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Abstract

Consider the dynamical system 4 + 2at + u = acoswt where the
position w is constrained to remain above an obstacle of height wmin;
when wu reaches the obstacle, its velocity is reversed and multiplied by a
restitution coefficient e € [0,1]. For certain choices of parameters, the
solutions are chaotic. We compute the Lyapunov exponents by three
different methods, and we compare the results. The computation of
these numbers is very sensitive to the method, and to the numerical
parameters for a given method, even with a very accurate method.

Mathematics Subject Classification: Dynamical Systems

Keywords: Dynamical Systems, Impact problem, Lyapunov Exponents

1 Introduction

In this article, we consider a class of non smooth dynamical systems, which
describe the motion of a mechanical system with one degree of freedom, subject
to a unilateral constraint on the position. When this constraint is saturated,
the velocity is reversed and multiplied by a restitution coefficient.

More precisely, let f be a continuous function from R? to R, which is
Lipschitz continuous with respect to its last two arguments. Assume that a
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real number wu,,;, and a restitution coefficient e are given. The initial data are
Uy > Umin and vy, such that vg > 0 if ug = um;. The solutions of the Cauchy
problem, are defined as follows: w is a continuous function from [tq, T'| whose
second derivative (in the sens of distributions) is a measure. This condition
implies that the first derivative % of u is a function of bounded variation, and
in particular, it is continuous almost everywhere, and it is continuous from the
left and from the right at all points of (¢y, T'] and [ty, T") respectively. Thus, the
difference i — f(t,u, ) will be a measure pu; the function w and the measure p
have to satisfy the following relations:

d:f(tauﬁiL)_"lu ()
U > Unin (2)
suppp C {t : u(t) = Umin } (3)
if u(t) = Umin, then 4(t 4+ 0) = —eu(t — 0) (4)

(5)

U(to) = U, U(to) = Vo

A few words of comment on this definition are in order: the first derivative
of u is expected to be discontinuous at impacts, for obvious geometric reasons;
therefore, it makes sense to assume that the second derivative of u has Dirac
masses, or more generally is a measure. The measure yp is the reaction of
the obstacle at impact, as can be seen from (1), which is basically Newton’s
law. Condition (2) means that u(t) remains inside the convex of constraints
[tmin, 00). The reaction can be different from 0 only when there is a contact:
this is relation (3). Finally, condition (5) describes the constitutive law of the
impact, with the help of the restitution coefficient e.

It has been proved in [5] that problem (1)-(5) possesses a solution. How-
ever, uniqueness is not always true and an example has been given in [12].
Nevertheless, generic uniqueness has been proved in a special case [2| for n
degrees of freedom; uniqueness has also been proved for one degree of freedom
when f is analytic with respect to all its arguments [13].

A simple case of (1) — (4) is a forced vibrating system with one degree of
freedom defined by

f(t,u,v) = acos(wt) — 2av — u. (6)

In this case, the uniqueness theorem of [13| applies.

For particular values of the parameters «, uy;, and e, the problem (1)—
(5) with the choice (6) of function f shows typically non linear phenomena
of sensitivity to initial data, and there are values of the parameter for which
there exists a “strange” attractor.

In this article, we compute Lyapunov exponents for the system (1)-(6),
using two different numerical methods.
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The first numerical method is the impact detection method, and it is very
straightforward: suppose we are given initial data u(tx) = ug and u(tx+0) = vy
at an impact time ¢;. We use the elementary and formula for the free flight
solution, and we seek the first time 5,1 > 5, for which w (x4 1) — Umin vanishes.
We perform this search by sweeping forward in time so as to find a small
interval where u — uy,;, changes sign; on this small interval, we find the impact
time by Newton’s method. The accuracy is limited only by the capability of
the computer. At instant ¢4, 1, we reverse the velocity according to rule (4),
and we start the process again using the new values of the initial data.

The second numerical method is the [4,6] numerical scheme defined in [4,6].
Let us describe this scheme: denote Pg the projection on the convex set K =
[(1 + €)umin, +00); it is given by

Py (xz) = max(x, (1 4 €)tmin), (7)
and a sequence F},, which is defined by:
F" = f(nh, U™, (U™ —U™)/h). (8)
The numerical scheme is given by the following relation:
Ut 4+ eU" ™ = P2U™ + (e — 1)U + h*F"]. (9)

It turns out that the computations using (7)—(9) are much faster than the
computations by the impact detection method. However, the scheme is not
very accurate; it is not better than first order with respect to the position.

It has been observed that in a chaotic case, the attractor of (1)-(6) calcu-
lated by the impact detection method is well approximated by the attractor
calculated by the numerical scheme (7)—(9).

We would like to estimate how well the numerical scheme (7)—(9) approx-
imates more refined information, namely the Lyapunov exponents of (1)—(6):
we reduce our continuous time dynamical system in three dimensions to a dis-
crete time dynamical system, by using a Poincaré map; this is easy because we
cut the phase space by the planes t =ty + k7', where T' = 27 /w is the period
of the forcing. In the two dimensional case, the largest Lyapunov exponent, if
it exists, describes the average rate of divergence of two infinitesimally close
trajectories; the sum of the two Lyapunov exponents, if it exists, describes the
average rate of evolution of infinetesimal volume in phase space.

There are classical methods for calculating numerically Lyapunov expo-
nents; they are described for instance in [7], and consist essentially in giving
a reasonably stable numerical implementation of the definition of the Lya-
punov exponents. The calculations of Lyapunov exponents are very close to
the approximation of eigenvalues of a matrix by the power method, and it
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has been known for a long time that renormalizations are needed to make the
computation possible.

The fact that our system is not smooth is not a serious problem, because
the system can be linearized whenever the impact takes place with a strictly
positive velocity, and we never observed tangential impacts for choices of the
parameters leading to a chaotic behavior.

The article is organized as follows: in section 2, we recall the definition
of the Lyapunov exponents, and we define a program which could lead to a
theoretical treatment of the qualitative questions we consider, and we describe
its state of advancement. In section 3, we differentiate the flow with respect
to the initial data: we consider separately the flow in continuous time and the
flow in discrete time, and we show that a crucial term disappears in the discrete
time case. In section 4, we explain the three methods of computation of the
Lyapunov exponents. In section 5, we describe and compare our numerical
results. In section 6, we conclude.

2 Definition of Lyapunov exponents

Let us recall the definition of Lyapunov exponents in a smooth case: let S™x
be a trajectory of a discrete dynamical system; if ¢ is very small, the largest
Lyapunov exponent is the asymptotic rate of evolution of |S™(x + §) — S™(z)|
as time n tends to infinity, if it exists; similarly if §; and o are independant,
the sum of the first two Lyapunov exponents describes the asymptotic rate of
evolution of the area of the paralellogram built on the vectors S™(z+4d;)—S"(z)
and S"(z + d2) — S™(z). That such objects can be defined and exist is a
non trivial fact, which is proved only in rather particular cases. Let us state
just a few of the results which would enable one to prove that the Lyapunov
exponents exist. Our sources for the following description have been [9], [10],
[11] and [14].

We give first some definitions which are classical in ergodic theory: consider
a measurable space, i.e. a pair (X, X) where X is an abstract set, and X is a
o-algebra of its subsets. A mapping S from X to itself is an endomorphism
of (X,X) if for all C belonging to X, the set T-'C belongs also to X. A
measure g on (X, X) is invariant under the endomorphism S iff for all C' € X,
u(S™C) = u(C).

The celebrated Birkhoff-Khinchin ergodic theorem states that if x4 is invari-
ant under S, then for almost every = and for all f € L*(X, X, ) the following
limit

f(z) = lim ! Zf(ij)
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exists. Moreover, the limiting function f is invariant, i.e;

f(Sz) = f(x),

for p-almost all x € X.

Let S be an endomorphism of (X, X) and let 1 be a probability measure that
is invariant under S. The symmetric difference of two sets A and B is denoted
AAB, and a set A € X is said to be invariant mod 0 iff u(AA(S™1A)) = 0.

An endomorphism S is called ergodic if any invariant modulo 0 set is of
measure 0 or 1. An equivalent formulation of this definition is that in the
Birkhoff-Khinchin theorem, f is a constant:

Fa) = / £(x) du(z).

Alternatively, it is possible to say that p is ergodic iff the time and the space
averages coincide.

The existence of an invariant measure can be proved if X is a compact
metric space, X is the Borel g-algebra and S is an homeomorphism of X. This
result is due to Bogoliubov and Krilov and can be found for instance in [9],
page 8, Lemma 1.2.

In order to prove that in our problem we have an invariant measure, we
would have to follow the following program: first observe that with a periodic
forcing, it makes sense to think of time as a periodic variable of period 27 /w =
T'; the mapping S maps the position and velocity at time ¢y to their image by
the flow at time ¢y + 7. The second step is to show that the system defined
by (1)—(6) has a bounded invariant set in (R/T") x V,; consider the w-limit set

A= [UnilS2}}

k>0

for some initial data = = (ug, v9)® and show that A is compact.

This step has been performed in a slightly different case by Anglés, in his
thesis [1], and we believe that the methods of Anglés apply with very little
adjustement to the present case.

Then the really difficult task would be to prove that restricted to A, S is
an homeomorphism; it is clear that it is continuous, thanks to the continuous
dependence with respect to data; but its inverse could be very bad: S could
even lack an inverse if (0,0)* belonged to A. Proving or disproving that (0,0)*
belongs to A looks like a very hard problem.

Even if this result were proved, our invariant measure on A could be non
unique and very badly behaved. However, the existence of such an invariant
measure would be an important fact, because it would build the foundations
for the following question: consider a function of z, such as the average kinetic
energy: it is defined by
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1 T
E(z) = T/ |yt + s, to, o, vo)|* ds
0

where (ug,v) is any representative of the class x and ®, is the second
component of ®. The existence of an average kinetic energy, i.e. of the limit

1

(n+1)T
lim m/ |®2(t0+5)t07u07U0)|2d8
n—oo 0

is equivalent to the existence of the limit

n—oo N + 1 —

lim — > E(S™x).
7=0

Clearly, this is a question in ergodic theory.
Now, we state Oseledec’s theorem concerning existence of Lyapunov expo-
nents [9, theorem 2.1, page 23]:

Theorem 2.1 (Oseledec). Let S be a C'-diffeomorphism of a compact
manifold X, and let p be an ergodic measure. Then there are two possibil-
ities:

(i) there exists X € R such for all v in the tangent space T, M to M at z,
o1
lim —In||D,S™| = A (10)
n—oo N

for almost all x in M, or

(ii) there erists \y > Xy and a splitting T,M = E! & E? (with the maps
x — EL E? being measurable) such that for all vy in EL, and all vy in E2:

1
lim —In||D,S™v ]| = M\ (11)

n—oo M

and 1
lim —In ||D,S"va|| = Ay (12)

n—oo M

for almost all x in M

In our case, S is not a C'-diffeomorphism, and we have not proved that there
exists an ergodic measure p. Therefore, Oseledec’s theorem does not enables
us to establish the existence of Lyapunov exponents.

However, our problem is not totally devoid of regularity: let us say that
a strict impact time is an impact time for which the left limit of the velocity
does not vanish. It is possible to calculate the differential of the mapping
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(uo, uy) — P(t; — 0, to, up, u1), provided that the interval (o,?;) contains only
a finite number of impact times, and that they are strict impact times.

When there is exactly one impact time, the differential is computed explic-
itly, and it is given by a 2 x 2 matrix; the most important term in this matrix
comes from the differentiation of the impact time with respect to the initial
data, which is possible only if the impact time is strict.

Thus, the Lyapunov exponents could be well defined though none of the
conditions of Oseledec’s theorem are satisfied; but their existence and their
computation is a purely experimental matter. In what follows, it should be
always understood that any object we consider should be complemented by
the phrase “if it exists”. But we shall not repeat it systematically.

In our case, the phase space is two dimensional, which leads to the compu-
tation of two Lyapunov exponents.

The larger one, \;, measures the rate of evolution of a one dimensional
infinitesimal element of the phase space. It can be given by the evolution of
the distance between the reference trajectory and a neighbouring one.

The sum of the smaller one, )5, and the larger one measures the rate of
evolution of infinitesimal volume elements in the phase space. If DS(x) had
real distinct eigenvectors v; and vy at some point z, one could understand the
definition of the second Lyapunov exponent in a more geometrical fashion: the
parallelogram built on v; and v is sent by the tangent mapping at x to S into
another parallelogram built on D,Sv; = exp(A\it) and D,Sve = exp(Aat)vs.
Then the area of the parallelogram is multiplied by exp((A; + A\2)t).

In particular, if A\; > 0 and A\; + Ay < 0, the areas are contracted, while
the distances can be expanded: this is precisely a situation which can lead to
chaotic behavior.

For a dissipative dynamical systems the areas are contracted, as a rule.

3 Differentiation of the continuous and discrete
flows

3.1 The continuous flow

In this section, we calculate the differential of the mapping z¢ — ®(t1, to, o)
when there is exactly one impact time, in the interval (¢o, t;), and the impact is
strict, i.e. Po(t, — 0,9, x) < 0. We denoted xy = (ug, vp), the initial condition
in the phase space.

To do this, we express the flow on such an interval as the composition of
the flow from time t; to time ¢, the time of the impact, of a reflexion and of
the flow from time ¢, to time ¢;. Since the reflexion law is given by

alt, +0) = —eu(t, — 0). (13)
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the phase after the impact is related to the phase before the impact by a linear
transformation whose matrix is

r(y ") (14)

It is convenient to denote
O(t. — 0,t9,z0) = 2. (15)
Therefore, we may write now
®(t1, 1o, 2) = B(t1,t. + 0, Ra.). (16)

Theorem 3.1 Assume that the impact at t. is strict. Denote ¢(t) = f(t, u(t),u(t)).
Then the differential of x — ®(ty,to, ) is equal to

Dy®(ty,t, — 0,2.) 0 Ro Dy®(t, — 0, g, z0), (17)
where
~ —e 0
R={ ¢(t.+0)+edlte=0) __ (18)
a(t, —0)

Proof. We differentiate the identity (16) with respect to zy and we obtain
D3®<t1, to, .CI?(]) = DQ@(tl, tc + O, R.Z'C)Dtc + D3®<t1, tc + O, RQ?C)RVV, (19)

with
W = {qu)<tc - 0, to, l‘o)Dtc + ng)(tc - 0, to, l‘o)}
We calculate the different quantities which appear in (19): thanks to (15),

t. satisfies
él(tc - 07 th l‘O) = Umin,

which we differentiate with respect to xg; as the impact is strict, we can see

that
~ D3®y(tc — 0, ¢, o)

u(t. — 0)
Let us calculate now Dy®: we differentiate the differential equation and the
initial conditions satisfied by ®4(t, s, x)

Dtc(xo) =

(D3 +2aD; + 1)®(t,s,2) = f(t), ®i(s,5,2) =u, D1®(s,s,2) =0,
with respect to the second argument, and we obtain

(D%+2&D1+1)D2®1(t,8,l‘) = 07 DQCI)I(Svva) = -0, D1D2<I>1(s,s,x) = —f(S,U7U).
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Therefore, if we observe that on intervals without impact the differential of ®
with respect to the third argument is simply the fundamental solution of the
corresponding constant coefficient homogeneous linear system, we can see that

DZ@(tla tc + O, RIC) = D3®<t1’ tc —+ O, Rxc) ( :;Eic i 83 ) '

On the other hand

D ®(t, — 0,tg, z0) = ( Zg - 8; ) .

Moreover, we apply the matrix identity

(3) =05 0)(53)

to transform the expressions containing D3®; into expressions containing
D3®. Therefore we may write (6.7) as

Dg@(tl, to, ZE()) = D3¢)(t1, tc + O, RZL‘C)UD3®<tC - 0, to, l‘o). (20)
with
_ u(te—0) 0 1 u(te+0) 0 1
U‘R+R< olt. —0) 0 ) it~ 0) *R( ot +0) 0 ) it —o Y

A direct computation shows that the quantity in brackets is equal to

—e 0
( P(t. +0) + ep(t. — 0) e )
u(t. —0)

which is precisely our claim.

3.2 The discrete flow

The discrete problem corresponding to (1) - (4) is defined by (7), (8) and (9).
Let the discrete velocity be

_ Un+1 —_yn

VTL
h

(22)

The initial data for (6) and (7) are U° and

Ul_UO

Vo=
h
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The perturbed solution U™ corresponds to perturbed initial conditions U° and
Vo,

Let N (resp N) be the set of integers n such that the constraint is active
on U™ (respectively on U"), i.e.

N={n>1:20"+ (e — U + h2F" < (1 + €)tmin},

and
N={n>1:20"4 (e — U + h2F" < (1 + €)tmin }-

Of course, for n € N, U™ + eU™ ! = (1 + €)umin.

Lemma 3.2 For all integer M such that for all n € {1,...M}, 20™ +
(e = 1)U 4 h*F™ is not equal to (1 4 €)umin, there exists a p such that for
|UY = U +|VO =V < p, then NN{0,..., M} coincides with NN{0, ..., M}.

Proof. The mapping which assigns to (u,v) the number w defined by
w+eu = Puyor(2v+ (e — Du+ A2 f(t, v, (w —u)/2h)) (23)

is continuous; indeed, Py is a contraction, and (u,v) — h2f(t,v, (w — v)/h)
is Lipschitz continuous with a Lipschitz ratio estimated by Lh, where L is the
Lipschitz constant of f with respect to its last two arguments. Therefore, the
principle of strict contractions implies that for Lh < 1, there exists a unique
solution w of (23). If v’ and v’ are different data, we subtract (23) from

W'+ e = Py (20 + (e — Vu' + B2 f(t, 0, (w' — ') /2h)),
and we obtain
(1—Lh)|w —w| < (1+hL)|u —u|+ (24 R*L)|jv — /|,

which implies immediately our claim about continuity.

Therefore, for all n. > 1, U™ tends to U" as |U° — U°| + |[V° — V| tends to
0. If 2U™ + (e — 1)U™ ! + R2F™ is not equal to (1 + €)upin, then for & small
enough, 20" + (e — 1)U 4+ h2F™ is not equal to (1 + €)Umiy, and therefore
the constraints are saturated for U" if they are saturated for U™.

Let us define the discrete flow ®" as the mapping which assigns to the
discrete times t° and " = t(0 + nh) the solution X" = (U",V™")T of the
numerical scheme at time t" which satisfied the initial data X° = (U°, V)T
at the initial time ¢°.

It should be remarked here that the phase space for the discrete flow has not
been studied in the same detail as the phase space for the flow in continuous
time. Our present understanding is that this phase space is R2.



Computation of Lyapunov exponents for dynamical system with impact 247
Theorem 3.3 Consider a discrete time interval {t* ... t'} on which the
solution U™ of the numerical scheme satisfies
n#pp+1 and t*F <" <t = 20"+ (e — 1)U + h2F" > (1 + €)tUmin,
(24)
and
n=porn=p+1=20"+(e— 1)U +hF" < (1 +e)umn. (25
The derivative of the flow with respect to its spatial argument is given by

Ds®" (', t5, X*) = D3@ (¢!, 741, XP+1) o Rh o D3@" (1771 8, X*),  (26)

= %) @)

Proof. We can decompose the discrete flow on this interval as

where

Xl — @h(tl7tp+1,Xp+l),

and
XP7l = ph(er=t P XF),

Then, the differentiation of X' with respect to X* is performed by composition
of differentiations. The assumption on the saturation of constraints at discrete
times p and p + 1 implies

UPT™ 4 eUP™ = (14 €)umm, VP +eV?P =0,

so that the differential of (UP!, VP*1) with respect to (UP~!, VP~1) has matrix

S —e 0
R—(O _e).

Then, by composition we obtain

D3®h(tl,tk,Xk) — D3¢)h(tl,tp+1,Xp+l) o ﬁz o Dg@h(tpil,tk,Xk).

4 The three computational methods

In this section, we compute numerically Lyapunov exponents for the problem
(1)—(6) using three different methods. The first two methods are based on the
impact detection scheme. The third method is based on the scheme (7)-(9).
We have to calculate In(|D(S*)(z)vo|)/k. In order to obtain a reliable com-
putation, we have to normalize at each step the iterates; otherwise, the norm
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of the vectors DS*(z)vy increases exponentially with k, and the computation
leads to an overflow. This situation is reminiscent of the power method for the
computation of eigenvalues of matrices ([8], [3]), and the method employed is
essentially the same: let 2; be the sequence

To =T, Iy :S(l'j_l).
Then, by composition of differentials,
D(S*) () = DS(zp_y) - - - DS(z).

Define a sequence of vectors

>

j .
191

0 = DS(xj1)vj-1, v =

Then we have the identitites
DS(.CIZ’Q) = ?A)l, DS(.Tl)DS(.To)UQ = @2“@1”,

and by an immediate induction

k—1

DS(wx-1) -+ DS(x0) = i [ [ l1651]-

j=1
Thus, we will compute

AL =

| =

k
> gyl (28)
j=1

as an approximation to the true Lyapunov exponent, if it exists.

Similarly, we have to calculate the second Lyapunov exponent: once again,
the comparison with the methods used for the computation of matrix eigenval-
ues is illuminating: it is enough to compute In | det D(S*)(x)|, and to subtract
from this number A; ;. Computationnally, this procedure would be highly un-
reliable, since the image of a basis by D(S*)(x) becomes extremely singular as
k tends to infinity; thus, we modify the computation as follows:

det D(S%)(z) = ﬁ det DS(x;_1),

j=1

and we calculate the determinant of DS(x;_1) with the help of a second se-
quence of vectors w; defined by

w; = DS(xj1)wj,  w

~

g — (- vyl
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In other words, the basis {v;_1,w;_1} is transformed into {0;,%;} by the lin-
earization of the Poincaré map S, and then submitted to Gram-Schmidt or-
thogonalization. Then

| det DS (zj-1)| = [|0;[]]d; — (b - v)vs-
Therefore, we define

k
1
Aoy = A Z n (| — (w; - vy)vll, (29)

to be the numerical approximation of the second Lyapunov exponent.
The numerical differentiation of the continuous time and the discrete time
flows is implemented in a very simple fashion: let € be a small positive number,

and let
1 0
s=(0) #==(1)

Given Xy and t(, we define the numerical differential D.S(Xy) of the Poincaré
map S as the matrix given by its column vectors

D.S(Xo) = = ( ®(t1,t0, Xo +€01) — D(t1,t0, Xo) P (t1, b0, Xo + £d2) — P(t1, 10, Xo) ) -

m | =

The same definition applies for the discrete time flow:

D.S"(X,) =

M | =

( @h(tl,to,Xo + 551) — @h(tl,to,Xo) q)h(tl,to,Xo) + 552) — @h(tl,to,Xo) ) .

The three numerical schemes will be denoted

e IDED Impact Detection, Exact Differentiation,

e IDND Impact Detection, Numerical Differentiation,
e NSND Numerical Scheme, Numerical Differentiation.

In IDED, we use compute an approximation of DS to machine precision
of DS, which is given by formula (6.6) when ¢; = t, + 7T, and there is only
one impact in the time interval (to,to + 7). In IDND, we replace DS by D.S,
and in NSND, we use D.S". We did not try to compute exactly the derivative
of S": it would have required the integration of a linear difference equation
which admits an explicit solution because of its very simple nature. However,
we claim that for ¢ small with respect to h, the results of our computation
must be bad; therefore, it would be of little interest to let € tend to O: this is
the reason why we did not perform the relevant calculation.
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5 Numerical results

All our computations were performed in double precision.

All the results that are described in this section are obtained with e = 0.5
and the initial data ug = 0 and vy = 0.1. We start with a comparison of IDED
and IDND: we performed the computation for 3000 periods, a time step h used
as a sweeping parameter of h = T/2513, and € = 107® in IDND; of course T
is the period T' = 27/50. By convention, \;; is the numerical approximation
of A\; obtained by a computation on k periods. The IDND give this results

)\173000 = 3.05694 and )\273000 = —1506065,
and the IDED give the results
)\1’3000 = 3.05695 and )\273000 = —15.06066

The results obtained by respectively by IDED and IDND have 5 common
significative digits at least.

We observe that the first Lyapunov exponent is positive, and the second
is negative, and their sum is negative: this is in agreement with the chaotic
character of the dissipative system we considered. Another computational
observation is that IDED is much faster than IDND.

If we use values of € which are very small with respect to A in the NSND
scheme, the sum of the two Lyapunov exponents is positive; for instance, when
h =T/2513 and € = 1078, we obtained

/\1’3000 - 6511, /\2’3000 - —555

This fact led us to compute the Lyapunov exponents with ¢ somewhat
larger than h: with the choice e = 3h, h = T'/40000, the NSND method gave
reasonable results

6 Conclusion.

The comparison of the different methods used for the computation of the
Lyapunov exponents has showed a number of discrepancies and difficulties
of numerical origin. It could be argued that NSND gives bad results because it
is of low order; however, IDED does not perform too well. Thus, we observed
that strictly numerical and apparently harmless parameters can seriously alter
the result of a computation.

Therefore, the conclusion is a caveat: any computations of a Lyapunov
exponent should be subjected to a serious evaluation performed by applying
several different numerical methods, and by appraising the effect of all the
numerical parameters, including the ones which seem innocuous.
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