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Abstract

In this paper we derive a sufficiency theorem for a weak minimum
of a fixed-endpoint optimal control problem. The proof is direct in na-
ture as it deals explicitly with the positivity of the second variation,
in contrast with possible generalizations of Jacobi theory, solutions to
matrix-valued Riccati equations, or Hamilton-Jacobi theory. The ap-
proach we follow is essentially a generalization of the one introduced by
Hestenes, in terms of directional convergent sequences of trajectories,
originally posed for the problem of Bolza in the calculus of variations.
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1 Introduction

In 1966, Hestenes included in his classical text on calculus of variations and
optimal control theory (see [9]) a sufficiency proof for strong and weak minima
in the calculus of variations that does not make use of invariant integrals,
Mayer fields, conjugate points, or the Hamilton-Jacobi theory.

The proof deals explicitly with the positivity of the second variation along
admissible variations and it is applicable to cases in which Mayer fields may



254 J. F. Rosenblueth and G. Sánchez Licea

not exist (for example, in the case of an isoperimetric problem, the theory of
Mayer fields does not apply without transforming it to a problem of Lagrange).
The method is thus illustrated in the book by applying it to the fixed-endpoint
isoperimetric problem. The development of this technique as it appears in [9],
as well as its application to more general problems, can be traced back to
different papers of the author and McShane (see [2-8, 15]).

In more recent years, one can find an extensive literature on second order
sufficient conditions for certain optimal control problems (see [1, 10-14, 16, 18]
and references therein). Some of the approaches include a generalized theory
of Jacobi and conjugate points, the construction of a bounded solution to a
matrix-valued Riccati equation, a quadratic function that satisfies a Hamilton-
Jacobi inequality, or the insertion of the original optimal control problem as
an abstract optimization problem in a Banach space. The sufficiency proof
given by Hestenes in [9] has, however, received little attention in the context
of optimal control and the main objective of this paper is to show how it can
be successfully generalized to that theory.

The original proof is strongly based on the concept, introduced by Hestenes,
of a directional convergent sequence of trajectories (absolutely continuous func-
tions) which is in turn a generalization of the concept of directional convergence
for vectors in the finite dimension case. This notion relies on the specific cal-
culus of variations problem considered in [9] but, as we show in this paper, it
can be modified to cover optimal control problems. Based on that notion, we
provide a direct sufficiency proof for a weak minimum for the fixed-endpoint
optimal control problem.

Let us point out that the result itself is not new and it was previously
established in [17] by a similar technique. However, some statements of the
proof given in [17] seem to be rather incomplete and, by filling some of the
gaps, we provide in this paper a new and clearer proof.

The paper is organized as follows. In Section 2 we pose the problem we shall
deal with, introduce some notation and basic definitions, and state the main
result. Section 3 is devoted to the proof of the sufficiency theorem together
with the statement of an auxiliary result on which the proof is based. The
auxiliary result, which implicitly includes the generalization of the notion of a
directional convergent sequence of trajectories, is established in Section 4.

2 The problem and the main result

The fixed-endpoint optimal control problem we shall study in this paper can
be stated as follows. Suppose we are given an interval T := [t0, t1] in R, two
points ξ0 and ξ1 in Rn, a set A in T×Rn×Rm, and functions L and f mapping
T × Rn × Rm to R and Rn respectively.
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Let X := AC(T ;Rn) denote the space of all absolutely continuous functions
mapping T to Rn, let U := L1(T ;Rm), set Z := X ×U , and denote by Ze(A)
the set of all (x, u) ∈ Z satisfying

a. L(·, x(·), u(·)) ∈ L1(T ;R);
b. ẋ(t) = f(t, x(t), u(t)) a.e. in T ;
c. x(t0) = ξ0, x(t1) = ξ1;
d. (t, x(t), u(t)) ∈ A (t ∈ T ).

The problem we shall deal with, which we label (P), is that of minimizing
I over Ze(A), where

I(x, u) :=
∫ t1

t0
L(t, x(t), u(t))dt ((x, u) ∈ Ze(A)).

For this problem, a process is an element of Ze(A), that is, a couple (x, u)
comprising functions x ∈ X and u ∈ U which satisfy the constraints of problem
(P). A process (x, u) is called a (global) solution of (P) if it belongs to

S(A) := {(x, u) ∈ Ze(A) | I(x, u) ≤ I(y, v) for all (y, v) ∈ Ze(A)},
and a weak minimum of (P) if there exists ε > 0 such that (x, u) belongs to
S(T1((x, u); ε) ∩ A), where

T1((x, u); ε) := {(t, y, v) ∈ T × Rn ×Rm : |x(t) − y| < ε, |u(t) − v| < ε}.
We shall assume throughout the paper that the functions L and f are contin-
uous and of class C2 with respect to x and u on T × Rn × Rm.

For the theory to follow we shall find convenient to introduce the following
definitions.

• For all (t, x, u, p) ∈ T ×Rn × Rm × Rn let

H(t, x, u, p) := 〈p, f(t, x, u)〉 − L(t, x, u).

• A triple (x, u, p) will be called an extremal if (x, u) is a process, p ∈ X,

ṗ(t) = −H∗
x(t, x(t), u(t), p(t)) (a.e. in T ) and Hu(t, x(t), u(t), p(t)) = 0 (t ∈ T )

where ‘∗’ denotes transpose.

• For a given p ∈ X define, for all (t, x, u) ∈ T × Rn ×Rm,

F (t, x, u) := L(t, x, u) − 〈p(t), f(t, x, u)〉 − 〈ṗ(t), x〉
[= −H(t, x, u, p(t)) − 〈ṗ(t), x〉].

With respect to F , define the functional J as

J(x, u) := 〈p(t1), ξ1〉 − 〈p(t0), ξ0〉 +
∫ t1

t0
F (t, x(t), u(t))dt ((x, u) ∈ Ze(A)).
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Denote by C := C(T ;Rm) the space of all continuous functions mapping T to
Rm and consider the first variation of J with respect to (x, u) ∈ X ×C along
(y, v) ∈ Z given by

J ′((x, u); (y, v)) :=
∫ t1

t0
{Fx(t, x(t), u(t))y(t) + Fu(t, x(t), u(t))v(t)}dt,

and the second variation of J with respect to (x, u) ∈ X × C along (y, v) ∈
X × L2(T ;Rm) given by

J ′′((x, u); (y, v)) :=
∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all (t, y, v) ∈ T ×Rn × Rm,

2Ω(t, y, v) := 〈y, Fxx(t, x(t), u(t))y〉 + 2〈y, Fxu(t, x(t), u(t))v〉 +

〈v, Fuu(t, x(t), u(t))v〉.

Also, with respect to F , denote by E the Weierstrass excess function which
corresponds to

E(t, x, u, v) := F (t, x, v) − F (t, x, u) − Fu(t, x, u)(v − u)

for all (t, x, u, v) ∈ T × Rn ×Rm ×Rm.

• For all (x, u) ∈ X ×C, let the space of admissible variations be given by

Y (x, u) := {(y, v) ∈ X × L2(T ;Rm) | ẏ(t) = A(t)y(t) + B(t)v(t) a.e. in T,

y(t0) = y(t1) = 0}

where, for all t ∈ T , A(t) := fx(t, x(t), u(t)) and B(t) := fu(t, x(t), u(t)).

• For all u ∈ U let

D(u) :=
∫ t1

t0
ϕ(u(t))dt where ϕ(c) := (1 + |c|2)1/2 − 1.

Denote by ‖ · ‖0 the supremum norm and define η: Z → R ∪ {+∞} by

η(x, u) := ‖x‖0 + ‖u‖0.

Let us now state the main theorem of the paper. It corresponds to a
sufficiency result for a strict weak minimum of problem (P) assuming, with
respect to a given extremal, the strengthened Legendre-Clebsch condition and
the positivity of the second variation along nonnull admissible variations.
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Theorem 2.1 Let (x0, u0, p) be an extremal with u0 continuous and suppose
that

i. Fuu(t, x0(t), u0(t)) > 0 (t ∈ T ).
ii. J ′′((x0, u0); (y, v)) > 0 for all nonnull admissible variations (y, v).

Then there exist ρ, δ > 0 such that

J(x, u) ≥ J(x0, u0) + δD(u − u0)

for all processes (x, u) satisfying η(x − x0, u − u0) < ρ. In particular, (x0, u0)
is a strict weak minimum of (P).

3 Proof of Theorem 2.1

In this section we shall prove Theorem 2.1. We first state an auxiliary result
on which the proof is strongly based. Implicit in the statement of the result
we have included a generalization of the notion of a directional convergent
sequence of trajectories, first introduced in a calculus of variations context by
Hestenes in [9].

Lemma 3.1 Let {zq = (xq, uq)} be a sequence in Z, (x0, u0) ∈ Z, and
suppose that

lim
q→∞D(uq − u0) = 0 and dq := [2D(uq − u0)]

1/2 > 0 (q ∈ N).

For all q ∈ N and t ∈ T define

wq(t) :=
[
1 +

1

2
ϕ(uq(t) − u0(t))

]1/2

, yq(t) :=
xq(t) − x0(t)

dq

,

vq(t) :=
uq(t) − u0(t)

dq
.

Then the following hold:

a. There exists v0 ∈ L2(T ;Rm) such that {vq} converges weakly to v0 in
L1(T ;Rm).

b. Let Aq ∈ L∞(T ;Rn×n) and Bq ∈ L∞(T ;Rn×m) be matrix functions for
which there exist constants m0, m1 > 0 such that, for all q ∈ N, ‖Aq‖∞ ≤ m0

and ‖Bq‖∞ ≤ m1, and suppose that yq satisfies the system

ẏ(t) = Aq(t)y(t) + Bq(t)vq(t) (a.e. in T ), y(t0) = 0.

Then there exist σ0 ∈ L2(T ;Rn) and a subsequence of {zq} (we do not relabel)
such that {ẏq} converges weakly in L1(T ;Rn) to σ0. Moreover, if

y0(t) :=
∫ t

t0
σ0(s)ds (t ∈ T ),
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then yq(t) → y0(t) uniformly on T .

c. If fq, f : T → Rm are measurable functions with f ∈ L∞(T ;Rm) and
fq(t) → f(t) uniformly on T then

lim
q→∞

∫ t1

t0
〈fq(t), vq(t)〉dt =

∫ t1

t0
〈f(t), v0(t)〉dt.

d. Suppose that wq(t) → 1 uniformly on T . Let Rq, R0 be quadratic forms
with m×m associated matrices Rq(·) measurable on T , R0(·) ∈ L∞(T ;Rm×m),
Rq(t) → R0(t) uniformly on T , and R0(t) ≥ 0 a.e. in T . Then

lim inf
q→∞

∫ t1

t0
Rq(t; vq(t))dt ≥

∫ t1

t0
R0(t; v0(t))dt.

Proof of Theorem 2.1:
Assume that, for all ρ, δ > 0, there exists (x, u) ∈ Ze(A) with η(x−x0, u−

u0) < ρ such that
J(x, u) < J(x0, u0) + δD(u − u0). (1)

We are going to show that this contradicts (ii) of Theorem 2.1 and the first
statement will follow. The second conclusion is a consequence of the first since
J(x, u) = I(x, u) for all (x, u) ∈ Ze(A).

Let z0 := (x0, u0). Note that, for all z = (x, u) ∈ Ze(A),

J(z) = J(z0) + J ′(z0; z − z0) + K(z) + E∗(z) (2)

where

E∗(x, u) :=
∫ t1

t0
E(t, x(t), u0(t), u(t))dt,

K(x, u) :=
∫ t1

t0
{M(t, x(t)) + 〈u(t) − u0(t), N(t, x(t))〉}dt,

and the functions M and N are given by

M(t, y) := F (t, y, u0(t)) − F (t, x0(t), u0(t)) − Fx(t, x0(t), u0(t))(y − x0(t)),

N(t, y) := F ∗
u (t, y, u0(t)) − F ∗

u (t, x0(t), u0(t)).

By Taylor’s theorem we have

M(t, y) =
1

2
〈y − x0(t), P (t, y)(y − x0(t))〉, N(t, y) = Q(t, y)(y − x0(t)),

where

P (t, y) := 2
∫ 1

0
(1 − λ)Fxx(t, x0(t) + λ(y − x0(t)), u0(t))dλ,
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Q(t, y) :=
∫ 1

0
Fux(t, x0(t) + λ(y − x0(t)), u0(t))dλ.

Let us begin by proving the existence of h, α0, δ > 0 such that, for all
z = (x, u) ∈ Ze(A) with η(z − z0) < δ,

E∗(x, u) ≥ hD(u − u0), (3)

|K(x, u)| ≤ α0η(z − z0)[1 + D(u − u0)]. (4)

Since Fuu(t, x0(t), u0(t)) > 0 (t ∈ T ) and u0 is continuous, there exist h, ε > 0
such that

〈c, Fuu(t, x, u)c〉 ≥ h|c|2 (c ∈ Rm, (t, x, u) ∈ T1(z0; ε)).

By Taylor’s theorem, for all (t, x, u, v) with (t, x, u) and (t, x, v) in T1(z0; ε),
we have

E(t, x, u, v) =
∫ 1

0
(1 − λ)〈v − u, Fuu(t, x, u + λ(v − u))(v − u)〉dλ

Therefore

E(t, x, u, v) ≥ h

2
|v − u|2 ≥ hϕ(v − u)

and so

E∗(z) =
∫ t1

t0
E(t, x(t), u0(t), u(t))dt ≥ h

∫ t1

t0
ϕ(u(t) − u0(t))dt = hD(u − u0)

for all z ∈ Ze(A) satisfying η(z − z0) < ε. Choose α, μ > 0 such that, for all
z ∈ Ze(A) with ‖x − x0‖0 < μ and t ∈ T ,

|M(t, x(t)) + 〈u(t) − u0(t), N(t, x(t))〉| ≤ α|x(t) − x0(t)|[1 + |u(t) − u0(t)|2]1/2.

Set α0 := max{α, α(t1 − t0)}. Then

|K(z)| ≤ α‖x − x0‖0

∫ t1

t0
[1 + ϕ(u(t) − u0(t))]dt ≤ α0η(z − z0)[1 + D(u − u0)]

for all z ∈ Ze(A) with η(z − z0) < μ. Hence (3) and (4) hold with h, α0 given
above and δ = min{ε, μ}.

Now, by (1), for all q ∈ N there exists zq := (xq, uq) ∈ Ze(A) such that

η(zq − z0) < δ, η(zq − z0) <
1

q
, J(zq) − J(z0) <

1

q
D(uq − u0). (5)

Observe that the last inequality implies that uq(t) �= u0(t) on a set of positive
measure and so D(uq − u0) > 0 (q ∈ N). Since J ′(z0; w) = 0 for all w ∈ Z, it
follows by (2), (3) and (4) that

J(zq)−J(z0) = K(zq)+E∗(zq) ≥ −α0η(zq −z0)+D(uq−u0)(h−α0η(zq −z0)).



260 J. F. Rosenblueth and G. Sánchez Licea

By (5) we obtain

D(uq − u0)
(
h − 1

q
− α0

q

)
<

α0

q

and consequently D(uq − u0) → 0, q → ∞. Define dq, wq, yq and vq as in
Lemma 3.1.

By Lemma 3.1(a) there exists v0 ∈ L2(T ;Rm) such that {vq} converges
weakly in L1(T ;Rm) to v0. By Taylor’s theorem, for all q ∈ N we have

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T )

where

Aq(t) =
∫ 1

0
fx(t, x0(t) + λ[xq(t) − x0(t)], u0(t))dλ,

Bq(t) =
∫ 1

0
fu(t, xq(t), uq(t) + λ[u0(t) − uq(t)])dλ.

By continuity of fx and fu there exist m0, m1 > 0 such that ‖Aq‖∞ ≤ m0 and
‖Bq‖∞ ≤ m1 (q ∈ N). By Lemma 3.1(b) there exist σ0 ∈ L2(T ;Rn) and a
subsequence of {zq} (we do not relabel) such that, if

y0(t) :=
∫ t

t0
σ0(s)ds (t ∈ T ),

then yq(t) → y0(t) uniformly on T .
The theorem will be proved if we show that J ′′(z0; (y0, v0)) ≤ 0, (y0, v0) ∈

Y (z0), and (y0, v0) �= 0.
The fact that y0(t0) = y0(t1) = 0 follows by Lemma 3.1(b). Now, by

definition of the functional K,

K(zq)

d2
q

=
∫ t1

t0

{
M(t, xq(t))

d2
q

+
〈

N(t, xq(t))

dq
, vq(t)

〉}
dt.

In view of Lemma 3.1(b),

lim
q→∞

M(t, xq(t))

d2
q

=
1

2
〈y0(t), Fxx(t, x0(t), u0(t))y0(t)〉,

lim
q→∞

N(t, xq(t))

dq
= Fux(t, x0(t), u0(t))y0(t)

both uniformly on T . This fact, together with Lemma 3.1(c), implies that

1

2
J ′′(z0; (y0, v0)) = lim

q→∞
K(zq)

d2
q

+
1

2

∫ t1

t0
〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉dt. (6)
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Now, by Taylor’s theorem,

1

d2
q

E(t, xq(t), u0(t), uq(t)) =
1

2
〈vq(t), Rq(t)vq(t)〉

where

Rq(t) := 2
∫ 1

0
(1 − λ)Fuu(t, xq(t), u0(t) + λ[uq(t) − u0(t)])dλ.

Clearly,

lim
q→∞ Rq(t) = R0(t) := Fuu(t, x0(t), u0(t)) uniformly on T.

Since wq(t) → 1 uniformly on T and R0(t) ≥ 0 (t ∈ T ), it follows by Lemma
3.1(d) that

lim inf
q→∞

E∗(zq)

d2
q

≥ 1

2

∫ t1

t0
〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉dt.

This fact, together with (5) and (6), implies that

1

2
J ′′(z0; (y0, v0)) ≤ lim

q→∞
K(zq)

d2
q

+ lim inf
q→∞

E∗(zq)

d2
q

= lim inf
q→∞

J(zq) − J(z0)

d2
q

≤ 0.

In addition, if (y0, v0) = 0, then limq→∞ K(zq)/d
2
q = 0 and so, by (3),

1

2
h ≤ lim inf

q→∞
E∗(zq)

d2
q

≤ 0,

contradicting the positivity of h.

Finally, to show that (y0, v0) ∈ Y (z0), note that yq(t) → y0(t),

Aq(t) → A0(t) := fx(t, x0(t), u0(t)), Bq(t) → B0(t) := fu(t, x0(t), u0(t))

all uniformly on T , and {vq} converges weakly to v0 in L1(T ;Rm). Therefore
{ẏq} converges weakly in L1(T ;Rn) to A0y0 + B0v0. By Lemma 3.1(b), {ẏq}
converges weakly in L1(T ;Rn) to σ0 = ẏ0. Hence,

ẏ0(t) = A0(t)y0(t) + B0(t)v0(t) (a.e. in T )

and this completes the proof.
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4 Proof of Lemma 3.1

In order to prove Lemma 3.1 we shall first establish three auxiliary results.

Set Lr
p×q := Lr(T ;Rp×q). For all q ∈ N, let Aq ∈ L1

n×n and define
Γq: L

∞
n×n → L∞

n×n as

ΓqΦ(t) :=
∫ t

t0
Aq(s)Φ(s)ds (Φ ∈ L∞

n×n, t ∈ T ).

It is readily seen that Γq is a bounded linear operator.

Lemma 4.1 Let A ∈ L1
n×n. For all k ∈ N define Φk: T → AC(T ;Rn×n) by

Φk(t) := I +
∫ t

t0
A(s)Φk−1(s)ds and Φ0(t) := I (t ∈ T )

where I is the n×n identity matrix. Then there exists a unique Φ ∈ AC(T ;Rn×n)
satisfying

Φ̇(t) = A(t)Φ(t) (a.e. in T ), Φ(t0) = I,

and such that Φk(t) → Φ(t) uniformly on T .

Proof: Let us first assume that
∫ t1
t0
|A(t)|dt < 1. Observe that, for all k ∈ N,

‖Φk − Φk−1‖∞ ≤
(∫ t1

t0
|A(t)|dt

)k

.

Set M0 :=
∫ t1
t0
|A(t)|dt and choose m, p and N in N such that m > p ≥ N . We

have

‖Φm − Φp‖∞ ≤
m−1∑
k=p

‖Φk+1 − Φk‖∞ ≤
∞∑

k=N

Mk+1
0 =

MN+1
0

1 − M0

.

Since M0 < 1, MN+1
0 → 0 as N → ∞. Therefore, {Φk} is a Cauchy sequence

in L∞
n×n. Thus, there exists Φ ∈ L∞

n×n such that Φk(t) → Φ(t) uniformly on T .
Now, since

lim
k→∞

A(s)Φk(s) = A(s)Φ(s) uniformly on [t0, t],

we have

Φ(t) = I +
∫ t

t0
A(s)Φ(s)ds (t ∈ T ).

Consequently, Φ ∈ AC(T ;Rn×n) satisfies

Φ̇(t) = A(t)Φ(t) (a.e. in T ), Φ(t0) = I

and so Φ is the unique solution of the system given above. Since A ∈ L1
n×n,

the case
∫ t1
t0
|A(t)|dt ≥ 1 can be reduced to the previous one by considering the

equation on possibly shorter intervals.
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Lemma 4.2 For all q ∈ N ∪ {0}, let Φq ∈ AC(T ;Rn×n) be the solution of
the initial value problem

Φ̇(t) = Aq(t)Φ(t) (a.e. in T ), Φ(t0) = I

where Aq ∈ L1
n×n. If

∫ t1
t0
|Aq(t)|dt ≤ c0 (q ∈ N) for some c0 > 0 then {Φq} is

bounded in L∞
n×n.

Proof: Since

|ΓqΦ(t)| ≤
(∫ t1

t0
|Aq(t)|dt

)
· ‖Φ‖∞ (t ∈ T, q ∈ N),

it follows that
sup
q∈N

‖ΓqΦ‖∞ < ∞ for all Φ ∈ L∞
n×n.

By the Banach-Steinhaus Theorem there exists c1 > 0 such that

‖ΓqΦ‖∞ ≤ c1‖Φ‖∞ (Φ ∈ L∞
n×n, q ∈ N). (7)

Let Φ0: T → L∞
n×n be given by Φ0(t) = I and, for all k ∈ N, let Φk: T → L∞

n×n

be such that

Φk(t) = I +
∫ t

t0
A0(s)Φ

k−1(s)ds.

In view of (7) we have

‖ΓqΦ
k‖∞ ≤ c1‖Φk‖∞ (k ∈ N ∪ {0}, q ∈ N).

For all k, q ∈ N and t ∈ T , define

Φk,q(t) := I +
∫ t

t0
Aq(s)Φ

k−1(s)ds = I + ΓqΦ
k−1(t).

Again by (7),

‖Φk,q‖∞ ≤ ‖I‖∞ + c1‖Φk−1‖∞ (k, q ∈ N). (8)

By Lemma 4.1, Φk(t) → Φ0(t) uniformly on T . Thus, there exists c2 > 0 such
that

‖Φk‖∞ ≤ c2 (k ∈ N). (9)

By (8) and (9), there exists c3 > 0 such that

‖Φk,q‖∞ ≤ c3 (k, q ∈ N). (10)

Denote by m the Lebesgue measure and suppose that {Φq} is not bounded in
L∞

n×n. Then, for all n ∈ N, there exist En ⊂ T with 0 < m(En) and qn ∈ N
such that |Φqn(t)| > n (t ∈ En). Since, for each fixed q ∈ N,

lim
k→∞

Φk,q(t) = Φq(t) uniformly on T,
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there exists Kq ∈ N such that

|Φk,q(t) − Φq(t)| < 1 (k ≥ Kq, q ∈ N, t ∈ T ).

We have
|Φk,qn(t) − Φqn(t)| < 1 (k ≥ Kqn, n ∈ N, t ∈ T ).

By (10),

n < |Φqn(t)| < 1 + |ΦKqn ,qn(t)| ≤ 1 + ‖ΦKqn ,qn‖∞ ≤ 1 + c3 (n ∈ N, t ∈ En)

which is a contradiction. Therefore {Φq} is bounded in L∞
n×n.

The following result can be proved in a similar way.

Lemma 4.3 For all q ∈ N ∪ {0}, let Φ−1
q ∈ AC(T ;Rn×n) be the solution

of the initial value problem

Φ̇−1(t) = −Φ−1(t)Aq(t) (a.e. in T ), Φ−1(t0) = I

where Aq ∈ L1
n×n. If

∫ t1
t0
|Aq(t)|dt ≤ c0 (q ∈ N) for some c0 > 0 then {Φ−1

q } is
bounded in L∞

n×n.

Note that, by Lemmas 4.2 and 4.3, there exists c4 > 0 such that

max{‖Φq‖∞, ‖Φ−1
q ‖∞} ≤ c4 (q ∈ N). (11)

We are now in a position to prove the auxiliary result of Section 3.

Proof of Lemma 3.1:
(a): Observe that

∫ t1

t0

|vq(t)|2
wq(t)2

dt = 1 (q ∈ N). (12)

Thus there exist v0 ∈ L2(T ;Rm) and a subsequence of {zq} (we do not relabel)
such that {vq/wq} converges weakly to v0 in L2(T ;Rm). Let h ∈ L∞(T ;Rm)
and note that, for all q ∈ N,

∫ t1

t0
〈h(t), vq(t)〉dt =

∫ t1

t0

〈
h(t),

vq(t)

wq(t)

〉
dt +

∫ t1

t0

〈
h(t)[wq(t) − 1],

vq(t)

wq(t)

〉
dt.

By the inequality of Schwarz and (12),

∣∣∣∣
∫ t1

t0

〈
h(t)[wq(t) − 1],

vq(t)

wq(t)

〉
dt

∣∣∣∣
2

≤
∫ t1

t0
|h(t)|2[wq(t) − 1]2dt.
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Since wq(t)
2 ≥ wq(t) ≥ 1 for all t ∈ T , we have

0 ≤
∫ t1

t0
[wq(t)−1]dt ≤

∫ t1

t0
[wq(t)

2−1]dt ≤
∫ t1

t0
ϕ(uq(t)−u0(t))dt = D(uq−u0).

Observe also that

∫ t1

t0
[wq(t) − 1]2dt =

∫ t1

t0
[wq(t)

2 − 1]dt − 2
∫ t1

t0
[wq(t) − 1]dt.

Consequently,

lim
q→∞

∫ t1

t0
[wq(t) − 1]2dt = 0,

and so, since h ∈ L∞(T ;Rm),

lim
q→∞

∫ t1

t0
|h(t)|2[wq(t) − 1]2dt = 0.

Since L∞(T ;Rm) ⊂ L2(T ;Rm),

lim
q→∞

∫ t1

t0
〈h(t), vq(t)〉dt = lim

q→∞

∫ t1

t0

〈
h(t),

vq(t)

wq(t)

〉
dt =

∫ t1

t0
〈h(t), v0(t)〉dt,

that is, {vq} converges weakly in L1(T ;Rm) to v0.

(b): Let us first show that some subsequence of {ẏq/wq} converges weakly
in L2(T ;Rn) to some function σ0. Denote by (L2(T ;Rn))′ the dual space of
L2(T ;Rn) and let f ∈ (L2(T ;Rn))′. By the Riesz Representation Theorem we
have the existence of a unique uf ∈ L2(T ;Rn) such that

f
(

ẏq

wq

)
=

∫ t1

t0

〈
uf(t),

ẏq(t)

wq(t)

〉
dt

=
∫ t1

t0

〈
A∗

q(t)uf(t),
yq(t)

wq(t)

〉
dt +

∫ t1

t0

〈
B∗

q (t)uf(t),
vq(t)

wq(t)

〉
dt.

By (11), the fact that {vq} converges weakly in L1(T ;Rm), and Hölder’s in-
equality, there exist c4, c5 > 0 such that, for all q ∈ N and all t ∈ T ,

|yq(t)| ≤ |Φq(t)|
∫ t1

t0
|Φ−1

q (t)Bq(t)vq(t)|dt

≤ ‖Φq‖∞ · ‖Φ−1
q ‖∞

∫ t1

t0
|Bq(t)vq(t)|dt

≤ c2
4 · ‖Bq‖∞

∫ t1

t0
|vq(t)|dt ≤ c2

4 · m1 · c5.
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Thus there exists c6 > 0 such that ‖yq‖∞ ≤ c6 (q ∈ N). By Hölder’s inequality,

∣∣∣∣
∫ t1

t0

〈
A∗

q(t)uf(t),
yq(t)

wq(t)

〉
dt

∣∣∣∣ ≤
∫ t1

t0
|A∗

q(t)uf(t)| · |yq(t)|dt

≤ (t1 − t0)
1/2 · ‖A∗

q‖∞ · ‖uf‖2 · ‖yq‖∞
≤ (t1 − t0)

1/2 · m0 · ‖uf‖2 · c6 (q ∈ N).

Once again, by Hölder’s inequality and by (12),

∣∣∣∣
∫ t1

t0

〈
B∗

q (t)uf(t),
vq(t)

wq(t)

〉
dt

∣∣∣∣ ≤ ‖B∗
quf‖2 ·

∥∥∥∥ vq

wq

∥∥∥∥
2

≤ ‖B∗
q‖∞ · ‖uf‖2 ≤ m1 · ‖uf‖2 (q ∈ N).

Therefore {f(ẏq/wq)}q∈N is bounded in R for all f ∈ (L2(T ;Rn))′ and hence

{ẏq/wq} is bounded in L2(T ;Rn). This implies the existence of c7 > 0 such
that ∫ t1

t0

|ẏq(t)|2
wq(t)2

dt ≤ c7 (q ∈ N). (13)

We conclude that there exists a function σ0 ∈ L2(T ;Rn) such that some sub-
sequence of {ẏq/wq} converges weakly in L2(T ;Rn) to σ0.

By an argument similar to that used in the proof of (a), it follows that
there is a subsequence of {zq} (we do not relabel) such that {ẏq} converges
weakly in L1(T ;Rn) to σ0.

It remains to show that yq(t) → y0(t) uniformly on T . We have

yq(t) =
∫ t

t0
ẏq(s)ds (t ∈ T, q ∈ N),

and hence

lim
q→∞ yq(t) = y0(t) :=

∫ t

t0
σ0(s)ds pointwisely on T .

In order to prove that this convergence is uniform observe that, by (13), given
a measurable set S ⊂ T ,

∣∣∣∣
∫

S
ẏq(t)dt

∣∣∣∣
2

≤
∫

S

|ẏq(t)|2
wq(t)2

dt
∫

S
wq(t)

2dt ≤ c7

∫
S

wq(t)
2dt (q ∈ N).

Moreover, ∫
S

wq(t)
2dt = m(S) +

∫
S
[wq(t)

2 − 1]dt (q ∈ N).

Given a constant ε > 0, choose qε ∈ N such that

∫ t1

t0
[wq(t)

2 − 1]dt <
ε2

2c7

(q ≥ qε).
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Choose 0 < δ < ε2/2c7 such that

m(S) < δ ⇒
∣∣∣∣
∫

S
ẏq(t)dt

∣∣∣∣< ε (q < qε).

Note that, if q ≥ qε, then

m(S) < δ ⇒
∣∣∣∣
∫

S
ẏq(t)dt

∣∣∣∣
2

≤ c7

(
m(S) +

∫ t1

t0
[wq(t)

2 − 1]dt
)

<
ε2

2
+

ε2

2
= ε2

and so

m(S) < δ ⇒
∣∣∣∣
∫

S
ẏq(t)dt

∣∣∣∣ < ε (q ∈ N).

Thus the sequence of integrals {∫
S ẏq(t)dt} and hence also the sequence of

functions {yq(t)} are equi-absolutely continuous on T . Consequently, yq(t) →
y0(t) uniformly on T .

(c): By (a), there exists c5 > 0 such that

∫ t1

t0
|vq(t)|dt ≤ c5 (q ∈ N).

Since fq(t) → f(t) uniformly on T ,

lim
q→∞

∫ t1

t0
〈fq(t) − f(t), vq(t)〉dt = 0.

Since f ∈ L∞(T ;Rm), by (a),

lim
q→∞

∫ t1

t0
〈fq(t), vq(t)〉dt =

∫ t1

t0
〈f(t), v0(t)〉dt.

(d): By hypothesis we may assume that, for all t ∈ T and all q ∈ N,

m∑
i,j=1

[Rij
q (t) − Rij

0 (t)]2wq(t)
4 ≤ 1.

Hence

Mq := sup
t∈T

[ m∑
i,j=1

[Rij
q (t) − Rij

0 (t)]2wq(t)
4
]1/2

< ∞ (q ∈ N).

Using the inequality of Schwarz it is easily seen that, for all t ∈ T and all
q ∈ N,

|Rq(t; vq(t)) − R0(t; vq(t))| ≤ Mq
|vq(t)|2
wq(t)2

.
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Since Rq(t) → R0(t), and wq(t) → 1, both uniformly on T , we have Mq → 0.
Therefore, by (12),

lim inf
q→∞

∫ t1

t0
Rq(t; vq(t))dt = lim inf

q→∞

∫ t1

t0
R0(t; vq(t))dt.

But for all t ∈ T ,

R0(t; vq(t)) = R0(t; v0(t)) + 2〈vq(t) − v0(t), R0(t)v0(t)〉 + R0(t; vq(t) − v0(t)).

Since wq(t) → 1 uniformly on T , it is readily seen that (see the proof of (a))
there is a subsequence of {zq} (again denoted by {zq}) such that {vq} converges
weakly to v0 in L2(T ;Rm). Since R0v0 ∈ L2(T ;Rm), we have

lim
q→∞

∫ t1

t0
〈R0(t)v0(t), vq(t) − v0(t)〉dt = 0.

Hence

lim inf
q→∞

∫ t1

t0
Rq(t; vq(t))dt ≥

∫ t1

t0
R0(t; v0(t))dt + lim inf

q→∞

∫ t1

t0
R0(t; vq(t)− v0(t))dt.

Since the last term is nonnegative the result follows.
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