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Abstract

The theory of control analyzes the proprieties of commanded systems.
Problems of optimal control (OC) have been intensively investigated in the
world literature for over forty years. During this period, series of fundamen-
tal results have been obtained, among which should be noted the maximum
principle [1] and dynamic programming [2]. For many of the problems of the
optimal control theory (OCT) adequate solutions are found [4, 5, 7]. Results
of the theory were taken up in various fields of science, engineering, and eco-
nomics. The present paper aims at extending the constructive methods of [6]
that were developed for the problems of optimal control with the bounded
initial state is not fixed are considered.
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1 Introduction

Problems of optimal control (OC) have been intensively investigated in the world
literature for over forty years. During this period, series of fundamental results have
been obtained, among which should be noted maximum principle [1] and dynamic
programming [2]. For many of the problems of the optimal control theory (OCT)
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adequate solutions are found [4, 5, 7, 8]. Results of the theory were taken up in
various fields of science, engineering, and economics.

The aim of this paper is to solve a problem of optimal with free initial state.
The problem has the following sense, the initial state of the optimized system is not
known exactly, a priori information on the initial state is exhausted by inclusion
x0 ∈ X0, by analogy with the theory of filtration, we say that the set X0 is a priori
distribution of the initial state of the control system.

The paper has the following structure: In section 1, the canonical OC problem is
formulated. In section 2, we give some definitions whose we can need in our problem.
In section 3, we defined support control of the problem and these accompanying
elements. In section 4, Optimality and suboptimality criteria are formulated. In
section 5, Optimality and ε-optimality criteria. In section 6, Numerical algorithm
for solving the problem ;The iteration consists of three procedures: change of control,
change of a support,at the end final procedure. In section 7, the results are illustrated
by an example.

2 Statement of the problem

Let us consider the optimal control problem for a linear system at the time interval
T = [0, t∗] :

c′x(t∗) → max (1)

ẋ = Ax+ bu, x(0) = z ∈ X0 = {z ∈ Rn, Gz = γ, d∗ ≤ z ≤ d∗}, (2)

Hx(t∗) = g, (3)

f∗ ≤ u(t) ≤ f ∗, t ∈ T = [0, t∗]. (4)

Here x ∈ Rn is a state of control system (2); u(.) = (u(t), t ∈ t), T = [0, t∗], is
a piecewise continuous function; A ∈ Rn×n; b, c ∈ Rn; g ∈ Rm×n, rankH = m ≤
n; f∗, f ∗ are scalars; d∗ = (d∗j , j ∈ J), d∗ = d∗(J) = (d∗j , j ∈ J) are n−vectors;
G ∈ Rl×n, rankG = l ≤ n, γ ∈ Rl, I = {1, ....,m}, J = {1, ...., n}, L = {1, ...., l} are
sets of indices.
By using the Cauchy formula, we obtain the solution of the system (2) :

x(t) = F (t)(z +

∫ t

0

F−1(ϑ)bu(ϑ)dϑ), t ∈ T, (5)

where F (t) = eAt, t ∈ T = [0, t∗] is defined by the relations:{
Ḟ (t) = AF (t) ,
F (0) = In .
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Substituting (5) into (1)− (4), we obtain the following equivalent formulation of the
problem:

c̃′z +

∫ t∗

0

c(t)u(t)dt −→ max, (6)

D(I, J)z +

∫ t∗

0

ϕ(t)u(t)dt = g, (7)

G(L, J)z = γ, d∗ ≤ z ≤ d∗, (8)

f∗ ≤ u(t) ≤ f ∗, t ∈ T, (9)

where c̃′ = c′F (t∗), c(t) = c′F (t∗)F−1(t)b, D(I, J) = HF (t∗), ϕ(t) = HF (t∗)F−1(t)b.

3 Essentials Definitions

Definition 3.1 A pair v = (z, u(.)) formed of an n−vector z and a piecewise
continuous function u(.) is called a generalized control.

Definition 3.2 A generalized control v = (z, u(.)) is said to be an admissible
control if it satisfied the constraints (2)-(4).

Definition 3.3 An admissible control v0 = (z0, u0(.)) is said to be an optimal
open-loop control if a control criterion reaches its maximal value

J(v0) = max
v
J(v).

Definition 3.4 For a given ε ≥ 0, an ε−optimal control vε = (zε, uε(.)) is defined
by the inequality

J(v0) − J(vε) ≤ ε.

4 Support control and accompanying elements

Let us choose an arbitrary subset TB ⊂ T of k ≤ m elements and an arbitrary subset
JB ⊂ J of m+ l − k elements. Form the matrix

PB =

⎛
⎝ D(I, JB) ϕ(t), t ∈ TB

G(L, JB) 0

⎞
⎠ (10)
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A set SB = {TB, JB} is said to be a support of problem (1) − (4)
if detPB �= 0.

A pair {v, SB} of an admissible control v = (z, u(.)) and a support SB is said to
be a support control. A support control {v, SB} is said to be primally not degenerate
if d∗j < zj < d∗j , j ∈ JB, f∗ < u(t) < f ∗, t ∈ TB.
Let us consider another admissible control v = (z, u(.)) = v + Δv, where
z = z+Δz, u(t) = u(t)+Δu(t), t ∈ T, and let us calculate the increment of the cost
functional

ΔJ(v) = J(v) − J(v) = c̃′Δz +

∫
t∈T

c(t)Δu(t).

Since

D(I, J)Δz +

∫
t∈T

ϕ(t)Δu(t) = 0,

and
G(L, J)Δz = 0,

then the increment of the functional equals:

ΔJ(v) = (c̃′ − ν
′
(
D(I, J)
G(L, J)

)
)Δz +

∫
t∈T

(ϕ(t) − ν
′
c(t))Δu(t)

where ν =

(
νu

νz

)
∈ Rm+l, νu ∈ Rm, νz ∈ Rl is a function of the Lagrange multipli-

ers called potentials, is calculated as a solution to the equation: ν ′ = q′BQ, where
Q = P−1

B , qB = (c̃j , j ∈ JB, c(t), t ∈ TB). Introduce an n-vector of estimates Δ
′
=

ν
′
(
D(I, J)
G(L, J)

)
− c̃′, and a function of cocontrol Δ(.) = (Δ(t) = ν

′
uϕ(t)−c(t), t ∈ T ).

By using these notions, the value of the cost of functional increment takes the form:

ΔJ(v) = Δ
′
Δz −

∫
t∈T

Δ(t)Δu(t). (11)

A support control {v, SB} is dually not degenerate if Δ(t) �= 0, t ∈ TH ,Δj �= 0, j ∈
JH , where TH = T/TB, JH = J/JB.

5 Calculation of the value of suboptimality

The new control v(t) is admissible, if it satisfies the constraints:

d∗ − z ≤ Δz ≤ d∗ − z; f∗ − u(t) ≤ Δu(t) ≤ f ∗ − u(t), t ∈ T. (12)

The maximum of functional (11) under constraints (12) is reached for:⎧⎨
⎩

Δzj = d∗j − zj if Δj > 0
Δzj = d∗j − zj if Δj < 0
d∗j − zj ≤ Δzj ≤ d∗j − zj , if Δj = 0, j ∈ J .
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⎧⎨
⎩

Δu(t) = f∗ − u(t) if Δ(t) > 0
Δu(t) = f ∗ − u(t) if Δ(t) < 0
f∗ ≤ Δu(t) ≤ f ∗, if Δ(t) = 0, t ∈ T ,

and is equal to:

β = β(v, SB) =
∑
j∈J+

H

Δj(zj − d∗j) +
∑
j∈J−

H

Δj(zj − d∗j) (13)

+

∫
t∈T+

Δ(t)(u(t) − f∗) +

∫
t∈T−

Δ(t)(u(t) − f ∗)

where
T+ = {t ∈ TH ,Δ(t) > 0}, T− = {t ∈ TH ,Δ(t) < 0},
J+

H = {j ∈ JH ,Δj > 0}, J−
H = {j ∈ JH ,Δj < 0}.

The number β(v, SB) is called a value of suboptimality of the support control
{v, SB}.
From there, J(v) − J(v) ≤ β(v, SB). Of this last inequality, the following result is
deduced:

6 Optimality and ε-optimality criterion

Theorem 6.1 (7) Following relations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(t) = f∗, if Δ(t) > 0
u(t) = f ∗, if Δ(t) < 0
f∗ ≤ u(t) ≤ f ∗, if Δ(t) = 0, t ∈ T
zj = d∗j , if Δj > 0
zj = d∗j , if Δj < 0
d∗j ≤ zj ≤ d∗j , if Δj = 0, j ∈ J .

(14)

are sufficient,and in the cases of non-degeneracy, they are necessary for the opti-
mality of support control {v, SB}.

proof 6.2 Sufficient condition. If the relations (14) are satisfied, then from
(13), we obtain: β(v, SB) = 0,
Such as

ΔJ(v) ≤ β(v, SB) = 0,

then {v, SB} is an optimal support control.
Necessary condition. Let us proceed by absurd:
Let be {v, SB} a support control optimal non degeneracy and assume that the rela-
tions (14) are not satisfied, i.e:
∃t0 ∈ T such that:

Δ(t0) > 0 and u(t0) > f∗ or u(t0) < f ∗.
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Or ∃j0 ∈ J such that:

Δj0 > 0 and zj0 > d∗ or zj0 < d∗.

It is easy to construct the admissible variations Δv, which the value of the cost of
functional increment is :

ΔJ(v) = Δ
′
Δz −

∫
t∈T

Δ(t)Δu(t) > 0,

then,
J(v) − J(v) > 0.

And this contradict that {v, SB} is optimal.

Theorem 6.3 (7) For any ε ≥ 0, the admissible control v is ε−optimal if and
only if there exists a support SB such that β(v, SB) ≤ ε.

7 Numerical algorithm for solving the problem

Suppose ε > 0 is a given number and {v, SB} is a known support control that
does not satisfy optimality and ε− optimality criterion. The method suggested is
iterative, its aim is to construct an ε− solution of problem (1)−(4). As a support will
be changing during the iterations together with an admissible control it is natural
to consider them as a pair. The iteration of the method is to change initial support
control {v, SB} for the ”new” {v, SB} so that β(v, SB) ≥ β(v, SB). The iteration
consists of three procedures:

1. Change of an admissible control v → v.

2. Change of support SB → SB.

3. Final procedure.

A construction of the initial support concerns with the first phase and can be solved
using the algorithm described below.
At the beginning of each iteration the following information is stored:

1. An admissible control v.

2. A support SB = {TB, JB}.
3. A value of suboptimality β = β(v, SB).

Before beginning iteration, we make sure that a support control {v, SB} does not
satisfy criterion of ε−optimality.
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7.1 Change of control.

Let us α1 > 0, α2 > 0, h > 0, μ > 0 parameters of the method, and we construct the
following sets:

J0 = {j ∈ J : |Δj| ≤ α2}, J∗ = {j ∈ J : |Δj| > α2},
T0 = {t ∈ T : |Δ(t)| ≤ α1}, T∗ = {t ∈ T : |Δ(t)| > α1}, where|J0| = K,

and subdivide T0 into subintervals [τi, τ
i[, i = 1, N ; τi < τ i, T0 =

⋃N
i=1[τi, τ

i], τ i−τi ≤
h, TB ⊂ {τi, i = 1, N}, u(t) = ui = const, t ∈ [τi, τ

i[, i = 1, N.
A new admissible control v = (z, u(t), t ∈ T ) such that:{

zj = zj + κΔzj , j ∈ J
u(t) = u(t) + θΔu(t), t ∈ T,

(15)

Here

Δzj =

⎧⎨
⎩

d∗j − zj , ifΔj < −α2

d∗j − zj , ifΔj > α2, j ∈ J∗
0, ifΔj = 0, j ∈ J0,

Δu(t) =

⎧⎨
⎩

f ∗ − u(t), ifΔ(t) < −α1

f∗ − u(t), ifΔ(t) > α1, t ∈ T∗
ui = const, ift ∈ [τi, τ

i[, i = 1, N, t ∈ T0.

We introduce the parameter vector:
li = θui, i = 1, N, hj = κΔzj , j ∈ J0, hK+1 = κ, and define these quantities:

gi = −
∫ τ i

τi

Δ(t)dt, i = 1, N, gN+1 = −
∫

T∗
Δ(t)Δu(t)dt,

φi = −
∫ τ i

τi

ϕ(t)dt, i = 1, N, φN+1 = −
∫

T∗
ϕ(t)Δu(t),

qj = −Δj , j ∈ J0, qK+1 =
∑
j∈J∗

−ΔjΔzj , j ∈ J∗,

Dj = D(I, j), j ∈ J0, DK+1 =
∑
j∈J∗

D(I, j)Δzj,

f∗i = f∗ − ui, f
∗
i = f ∗ − ui, i = 1, N, f∗N+1 = 0, f ∗

N+1 = 1,

d∗j = d∗ − zj , d
∗
j = d∗ − zj , j = 1, K, d∗K+1 = 0, d∗K+1 = 1.

In order to find (hj, li), j = 1, K + 1, i = 1, N + 1, we formulate the mathematical
programming problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔJ(v) =
∑

j∈J0∪{K+1} qjhj +
∑
i = 1N+1gili → maxhj ,li,∑

J0∪{K+1}D(I, j)hj +
∑N+1

i=1 φili = 0,∑
j∈J0∪{K+1}G(l, j)hj = 0,

f∗i ≤ li ≤ f ∗
i , i = 1, N + 1

d∗j ≥ hj ≥ d∗j , j = 1, K + 1.

(16)
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Problem (16) is solved by adaptive method. As a result, we obtain an ε− opti-
mal support plan (hε

j , l
ε
i , JB, TB). The new control (z, u(t), t ∈ T ) are constructed

according to the rules:

zj =

{
zj + hK+1Δzj , j ∈ J∗
zj + hj, j ∈ J0.

(17)

Here

u(t) =

{
u(t) + lN+1Δu(t), t ∈ T∗
u(t) + li, t ∈ [τi, τ

i[, i = 1, N.
(18)

It is clear that J(v) ≥ J(v).

• If K + 1 /∈ JB and tN+1 /∈ TB, then we put:

S̃B = {J̃B = JB, T̃B = TB}.

• If not, we would have the following cases:

1. If K + 1 /∈ JB and tN+1 ∈ TB , we exclude index N +1 from the support
in the following way: Let be:

Δ(t) = Δ(t) + σδ(t),

where σ is the maximal dual step and δ(t) the direction . Let us determine
i∗ such that:

σ(ti∗) = minσ(ti), ti ∈ TH ,

with

σ(ti) =

{ −Δ(ti)/δ(ti), if Δ(ti) × δ(ti) ≤ 0, δ(ti) �= 0
+∞, otherwise.

δ(t) =

⎧⎨
⎩

0, on TB/{tN+1};
1, if u(t) = f∗;
−1, if u(t) = f ∗.

δ(t) = δ′BP
−1
B φ(t), t ∈ T.

Then a new support is:

J̃B = JB; T̃B = (TB/{tN+1}) ∪ {ti∗}.

2. if K + 1 ∈ JB and tN+1 /∈ TB, we exclude index K + 1 from the support
in the following way: Let be:

Δj = Δj + σjδj ,
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where σj is the maximal dual step and δj the direction

Let us determine j∗ such that:

σj∗ = minσj , j ∈ JH ,

with

σj =

{ −Δj/δj , if Δj × δjleq0, δj �= 0
+∞, otherwise.

δj =

⎧⎨
⎩

0, on JB/{K + 1};
1, if zj = d∗;
−1, if zj = d∗.

δj = δ′BP
−1
B

(
D(I, J)
G(L, J)

)
, j ∈ J.

Then a new support is:

J̃B = (JB/{K + 1}) ∪ {j∗}; T̃B = TB.

3. The last case will be if K + 1 ∈ JB, tN+1 ∈ TB, the new support will be:

J̃B = (JB/{K + 1}) ∪ {j∗}; T̃B = (TB/{tN+1}) ∪ {ti∗}.
At this stage, let us denote the new support S̃B and let us construct the support
matrix P (S̃B) and let us check that it is not singular. Let us calculate the new
suboptimality estimate β(ṽ, S̃B).

• If β(ṽ, S̃B) = 0, then v is an optimal control.

• If β(ṽ, S̃B) ≤ ε, then v is an ε− optimal control.

• otherwise, we perform either a new iteration with {v, S̃B}, α1 < α1, α2 <
α2, h < h or the procedure change of support.

7.2 Change of support.

let us assume that for the new control v, we have β(v, S̃B) > ε, then we perform
change of support. By using support S̃B, let us construct the quasi-control ṽ =
(z̃, ũ(t), t ∈ T ):

z̃j =

⎧⎨
⎩

dj∗ if Δ̃j > 0

d∗j if Δ̃j < 0

∈ [dj∗, d∗j ] if Δ̃j = 0, j ∈ J

ũ(t) =

⎧⎨
⎩

f∗, if Δ̃(t) < 0

f ∗, if Δ̃(t) > 0,

∈ [f∗f ∗] if Δ̃(t) = 0, t ∈ T ,

where: Δ̃(t) = −ψ̃′(t)b, t ∈ T, Δ̃′ = (Δ̃j , j ∈ J)′ = ν ′
(
D(I, J)
G(L, J)

)
− c̃′.

Here, ψ̃(t), t ∈ T , the solution to the adjoint system corresponding to S̃B.



210 Louadj Kahina and Aidene Mohamed

Let us the quasi trajectory corresponding χ = (χ(t), t ∈ T ), χ(0) = z ∈ X0 of the
system χ̇ = Aχ+ bũ, χ(0) = z ∈ X0.
If

D(I, J)z̃ +

∫ t∗

0

ϕ(t)ũ(t)dt = g,

G(L, J)z̃ = γ,

then v is optimal control, and if

D(I, J)z̃ +

∫ t∗

0

ϕ(t)ũ(t)dt �= g,

G(L, J)z̃ �= γ,

then construct a vector λ(J̃B, T̃B) as follows:

P (S̃B) · λ(J̃B, T̃B) =

(
D(I, J)z̃ +

∫ t∗

0
ũ(t)dt− g

G(L, J)z̃ − γ

)

λ(J̃B, T̃B) = P−1
B (S̃B)

(
D(I, J)z̃ +

∫ t∗

0
ũ(t)dt− g

G(L, J)z̃ − γ

)
.

Now, we studies the following cases:

• If ‖ λ(J̃B, T̃B) ‖= 0, then the quasi-control ṽ is optimal for the problem (1) −
(4).

• If ‖ λ(J̃B, T̃B) ‖> μ, then let us change a support S̃B to SB by dual method.

• if ‖ λ(J̃B, T̃B) ‖< μ, then we perform final procedure.

Dual method.
Let be:

λ0 = max{j∈JB ,t∈TB}|λ(t), λj|.
Let us consider two cases:

1. If λ0 = max{j∈JB ,t∈TB}|λ(t), λj| = |λj0|, j0 ∈ J̃B,
The dual step is:

σj =

⎧⎨
⎩

−Δ̃j/δj, if Δ̃jδj < 0, δj �= 0

0, ifΔ̃j = 0, δj > 0, z �= d∗orΔ̃j = 0, δj < 0, z �= d∗,
+∞, otherwise,j ∈ J .

Let us construct the following set:

J(σ) = {j ∈ J : σj < σ},
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let us the decreasing rate of the dual functional:

α(σ) = −|λj0| + 2
∑
J(σ)

|δj|.

By construction:

α(0) = −|λj0| < 0 and α(σ) < α(σ) if σ < σ, If α(σ) < 0 for σ > 0,

then a problem (1) − (4) do not possessed an admissible control. Otherwise,
research σ0 ≥ 0 such that:

α(σ0 − y) < 0, α(σ0 + 0) ≥ 0, ∀ 0 ≤ y ≤ σ0.

Let us j∗ ∈ J/J̃B such instant verify that:

Δ̃(j∗) + σ0δj∗ = 0, δj∗ �= 0,

then a new support S̃B change into ŜB.

ŜB = {ĴB = (J̃B/{j0}) ∪ {j∗}, T̂B = T̃B}.

2. If λ0 = max{j∈JB ,t∈TB}|λ(t), λj| = |λ(t0)|, t0 ∈ T̃B, and let us calculate the
following quantities:⎧⎪⎪⎨

⎪⎪⎩
Δν(I) = −P−1

B (t0, I)signλ(t0) = δTB
· P−1(TB),

δ(t) = Δψ′b, t ∈ T

Δψ̇ = −A′Δψ,
Δψ(t1) = −H ′Δν,

with P−1
B (t0, I): the tth0 row of matrix [P (I, TB)]−1.

The dual step is:

σ(t) =

⎧⎨
⎩

−Δ̃(t)/δ(t), if Δ̃δ(t) < 0, δ(t) �= 0

0, if Δ̃(t) = 0, δ(t) > 0, u(t) �= f∗orΔ̃(t) = 0, δ(t) < 0, u(t) �= f ∗,
+∞, otherwise, t ∈ T .

Let us construct the following set:

T (σ) = {t ∈ T : σ(t) < σ},

let us the decreasing rate of the dual functional:

α(σ) = −|λ(t0)| + 2

∫
T (σ)

|δ(t)|dt.
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By construction:

α(0) = −|λ(t0)| < 0 and α(σ) < α(σ) if σ < σ, If α(σ) < 0 for σ > 0,

then a problem (1) − (4) do not possessed an admissible control. Otherwise,
research σ0 ≥ 0 such that:

α(σ0 − y) < 0, α(σ0 + 0) ≥ 0, ∀ 0 ≤ y ≤ σ0.

Let us t∗ ∈ T/T̃B such instant verify that:

Δ̃(t∗) + σ0δ(t∗) = 0, δ(t∗) �= 0,

then a new support S̃B change into ŜB.

ŜB = {ĴB = J̃B, T̂B = (T̃B/{t0}) ∪ {t∗}}.

Let us calculate the new suboptimality estimate β(v, ŜB):
1. If β(v, ŜB) = 0, then the control v is optimal for problem (1)-(4) .
2. If β(v, ŜB) < ε, then the control v is ε-optimal for problem (1)-(4) .
3. If β(v, ŜB) > ε, then we perform the next iteration starting from the support
control {v, ŜB}.

7.3 final procedure.

Let us assume that for the new control v, we have β(v, ŜB) > ε. With the use of
the support SB we construct a quasicontrol v̂ = (ẑ, û(t), t ∈ T ) :

ẑj =

⎧⎨
⎩

dj∗ if Δj > 0
d∗j if Δj < 0
∈ [dj∗, d∗j ] if Δj = 0, j ∈ J

û(t) =

{
f∗, if Δ(t) < 0
f ∗, if Δ(t) > 0, t ∈ T.

If

D(I, J)ẑ +

∫ t∗

0

ϕ(t)û(t)dt = g,

G(L, J)ẑ = γ,

then v̂ is optimal, and if

D(I, J)ẑ +

∫ t∗

0

ϕ(t)û(t)dt �= g,

G(L, J)ẑ �= γ,

then denote T 0 = {ti, i = 1, s}, s = |TB|. Here, ti, i = 1, s are zeroes of the optimal
cocontrol Δ(t) = 0, t ∈ T ; t0 = 0, ts+1 = t∗. Suppose

Δ̇(ti) �= 0, i = 1, s.
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Let us construct the following function:

f(Θ) =

(
D(I, JB)z(JB) +D(I, JH)z(JH) +

∑s
i=0(

f∗+f∗
2

− f∗−f∗
2

signΔ̇(ti))
∫ ti+1

ti
ϕ(t)dt− g

G(L, JB)z(JB) +G(L, JH)z(JH) − γ

)

where

zj =
d∗j + dj∗

2
− d∗j − dj∗

2
signΔj, j ∈ JH .

Θ = (ti, i = 1, s; zj, j ∈ JB).

The final procedure consists in finding the solution

Θ0 = (t0i , i = 1, s; z0
j , j ∈ JB)

of the system of m+ l nonlinear equations

f(Θ) = 0. (19)

We solve this system by the Newton method using as an initial approximation the
vector

Θ(0) = (ti, i = 1, s; zj , j ∈ JB).

The (k + 1)th approximation Θ(k+1),equal:

Θ(k+1) = Θ(k) + ΔΘ(k) ΔΘ(k) = −∂f
−1(Θ(k))

∂Θ(k)
· f(Θ(k)).

Let us compute the Jacobi matrix for equation (19)

∂f(Θ(k))

∂Θ(k)
=

⎛
⎝ D(I, JB) (f∗ − f ∗)signΔ̇(t

(k)
i )ϕ(t

(k)
i ), i = 1, s

G(L, JB) 0

⎞
⎠ .

As detPB �= 0, we can easily show that

det
∂f(Θ(0))

∂Θ(0)
�= 0. (20)

For instants t ∈ TB there exists a small η > 0 that for any t̃i ∈ [ti−η, ti +η], i = 1, s,

the matrix (ϕ(t̃i), i = 1, s) is not degenerate and the matrix ∂f(Θ(k))

∂Θ(k) is also not

degenerate, if elements t
(k)
i , i = 1, s, k = 1, 2, ... do not leave the η-vicinity of ti,

i = 1, s. Vector Θ(k∗) is taken as solution of equation (19) if

‖ f(Θ(k∗)) ‖≤ η, for a given η > 0. (21)
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for a given η > 0.
So we put θ0 = θ(k∗).
The suboptimal control for problem (1)-(4) is computed as

z0
j =

{
z0

j , j ∈ JB

ẑj , j ∈ JH ;

u0(t) =
f ∗ + f∗

2
− f ∗ − f∗

2
signΔ̇(t0i ), t ∈ [t0i , t

0
i+1[, i = 1, s.

If the Newton method does not converge, we decrease the parameter α1 > 0, α2 >
0, h > 0 and perform the iterative process again.

8 Example.

We illustrate the results obtained in the paper using the following numerical exam-
ple:

c′x(2) → max (22)

ẋ1 = x2, ẋ2 = u, z ∈ X0 = {z ∈ R2 : Gz = γ,−2 ≤ zi ≤ 2, i = 1, 2} (23)

Hx(2) = g, (24)

|u(t)| ≤ 1, t ∈ [0, 2]. (25)

Where A =

(
0 1
0 0

)
, b =

(
0
1

)
, H =

(
1 −2

)
, c′ =

(
0 1

)
, g = 2, G =(

1 2
)
, γ = 3, f∗ = −1, f ∗ = 1, d∗ = (−2,−2), d∗ = (2, 2), n = 2, m = 1, l =

1, t∗ = 2.
let the initial control and state be known, where:

u(t) =

{
1/2, t ∈ [0, 1[
−1/2, t ∈]1, 2].

, z = (z1, z2) = (3/2, 3/4) ∈ X0.

c(t) = 1, ϕ(t) = −t, c̃ =
(

0 1
)
, D(I, J) =

(
1 0

)
.

On the trajectory x(t), t ∈ [0, 2] corresponding (23), we have :

Hx(t∗) = 2, J(v) = 3/4.

The first stage of the algorithm is run with h = 0.25, α1 = 0.25, α2 = 0.25, μ =
0.4, ε = 0.2. To find the parameter vector (hj, li), a series of linear programming
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problems (16) are formed and solved by the adaptive method. Let the initial sup-
port SB such that TB =]0.85, 1] correspond τB = 1, J = {1, 2}, JB = ∅.
The solution of the problem (16) is:h1 = 1, l1 = 0.5, l2 = 0.06, TB = [5/4, 2[ corre-
spond τB = 5/4, JB = ∅,
After three iteration, relations (21) are satisfied for the following set of parameters:
λ(TB, JB) = (−0.35, 0), TB = [5/4, 2[ correspond τB = 5/4, JB = ∅,

χ(t∗) =

(
7.4375

2.5

)
.

Denote by ti, i = 1, 2 the zeroes of the function Δ(t), t ∈ [0, 2]. Then, the algorithm
passes to the finishing procedure. The data obtained at the previous stage are used
to form the parameter vector θ and its initial approximation θ(0) = (zj = 0, ti = 1)
are found with prescribed accuracy η = 0.6 by solving system (19) using Newton’s
method. Note that the form of system (19) is uniquely determined by the set
of parameters TB = [5/4, 2[ correspond τB = 5/4, JB = ∅, s = 2. At the second
iteration of Newton’s method, the condition (21) is satisfied for the parameter vector
θ(∗) = (zj = 0, ti = 1) the condition We resolve the system (19) by Newton’s method
which taken as an approximation solution of system (19),

θ(1) = (zj = 0, ti = 1.19),

Which is taken as an approximation solution of system(19). This vector is used
to restore the control v̂, and trajectory χ(t∗) and to verify the satisfaction of the
constraints and the condition of the ε-optimality. We obtain

χ(t∗) =

(
7.3439
2.38

)
, Hχ(t∗) = 2.5839.

consequently :
J(v0) = 2.28.

The resulting control is admissible, and the ε-optimality is satisfied at ε = 0.2.
Therefore, the original problem has been solved.
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