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Abstract

This paper shows, by a proposition and a numerical example, how
a classic simple or multiple normal regression can achieve with 0.99
probability a near perfect fit to a random sample of any size but due
to the omission of an independent variable the signs of the estimated
coefficients are all wrong, thus distinguishing prediction from causation.
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1 Introduction

Model misspecification in regression has long been a well-recognized research

problem (for standard textbook expositions on this topic, see, e.g., [4]); the

estimation biases resulting from a misspecified model can be very serious (cf.,

e.g., [5]). Depending on the applications, a misidentification of a variable X

as a (or even the) cause of Y may result in severe consequences. For example,

careless correlation reports in health-related matters mislead the public at the

minimum, and yet all too often one is provided with such information (which

is not to say that there lacks rigorous research methodology; see, e.g., [9]).

We are thus motivated to show in this paper how X can be a highly reliable
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positive predictor of Y due to a population coefficient of correlation close to 1

and yet as a deterministic cause ∂Y
∂X

< 0.

Section 2 below will highlight the issue on hand by the model

Y = β1 + β2X2 + β3X3 + ε, β2 < 0, β3 > 0, (1)

X3 = γ1 + γ2X2 + u, γ2 > 0, (2)

with the random terms ε and u satisfying all the standard assumptions, and

will also provide a detailed numerical example by a simulation of ε and u,

resulting in two sample regression equations:

Ŷi = 776.4 − 554.8Xi2 + 71.4Xi3, with R2 = 0.99996; (3)

Ŷi = 1476.5 + 885.4Xi2, with R2 = 0.97823. (4)

In either equation all the coefficients are significant at the two-tailed p < 0.01.

Finally Section 3 will conclude with a summary.

2 Analysis

Proposition 1 Let the population regression equation be

Y = β1X1 + β2X2 + β3X3 + ε, (5)

where:

(1) X1 ≡ 1 and X2 is nonstochastic,

(2)

X3 = γ1 + γ2X2 + u, (6)

(3)

ε ∼ N
(
0, σ2

ε

)
, E (εiεj) = 0, ∀i �= j, (7)

u ∼ N
(
0, σ2

u

)
, E (ukul) = 0, ∀k �= l, (8)

with ε and u being independent, (9)

and

(4) β2 < 0, {β3, γ2, β2 + β3γ2} ⊂ (0,∞), with σε and σu sufficiently small

relative to the absolute values of β1, β2, β3, and γ2, then a regression on a
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random sample of size n as based on the ordinary least squares estimation of

the form

Ŷi = A1 + A2Xi2, i = 1, · · · , n, (10)

is such that

lim
σε, σu→0

R2 = 1, (11)

lim
σε, σu→0

pAj
= 0, j = 1, 2, with (12)

A2 > 0. (13)

Proof. By assumptions (1), (2) and (3), we have

Y = β1 + β2X2 + β3X3 + ε

= (β1 + β3γ1) + (β2 + β3γ2) X2 + (β3u + ε)

≡ α1 + α2X2 + η (14)

satisfying all the classical normal linear regression hypotheses. Assumption

(4) implies that as σε, σu → 0, one has Yi − Ŷi → 0 ∀i ∈ {1, · · · , n}, i.e.,

approaching a perfect fit through the sample {(Xi, Yi) | 1 ≤ i ≤ n}, so that

R2 → 1 and pAj
→ 0 ∀j = 1, 2; further, since E (A2) = α2 ≡ β2 + β3γ2 > 0,

we have A2 > 0.

Remark 1 It is true that one may estimate α2 ≡ β2 + β3γ2 from the above

reduced equation (14) for predicting Y by X2, with the regression satisfying

all the standard assumptions thus to defy even the most sophisticated resid-

ual analyses (see, e.g., [6, 10]) in detecting the specification error. However,

prediction based on correlation is not causation; in fact, from the original full

equation (5) one can argue that X2 by itself is a negative factor of Y ; consider

for example: X2 = 1 represents the male gender, which performs a certain task

as measured by Y less well than the female gender X2 = 0, but X3 ≡ heights is

a strong positive factor of Y so that males perform the task better not because of

the gender but because of the taller heights. As such, a correct regression model

is to come from a theoretical mathematical deduction (for an emphasis on this

point and how best to estimate regression parameters under model uncertainty,

cf., e.g., [2, 8]); if not, a regression equation in itself is only an extension of

correlation, and correlation is not causation - - a common textbook caution,

which incidentally, however, may lend itself to the erroneous notion that re-

gression, being more sophisticated, must be about causal-effect; in this regard,

even in the research literature one can find the identification of predictor with

cause (see, e.g., [1]).



228 G. L. Light

Remark 2 We also note that in the above Proposition 1 the fact that X3 is

stochastic does not affect any of the desirable properties of the least squares

estimation, since by assumption ε and u are independent. Nor is the apparent

multicollinearity of X2 and X3 a problem, since

V ar (bj) =
σ2

ε∑n
i=1

(
Xij − X̄j

)2
(1 − r2

23)
, ∀j = 2, 3, (15)

in Ŷi = b1 + b2Xi2 + b3Xi3, (16)

so that ∀r2
23 < 1 one has

lim
σ2

ε→0
V ar (bj) = 0; (17)

this can be seen from the following example.

Example 1 Given n = 20, (X1,2,· · ·,X10,2,X11,2,· · ·,X20,2) = (0,· · ·,0,1,· · ·,1),

X3 = 10 + 20X2 + u, u ∼ N
(
0, σ2

u = 1
)
, (18)

and Y = β1 + β2X2 + β3X3 + ε, ε ∼ N
(
0, σ2

ε = 4
)
, (19)

with ε independent of u,

find β1 ∈ R, β2 < 0, and β3 > 0 such that with 0.99 probability:

(1) a regression of Yi against (Xi2, Xi3) on a random sample of size n will

yield R2 ≥ 0.99, with the two-tailed pbj
≤ 0.01 ∀j = 1, 2, 3, and

(2) a simple regression of Yi against Xi2 will yield R2 ≥ 0.95, pAj
≤ 0.01

∀j = 1, 2, and A2 > 0.

Solution 1 Since

σ−2
ε

20∑
i=1

(Yi − b1 − b2Xi2 − b3Xi3)
2 ∼ χ2

17, (20)

we determine the maximum error sum of squares with 0.99 probability to be

SSEmax,0.99 ≡ χ2
0.01,17σ

2
ε = 33.409 × 4 = 133.636; (21)

then

s2
b2,max,0.99 =

133.636∑20
i=1

(
Xi2 − X̄2

)2 · (1 − r2
23,max,0.99

) , (22)
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where
20∑
i=1

(
Xi2 − X̄2

)2
= 5 (23)

and

(
1 − r2

23,max,0.99

)
=

(∑20
i=1

(
Xi3 − 1̂0 − 2̂0Xi2

)2
)

min,0.99(∑20
i=1

(
Xi3 − X̄3

)2)
max,0.99

(24)

=
χ2

0.99,18σ
2
u

20V ar (Xi3)max,0.99

(25)

=
7.015

20 ×
[
400V ar (Xi2) + V̂ ar (u)max,0.99

] (26)

=
7.015

2038.67
= 0.003, (27)

with

V ar (Xi2) =
5

20
and (28)

V̂ ar (u)max,0.99 =
χ2

0.01,18

18
=

34.805

18
, (29)

so that

s2
b2,max,0.99 =

133.636

5 × 0.003
= 8909 (30)

and sb2,max,0.99 = 94.4. (31)

Similarly we calculate s2
b3,max,0.99 by replacing

∑20
i=1

(
Xi2 − X̄2

)2
in Equation

(22) with (
20∑
i=1

(
Xi3 − X̄3

)2)
min

(32)

= 20V ar (Xi3)min (33)

= 20 × 202V ar (Xi2) (by dropping V ar (ui) ) (34)

= 2000, (35)

to arrive at

s2
b3,max,0.99 =

133.636

2000 × 0.003
= 22.3 (36)

and sb3,max,0.99 = 4.7. (37)
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Now since

Cov (b2, b3) =
−σ2

ε r23√∑20
i=1

(
Xi2 − X̄2

)2 ·∑20
i=1

(
Xi3 − X̄3

)2 · (1 − r2
23)

< 0, (38)

we have

V ar (b1) = X̄2
2V ar (b2) + X̄2

3V ar (b3) + 2X̄2X̄3Cov (b2, b3) +
σ2

ε

n
(39)

< X̄2
2V ar (b2) + X̄2

3V ar (b3) +
σ2

ε

n
; (40)

thus, we set

s2
b1,max,0.99 = 0.25 · s2

b2,max,0.99 + X̄2
3,max,0.99 · s2

b3,max,0.99

+
s2
max,0.99

20
(41)

(by Eq. (21) ) = 0.25 × 8909 + X̄2
3,max,0.99 × 22.3 +

133.636/17

20
. (42)

Since

V ar (Xi3) = 400V ar (Xi2) + V ar (ui) = 400 × 0.25 + 1 = 101, (43)

we have

V ar
(
X̄3

)
=

1

202
· (20 × 101) ≈ 5 (44)

so that

X̄3,max,0.99 =
(
10 + 20X̄2

)
+ 3

√
5, (45)

three standard deviations above the mean; (46)

hence,

X̄2
3,max,0.99 = 26.72 (47)

and substituting it into Equation (42), we have

s2
b1,max,0.99 = 18127.5 (48)

and sb1,max,0.99 = 134.6. (49)

Next, without loss of generality, consider the case of β1 > 0; we wish to

identify the unique value β∗
1 that has a 0.01 probability to yield a b1 ∈ (0, β1)



Regression, model misspecification and causation 231

with b1 greater than the null-hypothesis claimed β1 = 0 by (t17,0.005 ·sb1,max,0.99)

so as to produce a two-tailed p ≤ 0.01; i.e.,

b1 ≡ β1 − t17,0.01 · sb1,max,0.99 (50)

and
b1

sb1,max,0.99

= t17,0.005; (51)

i.e., β1 = (t17,0.005 + t17,0.01) · sb1,max,0.99 (52)

� 2 × t17,0.005 × 134.6 (53)

≡ β∗
1 = 2 × 2.898 × 134.6. (54)

Thus,

β∗
1 = 780.5. (55)

Similarly,

β∗
2 ≡ −2 × 2.898 · sb2,max,0.99 = −5.8 × 94.4 = −547.1, (56)

and

β∗
3 ≡ max {2 × 2.898 · sb3,max,0.99 = 27.4, β∗∗

3 } , (57)

where β∗∗
3 is determined from the requirement of R2 ≥ 0.99; to that end, we

consider
SSEmax,0.99

SSTmin
≡ 1 − R2 = 0.01, (58)

where the minimal total sum of squares as defined by σu = σε = 0 is

SSTmin ≡ nV ar (Y )min (cf. Equation (19) ) (59)

= n
[
(β∗

2 + 20β3)
2 V ar (X2) + β2

3σ
2
u + σ2

ε

]
σu=σε=0

(60)

≡ 20 (β∗
2 + 20β∗∗

3 )2 × 0.25, (61)

so that (recalling Equation (21)) 100 · SSEmax,0.99 = 13363.6 = SSTmin =

5 (β∗
2 + 20β∗∗

3 )2, i.e., β∗
2 + 20β∗∗

3 ≈ √
2672, and since by Equation (56) β∗

2 =

−547.1, we have

β∗∗
3 ≈

√
2672 + 547.1

20
= 29.9 ≡ β∗

3 (cf. Equation (57) ). (62)

To sum up, we have obtained

β∗
1 ≡ 780.5, (63)

β∗
2 ≡ −547.1, and (64)

β∗
3 ≡ 29.9. (65)
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However, the above β∗
3 ≡ 29.9 is yet to be adjusted upward to provide, with

0.99 probability, that

Ŷi = A1 + A2Xi2, R2 ≥ 0.95, (66)

pA1 ≤ 0.01 and pA2 ≤ 0.01. (67)

Here in analogy with the above multiple regression, we have:

SSEmax,0.99 ≡ χ2
0.01,18σ

2
(β3u+ε) = 34.805 × (β2

3 × 1 + 4), (cf. Eq. (21) ) (68)

and (cf. Eq. (60))

SSTmin,0.99 = n
[
(β∗

2 + 20β3)
2 V ar (X2) + χ2

0.99,18

(
β2

3σ
2
u + σ2

ε

)]
(69)

= 20
[
(−547.1 + 20β3)

2 × 0.25 + 7.015
(
β2

3 + 4
)]

. (70)

We next solve for β3 in

0.05 =
34.805 (β3 + 2)2

5 (−547.1 + 20β3)
2 (71)

>
SSEmax,0.99

SSTmin,0.99
, (72)

and we obtain

β̌3 = 71, (73)

which is sufficient (but not necessary) for pAj
≤ 0.01 ∀j = 1, 2 with 0.99

probability, as shown below:

For pA2 ≤ 0.01 we solve for β3 in

α2 (≡ β∗
2 + β3γ2)

sA2,max,0.99

= 2t18,0.005, (recall Eq. (53) ) (74)

where β∗
2 = −547.1, γ2 = 20, t18,0.005 = 2.878, and

sA2,max,0.99 =

√√√√(SSEmax,0.99

18

)( 20∑
i=1

(
Xi2 − X̄2

)2)−1

(75)

<

√√√√(34.805 (β3 + 2)2

18

)
· 1

5
(as in Eq. (72) ) (76)

= 0.62 (β3 + 2) , (77)

so that Equation (74) yields

20β3 − 547.1 = 2 × 2.878 × 0.62 (β3 + 2) = 3.57 (β3 + 2) , (78)

and thus, β3 = 33.7 < β̌3 = 71. (79)
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For pA1 we calculate
α1 (≡ β∗

1 + β3γ1)

sA1,max,0.99
(80)

by substituting β∗
1 ≡ 780.5, β̌3 = 71, γ1 = 10, and sA1,max,0.99

=

√√√√(SSEmax,0.99

18

)
·
(

1

n
+

X̄2
2∑20

i=1

(
Xi2 − X̄2

)2
)

(81)

=

√(
34.805 (712 + 4)

18

)
× 0.1 = 31.2 (by Eq. (68), (73)), (82)

and we find
α1

sA1,max,0.99
= 47.8, (83)

which clearly yields a pA1 << 0.01.

We thus have established

Yi = 780.5 − 547.1Xi2 + 71Xi3 + εi, εi ∼ N (0, 4) . (84)

A simulation of Equation (18) yielded

(X1,3,· · ·,X20,3) = (9.2, 10.6, 10.9, 9.7, 7.5, 10.0, 10.2, 9.6, 9.5, 10.8, 31.9,

31.3, 29.9, 29.6, 28.9, 29.3, 29.0, 29.7, 29.8, 30.3),

substituting which into Equation (84) with a simulation of εi then yielded

(Y1, · · · , Y20) = (1431.8, 1536.1, 1553.5, 1466.5, 1311.9, 1491.7, 1504.2,

1463.4, 1456.0, 1549.4, 2499.7, 2456.3, 2352.0, 2339.4, 2293.7, 2312.3, 2294.8,

2334.0, 2349.7, 2386.6),

and a regression of Yi against (Xi2, Xi3) yielded

Ŷi = 776.4 − 554.8Xi2 + 71.4Xi3, R2 = 0.99996, S.E. = 2.93, (85)

p1 = 9.3 × 10−26, p2 = 5.1 × 10−18, and p3 = 4.7 × 10−25, (86)

but the simple regression of Yi against Xi2 resulted in

Ŷi = 1476.5 + 885.4Xi2, R2 = 0.97823, S.E. = 69.62, (87)

p1 = 4.7 × 10−23, and p2 = 2.1 × 10−16. (88)
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Remark 3 A comparison between the above R2
simple = 0.97823 and R2

multi =

0.99996 attests the validity of applying R2 ≈ 1 as a criterion for correct model

specification (cf., e.g., [3, 11], for other methods of testing models).

Remark 4 The above Example 1 highlights the basic fact that with β1, β2,· · ·,
βK , βK+1 sufficiently large relative to σε in

Y = β1 + β2X2 + · · ·+ βKXK + βK+1XK+1 + ε, K ≥ 2, (89)

one can always achieve a sample regression with all the desirable statistics;

under such conditions, if

XK+1 =

K∑
j=1

γjXj (90)

with (βK+1γj + βj) βj < < 0 for some j, (91)

then a sample regression with XK+1 excluded is to produce bj carrying the

opposite sign to that with XK+1 included. Here one is also reminded that the

above Equation (90) can be nonlinear (cf., e.g., [7], for estimation of multi-

variable polynomial regression equations).

3 Summary Remark

The above analysis has shown that simple regression with low R2 achieves little

purpose and multiple regression with R2 ≈ 1 is a criterion for correct model

specification, but even a multiple regression with the best inferential statistics

is no guarantee for being a correct model. Thus, correct regression models

must come theoretical mathematical deduction; for example, in economics the

aim of regression is mostly about estimation of the parameters of a theoreti-

cally derived equation, rather than an empirical hypothesis testing; likewise,

universal physical constants, such as Planck h has been estimated from known

functional forms. To conclude, either for intrinsic aesthetic value or for extrin-

sic utilitarian consideration, prediction is better served by cause-effect than by

correlation.
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