n
M and ρ

(
M
n

+ N
)

= 1. For the first case; if

n < 1, then 1
n

> 1. Since for all x > 0,
(

M
n

+ N
)
x > (N + M) x, we have

1 = ρ
(

M
n

+ N
)

> ρ (N + M) = r. Conversely, if r < 1, then M
n

+ N < M+N
n

,
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and r < 1 = ρ
(

M
n

+ N
)

< ρ
(

M+N
n

)
= 1

n
ρ (N + M) = r

n
. Thus, n < 1. The

second case can be proved the same way. This completes the proof.

We define the positive continuum C+ by the (connected) intervals

σ
(
C+

) .
=

{
n | (n,

→
x) ∈C+

}
⊂ R1,

ρ
(
C+

) .
=

{→
x | (n,

→
x) ∈C+

}
⊂ Rm

+ ,

respectively. We are interested in investigating the spectrum of the equation

→
x (t + 1, v) = T

(→
x (t, v)

)
+ F

(→
x (t, v)

)
, (6.1)

where,
→
x ∈ L2 (Ω)m. And T and F are nonlinear integral operators that are

defined by the following system of equations:

xi (t + 1, s) =

m∑
j=1

∫
Ω

kij (s, ν) tij (−→x (t, ν) , ν) xj (t, ν) dν

+
m∑

j=1

∫
Ω

lij (s, ν) fij (−→x (t, ν) , ν) xj (t, ν) dν

where i = 1, 2, ..., m. This system of equations can be written in the following

matrix system:

−→x (t + 1, s) =

∫
Ω

T (s, ν,−→x (t, ν))−→x (t, ν) dν

+

∫
Ω

F (s, ν,−→x (t, ν))−→x (t, ν) dν

where T = (kijtij) and F = (lijfij) for 1 ≤ i, j ≤ m. The functions tij and

fij have [0,∞) × Ω as their domains, and their ranges lie in [0,∞) and (0, 1]

respectively.

Assume that F
(→

x
)(

I − T
(→

x
))−1

has a positive, strictly dominant, sim-

ple eigenvalue n
(→

x
)

with nonnegative eigenvector υ
(→

x
)
≥ 0; then n

(→
x
)

is

called the net reproductive number at
→
x. Note that n = n

(→
0
)

is the inherent

net reproductive number n. Assume fij are scaled to the inherent net repro-

ductive number n such that fij = nφij . Then, we have F = nΦ, where Φ is the
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normalized operator in the sense that T
(→

0
)

+ Φ
(→

0
)

has 1 as the dominant

eigenvalue.

For some integer k ≥ 0, consider equation (6.1) under the following as-

sumptions:

1. tij ∈ Ck+1
(
R1

+ × Ω, [0, 1]
)
, φij ∈ Ck

(
R1

+ × Ω, R1
+

)
and all φij’s are

bounded,

2. I − T
(→

x
)

is invertible for all
→
x ∈ Km

+ , where Km
+ is the positive cone

of Lm
2 ,

3. kij’s, lij’ and all the kernels at the linearization of (6.1) are L2 (Ω × Ω)

and are

admissible of positive type,

4. for all
→
x ∈ Km

+ , Φ
(→

x
) (

I − T
(→

x
))−1

and its dual have a positive,

strictly dominant,

simple eigenvalue υ
(→

x
)
, υ

(→
0
)

= 1, with eigenvectors u
(→
x
)
≥ 0, w∗ >

0.

Suppose that
→
x > 0 is a positive equilibrium, i.e.,

→
x = T

(→
x
)

+ nΦ
(→

x
)
.

The kernels of the linearization of the operator in (6.1) at
→
x are admissible of

positive type (see 3 ) above. Thus, by Krain-Rutman Theorem we conclude

that 1 is the dominant eigenvalue of T
(→

x
)

+ nΦ
(→

x
)

at each
→
x > 0. From

Theorem 2.1 above we conclude that

nυ
(→

x
)

= 1 for all equilibria
→
x > 0, (6.2)

where n
(→

x
)

= nυ
(→

x
)
. From the biological point of view this equation means

each individual replaces itself over the course of its lifetime when the population

held at
→
x. We have proved that the extinction equilibria

→
x = 0 loses stability

as n is increased through the critical value n = 1. We wish to use (6.2) to

study the direction of bifurcation and other properties of the spectrum.

In the following Theorem we denote by C+ the continuum of positive equi-

libria that bifurcates from the trivial equilibrium.

Theorem 6. Consider the operator equations (6.1) under the above assump-

tions (1-4). Then

1. the range ρ (C+) is unbounded and ρ (C+) \ {0} contains only positive

equilibria;

2. the spectrum σ (C+) contains only positive n.

Proof. (1) Our goal is to rule out alternative 2 of Theorem 5. From

assumption 3 above the operator T
(→

x
)

+ nΦ
(→

x
)

has no nonnegative eigen-
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vectors other than the positive eigenvector associated with the dominant eigen-

value. Since an equilibrium is an eigenvector of T
(→

x
)

+ nΦ
(→

x
)

associated

with the eigenvalue 1, we conclude that a nonnegative equilibrium must be

positive. From alternative (1) of Theorem 5, ρ (C+) contains only positive

equilibria and either ρ (C+) and σ (C+) is unbounded. If the range ρ (C+)

is bounded then since nυ
(→

x
)

= 1 and υ
(→

x
)

> 0, the spectrum σ (C+) is

bounded, which is a contradiction with alternative (1) of Theorem 5. There-

fore, ρ (C+) is unbounded.

(2). Suppose C+ contains a pair
(
n

→
, x

)
for which n ≤ 0. Since C+ is

connected, there must be an equilibrium pair
(
n

→
, x

)
∈ C+,

→
x ≥ 0. But, by

(1) above
→
x > 0 and we have

→
x = T

(→
x
)
, which contradicts the invertibility

of I − T
(→

x
)

in assumption 2. Thus, the spectrum contains only positive n.

Theorem 6. Consider the operator equations (6.1) under the above assump-

tions (1-4). We

have the following alternatives:

1. If υ
(→

x
)
−→ 0 as

∥∥∥→
x
∥∥∥ −→ ∞, then for each n > 1, there exists at least

one positive

equilibrium.

2. If υ
(→

x
)

< 1 for
→
x > 0 and

→
x ≈

→
0, then the bifurcation is to the right

and stable. If

υ
(→

x
)

> 1 for
→
x > 0 and

→
x ≈

→
0, then the bifurcation is to the left and

unstable.

3. If υ
(→

x
)

< 1 for all
→
x > 0, then there is no positive equilibrium for

n < 1.

Proof. (1). If υ
(→

x
)

−→ 0 as
∥∥∥→
x
∥∥∥ −→ ∞, then from the equation

nυ
(→

x
)

= 1 and the unboundedness of the range ρ (C+), we conclude that

σ (C+) ⊂ (0,∞) is an unbounded interval whose closure contains 1. This

implies (1). Parts (2) and (3) are simple consequences of equation (6.2).
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