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Abstract 
 

This article contains order level inventory models for deteriorating items with 
quadratic demand. The finite production rate is proportional to the demand rate 
and the deterioration is time proportional. The unit production cost is inversely 
proportional to the demand rate. We have investigated inventory-production 
system where the deteriorating items follow two parameters Weibull deterioration. 
The objective of the model is to develop an optimal policy that minimizes the total 
average cost. Numerical examples are used to illustrate the two developed models. 
Sensitivity analysis of the optimal solution with respect to major parameters is 
carried out.  
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1 Introduction 
 
An important problem confronting a supply manager in any modern organization 
is the control and maintenance of inventories of deteriorating items. Deterioration 
is defined as change, damage, decay, spoilage, obsolescence, pilferage, loss of 
utility or loss of marginal value of goods that results in decrease of the usefulness 
of the original one. Maximum items deteriorate over time. The rate of 
deterioration is very small in some items like hardware, glassware, toys and steel 
that there is little need for considering deterioration in the determination of the 
economic lot size. Some items such as fish, medicine, vegetables, blood, gasoline, 
alcohol, radioactive chemicals and food grains like wheat, potato, onion etc. have 
finite shelf life and deteriorate rapidly over time. The effect of deterioration of 
physical goods can not be disregarded in many inventory systems. 

Wagner and Whitin [8] considered an inventory model for fashionable 
products deteriorating at the end of a prescribed storage period. Ghare and 
Schrader [20] developed an economic order quantity (EOQ) model with an 
exponential decaying inventory in modified form. This model was extended by 
Covert and Philip [22] by considering Weibull distribution deterioration. A 
complete note on inventory literature for deteriorating inventory models was 
given by Goyal and Giri [25] and Raafat [5]. The constant rate of deterioration is 
assumed in most researches for deteriorating inventory. But, the Weibull 
deterioration is used to show the product in stock deteriorates with time. Wee [9] 
developed a deterministic inventory model with quantity discount, pricing and 
partial backordering when the product in stock deteriorates with times. Misra [21] 
adopted a two-parameter Weibull distribution deterioration to develop an 
inventory model with finite rate of replenishment. Fitting empirical data in 
mathematical distribution shows the way to many researchers to use the Weibull 
distribution to model the deterioration rate. The items in which the deterioration 
rate follows the Weibull distribution are roasted ground coffee, corn seed, frozen 
foods, pasteurized milk, refrigerated meats and ice creams. While discussing the 
fitting empirical data to mathematical distribution, Berrotoni [13] noticed that the 
leakage failure of dry batteries and life expectancy of ethical drugs could be 
expressed in terms of Weibull distribution. In both the cases, the deterioration rate 
increased with age or the longer the items remained unused and the failure rate 
was high. Beside these items, reservoir systems are subject to deteriorate in the 
form of evaporation. Papachristos and Skouri [28] reconsidered the work of Wee 
[9] and assumed a model where the demand rate is a convex decreasing function 
of the selling price and the backlogging rate is a time-dependent function. Philip[6] 
developed a generalized EOQ model with a three-parameter Weibull distribution 
to represent the time of deterioration. Some researchers (Wu and Lee[14]; Mondal  
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et al. [2]; Chen and Lin [12]; Ghosh and Chaudhuri[23]; Mahapatra and Maiti[19]) 
extended the models for deterioration which follows Weibull distribution.  
 In recent years, many researchers have given considerable attention towards 
the situation where the demand rate is dependent on the level of the on-hand 
inventory. The assumption of constant demand rate is not always applicable to 
many inventory items such as fashionable clothes, electronic equipments, tasty 
foods etc. as they are fluctuated in the demand rate. Donaldson [32] derived an 
analytical solution to problems for obtaining the optimal number of 
replenishments and the optimal replenishment times of an EOQ model with a 
linearly time-dependent demand pattern over a finite time horizon. Demand of a 
product may vary with time or price or ever with the instantaneous level of 
inventory displayed in a retail shop. With the progress of time, researchers 
developed inventory models with deteriorating items and time-dependent demand 
rates. In this area, the work done by various authors (Silver[3],Ritchie[4],Deb and 
Chaudhuri[17], Goel and Aggarwal[31], Hargia and Benkherouf[16] and Jalan et 
al.[1]). Goyal et al.[26] suggested a new replenishment policy in which shortages 
are permitted in every cycle. Inventory models for deteriorating items with 
linearly trended demand and no-shortage were considered by Dave and Patel [30], 
Bahari-Kashani [7], Chung and Ting [15] etc. Demands for spare parts of new 
aeroplanes, computer chips of advanced computer machines etc. increased widely 
while the demands for spare parts of the obsolete aircrafts, computers chips etc. 
decreased very rapidly with time. Some researchers represented this type of 
demand as an exponentially increasing/decreasing function of time. An 
exponential rate of change is very high and indeed in doubt that whether the real 
market demand of any product, it undergoes a rate of change, which is very high 
as an exponential rate. So the case of quadratic demand is considered. The 
quadratic demand technique is applied to control the problem in order to 
determine the optimal production policy. Deb and Chaudhuri [18] introduced the 
concept of inventory shortage to the model of Donaldson [32]. They developed a 
heuristic along the lines of Silver[3] and found the conclusion that the calculation 
of the shortage cost was erroneous. This error was corrected by Goyal[24], 
Murdeshwar[29] and they tried to modify the model of Donaldson[32] by 
considering shortages. Goyal [24], Murdeshwar [29] also used the incorrect 
cost-expression, which was derived by Deb and Chaudhuri [18]. An order level 
inventory model for deteriorating items with time-dependent deterioration rate, 
unit production cost and shortages developed by Manna and Chaudhuri[27]. They 
considered a linear trend in demand and assumed that the finite production rate is 
proportional to the time-dependent demand rate and the deterioration is time 
proportional. Wee and Law[10,11] developed a deterministic inventory model for 
deteriorating items with price-dependent demand rate, finite production rate and 
time varying deterioration rate taking into account the time value of money over a 
fixed time horizon  

In this paper, we have discussed an economic order quantity model with the 
following considerations: 
a) The deterministic demand rate is time dependent with quadratic demand.  
b) The unit production cost is inversely proportional to the time dependent 

demand rate.  
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c) The production rate is finite.  
d) Deterioration rate is time proportional which is two parameters Weibull 

distribution deterioration.  
The paper constitutes of two models. The model allowing no shortage is solved in 
the first part of this paper. Further, the case of inventory shortage is discussed. 
Numerical examples are used to illustrate the solution procedure and the 
developed models. Sensitivity analysis is carried out to identify the most sensitive 
parameters in the system. 
 
 
2 Model-I: deterministic model without shortage 
 
A deterministic order-level inventory model with a finite rate of replenishment is 
developed with the following assumptions and notations: 
a) The demand rate is assumed to be 2)( ctbtatfR ++== at any time 

0,0,0,0 >>>≥ cbat . Here a  is the initial rate of demand, b  is the rate 
with which the demand rate increases and c  is the rate of change at which 
the demand rate itself increases.  

b) The production rate, say ),(trfK = where 1>r . 
c) A variable fraction )(tθ  of the on-hand inventory deteriorates per unit of 

time where 10,)( 1 <<<= − ααβθ βtt  and 1≥β 0, ≥t .  
d) The lead-time is zero.  
e) 1c  is the constant holding cost per unit item per unit of time.  
f) 2c  is the shortage cost which is infinite, i.e. shortages in inventory are not 

allowed.  
g) 3c  is the constant deterioration cost per unit per unit of time.  
h) C  is the total average cost for the production cycle and S  is the stock level 

reached in the cycle.  
The unit production cost v  is inversely related to the demand rate as γα −= Rv 1 , 
where 0,01 >> γα  and 2,1 ≠= γγ . 1α  is positive as v  and R  are both 
non-negative; also higher demands result in lower unit costs of production. 
Therefore, v  and R  are inversely related and γ  must be positive. So 

0)1(
1 <−= +− γγα R

dR
dv  and 0)1( )2(

12

2

>+= +− γγγα R
dR

vd . Therefore marginal unit 

cost of production is an increasing function of R . Thus these results imply that, 
as the demand rate increases at an increasing rate, the unit cost of production 
decreases. For this reason, the manufacturer is encouraged to produce more as the 
demand for the item increases. The necessity of the restriction 2,1 ≠= γγ  
arises from the nature of solution of problem.  
  The stock level is initially zero. Production begins just after 0=t , continues 
up to 1tt =  and stops as soon as the stock level becomes S . Then the inventory 
level decreases both due to demand and deterioration, till it becomes zero at 

2tt = . Then the cycle repeats itself. The intensity of deterioration is very low  
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initially but it increases with time. However, it remains bounded for 1>>t  since 

10 <<<α . Let )(tQ  be the inventory level of the system at any time 
)0( 2ttt ≤≤ . The instantaneous state of the inventory level )(tQ  in the interval 

],0[ 2t  is governed by the differential equations,  

 )()()()( tfKtQt
dt

tdQ
−=+θ , 10 tt ≤≤         (1) 

 )()()()( tftQt
dt

tdQ
−=+θ , 21 ttt ≤≤         (2) 

where 1)( −= βαβθ tt  and 2)( ctbtatf ++= . Using the values of )(tθ  and )(tf , 
equation (1) and (2) become respectively 

 ))(1()()( 21 ctbtartQt
dt

tdQ
++−=+ −βαβ , 10 tt ≤≤       (3) 

with the conditions 0)0( =Q  and StQ =)( 1  and  

 )()()( 21 ctbtatQt
dt

tdQ
++−=+ −βαβ , 21 ttt ≤≤        (4) 

with the conditions StQ =)( 1  and 0)( 2 =tQ . The solution of )3(  using the 
condition 0)0( =Q  is 
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neglecting powers of α  higher than 1. This approximation is followed 
throughout the subsequent calculations. The solution of (4) using the condition 

StQ =)( 1 is 
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As 0)( 2 =tQ , equation (6), yields  
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For a first-order approximation over α , this relation gives 
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The total inventory in the cycle is 
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for a first-order approximation over α . The total number of deteriorated items 
],0[ 2t  is given by = production in ],0[ 1t  – demand in ],0[ 2t  
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Using calculus, we now minimize C . The optimum values of 1t  and 2t  for the 
minimum average cost C  are the solutions of the equation  
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3 Model-II: Deterministic model with shortage 
 
In this section, we have developed an order-level model for deteriorating items 
with finite rate of replenishment with the assumptions described in the previous 
model. Another addition assumption is that shortages in inventory are allowed and 
backlogged completely. 2c  is the constant shortage cost per unit per unit of time.  
  At 0=t , the stock is zero initially. Production begins at time 0=t  and 
continues up to 1tt =  when the stock attains a level S . The production is then 
stopped at 1tt = . Inventory gathered in ],0[ 1t  after meeting the demands is used 
in ],[ 21 tt . The stock level attains a level zero at time 2t . Again at 0=t , the 
shortage starts and accumulate to the level P  at 3tt = . The production 
inventory level starts at 3tt = . The running demands as well as the backlog for 

],[ 32 tt  are satisfied in ],[ 43 tt . The inventory level becomes zero at the time 

4tt = . This decrease in level occurs due to the demand. After time 4t , the 
repetition of the inventory cycle occur. Our aim is to determine the optimum 
values of 4321 ,,, tttt  and C  with the assumptions given above. Let )(tQ  
represent the instantaneous inventory level at any time )0( 4ttt ≤≤ . The 
differential equations governing the instantaneous states of )(tQ  in the interval 

],0[ 4t  is as follows: 

),)(1()()( 21 ctbtartQt
dt

tdQ
++−=+ −βαβ  10 tt ≤≤ ,      (14) 
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with the conditions 0)0( =Q  and StQ =)( 1 ;  

),()()( 21 ctbtatQt
dt

tdQ
++−=+ −βαβ  21 ttt ≤≤ ,      (15) 

with the conditions StQ =)( 1  and 0)( 2 =tQ ; 

),()( 2ctbta
dt

tdQ
++−=  ,32 ttt ≤≤          (16) 

with the conditions StQ =)( 2  and StQ −=)( 3 ; 

),)(1()( 2ctbtar
dt

tdQ
++−=  ,43 ttt ≤≤         (17) 

with the conditions PtQ −=)( 3  and 0)( 4 =tQ . The solution of (14) and (15) 
can be found from equation (7) as described in model-I. The solution of (16) and 
(17) using the conditions 0)( 2 =tQ  and 0)( 4 =tQ  respectively are 

( ) ( ) ( )33
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22
22 3

1
2
1)( ttcttbttatQ −+−+−= , ,32 ttt ≤≤      (18) 
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32
4
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1)1()( ttrcttrbttratQ −−+−−+−−= , ,43 ttt ≤≤   (19) 

As there is no deteriorated items during the period ],[ 42 tt , therefore the total 
number of deteriorated items in ],0[ 4t  is the same as given in (8). The total 
shortage in ],[ 42 tt  is given by 
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The production cost in ],[ 43 tt  is 
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Hence the production cost in ],0[ 4t  is  
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The total average cost of the system in ],0[ 4t  is  
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The optimum values of 321 ,, ttt  and 4t  which minimize the cost function C  
are the solutions of the equations 
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Provided that these values of )4,3,2,1( =iti  satisfy the conditions 0>iD  
),4,3,2,1( =i where iD  is the Hessian determinant of order i  is given by 
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The expanded forms of the (21) are 
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4 Numerical Examples 
 
Example 1: Let 35,5.5,01.0,10,8,15,20,25 131 ======== αβαcccba  
and 4=r , in appropriate units. Solving the non-linear equations (12) and (13) of 
model-I; we obtain the optimum values of 1t  and 2t  are 45584.2*

1 =t , 
34311.3*

2 =t . Substituting the values of *
1t  and *

2t  in (10), the optimum average 
cost is 87.1989* =C .  
 
Example 2: Let ,5.5,01.0,5,10,8,15,20,25 231 ======== βαccccba  

351 =α  and 4=r , in appropriate units. Solving the non-linear equations (22), 
(23), (24) and (25) of model-II; we obtain the optimum values of 1t , 2t , 3t  and 

4t are 49908.2*
1 =t , 33924.3*

2 =t , 32765.4*
3 =t and 56441.4*

4 =t . Substituting 
the values of *

1t , *
2t , *

3t  and *
4t  in (20), the optimum average cost is 

83.1662* =C . 
 
 
5 Sensitivity Analysis 
 
We now study the effects of changes in the system parameters cba ,,  

321 ,,,,, cccrβα  and 1α  on the optimal values of 4321 ,,, tttt  and the minimal 
optimum cost *C  by the two models. The sensitivity analysis is performed by 
changing each of the parameter by %25%,10%,10%,25%,50 −−+++  and %50− , 
taking one parameter at a time and keeping the remaining parameters unchanged. 
The results are shown in Table-1 and Table-2. On the basis of the results in 
Table-1, the following observations are taken into account: 
1) With increase in the value of ba, ; *

1t , *
2t  and minimal optimal cost *C  

increase, but in the value of c , *
1t  and optimal cost *C  increases with a  
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decrease in the value of *

2t .  
2) With increase in value of 1c  and 3c ; *

1t , *
2t  and the optimal cost *C  

decreases.  
3) The changes in the value of *

1t , *
2t  and *C  more seen when we increase the 

percentage of α  and β . A decrease in optimal cost *C  occurs. So α  and 
β  are more sensitive.  

4) A slight changes seen in the value of *
1t , *

2t  and *C  with the parameter 1α . 
i.e. 1α  is less sensitive.  

5) With increase in the value of r , the optimal values of *
1t , *

2t  and *C are 
moderately sensitive.  

6) On the basis of the results in Table-2, the following observations are taken 
into account 

7) Increase in the value of ba, ; the value of *
1t , *

2t , *
3t , *

4t  and *C  increases. 
While increase the value of c ; *

1t  and optimal cost *C  increase with a 
decrease in the value of *

2t
*
3,t *

4,t .  
8) Increase in value of the holding cost 1c  with this Model-I increase the value 

of *
3t , *

4t  and *C  and decreases the values of *
1t , *

2t . While increase of the 
shortage cost 2c ; the value of *

2t  and the optimal cost *C  are increased and 
decreases the values of *

1t , *
3t , *

4t . 2c  is more sensitive to this model. The 

rise of the deterioration cost 3c  increases the values of *
1t , *

2t , *
3t , *

4t  and 
*C .  

9) With increase in the value of the parameters α  and β , decrease in the value 
of *

1t , *
2t , *

3t , *
4t  and *C . When β  value decreases to %50 , it results in 

complex roots, which is also seen in Table-1 also. This is a peculiar case arise 
in these model.  

10) A slight increase seen in the value of *
1t , *

2t , *
3t , *

4t  and *C while change in 
the parameter 1α and r  i.e. 1α  and r  are less sensitive.  
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Table-1. Without Shortage 
 

Parameter 
Changing Change (%) *

1t  
*
2t  

*C  
Change in 

*C (%) 

 
a  

+50 
+25 
+10 
-10 
-25 
-50 

2. 33537 
2. 39561 
2. 4318 
2. 47976 
2. 51527 
2. 57296 

3. 36567 
3. 35665 
3. 34915 
3. 33615 
3. 32375 
3. 29692 

2129. 55 
2063. 64 
2020. 42 
1957. 8 
1906. 6 
1811. 82 

+7. 019 
+ 3. 707 
+1. 535 
-1. 611 
-4. 184 
-8. 947 

b  

+50 
+25 
+10 
-10 
-25 
-50 

2. 4922 
2. 47565 
2. 46421 
2. 4468 
2. 43178 
2. 402 

3. 35271 
3. 34866 
3. 34555 
3. 34034 
3. 33543 
3. 32469 

2387. 34 
2188. 19 
2069. 08 
1910. 84 
1792. 69 
1597. 11 

+19. 974 
+9. 966 
+3. 9806 
-3. 9716 
-9. 909 
-19. 737 

c  
 

+50 
+25 
+10 
-10 
-25 
-50 

2. 51159 
2. 48767 
2. 46976 
2. 43993 
2. 41125 
2. 34377 

3. 30276 
3. 3208 
3. 33358 
3. 35361 
3. 37148 
3. 40874 

2363. 7 
2180. 6 
2067. 29 
1910. 59 
1787. 31 
1564. 91 

+18. 786 
+9. 585 
+3. 890 
-3. 984 
-10. 179 
-21. 356 

 

1c  

+50 
+25 
+10 
-10 
-25 
-50 

2. 38364 
2. 41369 
2. 43709 
2. 47789 
2. 51939 
2. 62721 

3. 22591 
3. 27574 
3. 31347 
3. 37738 
3. 44038 
3. 59702 

2417. 02 
2203. 23 
2075. 11 
1904. 85 
1778. 1 
1571. 78 

+21. 466 
+10. 722 
+4. 283 
-4. 272 
-10. 642 
-21. 0109 

 

3c
 

+50 
+25 
+10 
-10 
-25 
-50 

2. 54664 
2. 50319 
2. 47529 
2. 43565 
2. 40386 
2. 3464 

3. 4801 
3. 41558 
3. 37319 
3. 31139 
3. 26027 
3. 16326 

2511. 31 
2249. 61 
2093. 55 
1886. 43 
1731. 66 
1474. 23 

+26. 204 
+13. 053 
+5. 2103 
-5. 198 
-12. 976 
-25. 913 

α  

+50 
+25 
+10 
-10 
-25 
-50 

2. 26766 
2. 35076 
2. 41049 
2. 50679 
2. 59704 
2. 80761 

3. 13947 
3. 22944 
3. 29407 
3. 3982 
3. 49572 
3. 72307 

1768. 56 
1864. 42 
1935. 14 
2052. 43 
2166. 11 
2445. 97 

-11. 121 
-6. 304 
-2. 750 
+3. 143 
+8. 856 
+22. 921 

β  

+50 
+25 
+10 
-10 
-25 
-50 

1. 71225 
1. 98464 
2. 23098 
2. 75877 
3. 47602 
--- 

2. 42308 
2. 76617 
3. 07044 
3. 70357 
4. 53241 
--- 

1360. 87 
1571. 7 
1781. 38 
2297. 83 
3159. 05 
--- 

-31. 610 
-21. 014 
-10. 477 
+15. 476 
+58. 756 
--- 

1α  

+50 
+25 
+10 
-10 
-25 
-50 

2. 45808 
2. 45696 
2. 45629 
2. 45539 
2. 45472 
2. 45359 

3. 34765 
3. 34539 
3. 34402 
3. 34220 
3. 34083 
3. 33854 

2041. 28 
2015. 57 
2000. 15 
1979. 58 
1964. 15 
1938. 43 

+25. 835 
+12. 915 
+0. 516 
-0. 517 
-12. 925 
-25. 850 

r  

+50 
+25 
+10 
-10 
-25 
-50 

2. 5121 
2. 49014 
2. 47168 
2. 43578 
2. 39281 
2. 23101 

3. 45701 
3. 40784 
3. 37157 
3. 30977 
3. 24548 
3. 04377 

3516. 26 
2755. 01 
2296. 31 
1683. 12 
1223. 31 
467. 722 

+76. 708 
+38. 451 
+15. 400 
-15. 415 
-38. 523 
-76. 494 
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Table-2. With Shortage 

Parameter 
Changing Change (%) *

1t  
*
2t  

*
3t  

*
4t  

*C  

Change 
  in 

*C (%) 

a  

+50 
+25 
+10 
-10 
-25 
-50 

2.38294 
2.44122 
2.47604 
2.52194 
2.55573 
2.61017 

3.36906 
3.35675 
3.34695 
3.33048 
3.31511 
3.2857 

4.37127 
4.35288 
4.33867 
4.31525 
4.29376 
4.2489 

4.61425 
4.5930 
4.57684 
4.5505 
4.52653 
4.47686 

1777.0 
1723.16 
1687.83 
1636.59 
1594.65 
1516.92 

+6.866 
+3.628 
+1.503 
-1.578 
-4.100 
-8.774 

b  

+50 
+25 
+10 
-10 
-25 
-50 

2.5344 
2.51832 
2.50721 
2.49031 
2.47574 
2.44688 

3.3448 
3.34268 
3.34081 
3.33738 
3.3339 
3.32575 

4.38194 
4.35664 
4.33974 
4.31482 
4.29405 
4.25466 

4.63399 
4.60144 
4.57981 
4.54813 
4.5219 
4.47255 

1977.97 
1820.37 
1725.84 
1599.86 
1505.48 
1348.55 

+18.952 
+9.474 
+3.789 
-3.786 
-9.462 
18.900 

c  
 

+50 
+25 
+10 
-10 
-25 
-50 

2.5508 
2.52874 
2.5121 
2.48413 
2.45697 
2.39214 

3.29568 
3.31513 
3.32893 
3.3506 
3.36997 
3.41039 

4.21029 
4.26251 
4.29974 
4.35849 
4.41141 
4.52346 

4.43271 
4.49127 
4.53306 
4.59909 
4.65866 
4.78524 

1994.18 
1831.81 
1731.39 
1592.7 
1483.82 
1288.33 

+19.926 
+10.162 
+4.123 
-4.217 
+10.765 
-22.521 

 

1c  
 

+50 
+25 
+10 
-10 
-25 
-50 

2.43501 
2.46128 
2.48215 
2.5192 
2.55755 
2.659234 

3.22168 
3.27171 
3.30954 
3.37356 
3.43661 
3.59329 

4.38438 
4.35068 
4.3351 
4.32341 
4.32561 
4.37057 

4.65589 
4.60572 
4.57942 
4.55225 
4.54178 
4.56298 

1945.34 
1805.27 
1720.07 
1605.34 
1518.88 
1376.96 

+16.989 
+8.566 
+3.442 
-3.457 
-8.656 
-17.191 

 

2c  

 

+50 
+25 
+10 
-10 
-25 
-50 

2.4905 
2.49428 
2.49701 
2.5014 
2.50545 
2.51448 

3.34033 
3.33987 
3.33952 
3.33892 
3.33833 
3.33687 

4.07319 
4.18036 
4.2625 
4.40365 
4.54538 
4.90924 

4.259 
4.38828 
4.48671 
4.65467 
4.82193 
5.24604 

1738.09 
1705.68 
1681.55 
1641.46 
1602.89 
1510.95 

+4.256 
+2.576 
+1.125 
-1.285 
-3.604 
-9.133 

3c  

+50 
+25 
+10 
-10 
-25 
-50 

2.59075 
2.54685 
2.5187 
2.47874 
2.44674 
2.38897 

3.47524 
3.4112 
3.36911 
3.30774 
3.25693 
3.16046 

4.59842 
4.46859 
4.38553 
4.26751 
4.17249 
3.99830 

4.86693 
4.72178 
4.62901 
4.49733 
4.39145 
4.19768 

2063.73 
1863.69 
1743.3 
1582.16 
1460.65 
1256.29 

+24.109 
+12.079 
+4.839 
-4.851 
-12.158 
-24.448 

α  

+50 
+25 
+10 
-10 
-25 
-50 

2.3095 
2.39323 
2.45341 
2.5504 
2.64127 
2.85323 

3.13746 
3.22662 
3.29066 
3.39381 
3.4904 
3.71553 

4.09696 
4.19898 
4.27216 
4.38991 
4.50004 
4.7563 

4.32338 
4.43002 
4.50647 
4.6294 
4.7443 
5.01138 

1470.79 
1553.88 
1615.28 
1717.25 
1816.23 
2060.47 

-11.548 
-6.552 
-2.859 
+3.272 
+9.225 
+23.913 

β  

+50 
+25 
+10 
-10 
-25 
-50 

1.74149 
2.01936 
2.27029 
2.80695 
3.53457 
--- 

2.42271 
2.76431 
3.06743 
3.69873 
4.52577 
--- 

3.39935 
3.74275 
4.04992 
4.69818 
5.5621 
--- 

3.6123 
3.96502 
4.27992 
4.9438 
5.82819 
--- 

1075.85 
1273.96 
1469.51 
1947.12 
2738.67 
--- 

-35.300 
-23.386 
-11.625 
+17.096 
+64.699 
--- 

1α  

+50 
+25 
+10 
-10 
-25 
-50 

2.50211 
2.5006 
2.49969 
2.49848 
2.49757 
2.49606 

3.3436 
3.34143 
3.34012 
3.33837 
3.33705 
3.33484 

4.35326 
4.34051 
4.3328 
4.32247 
4.31468 
4.30159 

4.58399 
4.57424 
4.56835 
4.56045 
4.55448 
4.54446 

1704.68 
1683.78 
1671.22 
1654.44 
1641.83 
1620.76 

+2.516 
+1.259 
+0.504 
-0.504 
-1.262 
-2.530 

r  

+50 
+25 
+10 
-10 
-25 
-50 

2.56113 
2.53689 
2.51653 
2.47705 
2.43008 
2.25476 

3.42795 
3.39149 
3.36278 
3.31061 
3.25263 
3.05556 

4.88585 
4.63028 
4.45574 
4.18757 
3.94697 
3.38924 

5.08576 
4.84742 
4.68444 
4.43241 
4.20247 
3.63152 

2782.28 
2235.22 
1895.12 
1425.73 
1060.49 
427.899 

+67.321 
+34.422 
+13.969 
-14.258 
-36.223 
-74.266 

--- indicates the solution are infeasible. 
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5 Conclusions 
 
In this paper, two deterministic order-level inventory models have been 
considered. Here the demand rate is of quadratic type. The model consists of 
time-proportional deterioration rate, which is a two-parameter Weibull 
deterioration. The production rate is assumed to be finite and proportional to the 
quadratic demand rate. The unit production cost is inversely related to the demand 
rate by a factorγ . The paper is accompanied by Model-I and Model-II. Model-I is 
being solved by allowing no shortages in inventory. Model-II is developed by 
allowing shortages and backlogged. In both of the models some non-linear 
algebraic equations are raised and are also solved to minimize the total average 
cost. Sensitivity analysis is carried out for the two models with numerical 
examples.  

From the numerical results of Model-I and Model-II, we concluded that the 
optimum average cost in Model-II is 16.435% less than that of Model-I. The 
quadratic demand technique is applied to control the problem in order to 
determine the optimal production policy. Quadratic demand seems to be a better 
representation of time-varying market demands. Some researchers suggest that 
rapidly increasing demand can be represented by an exponential function of time. 
The assumption of an exponential rate of change in demand is high and the 
fluctuation or variation of any commodity in the real market cannot be so high. 
Thus this accelerated growth in demand rate in the situations like demands of 
computer chips of computerized machines, spare parts of new aeroplanes etc. is 
changing the demand more rapidly. Therefore this situation can be best 
represented by a quadratic function of time. Some researchers consider the 
demand rate functions in the form of linear demand as btatR +=)( , 0,0 ≠≥ ba  
or exponential type demand rate like tetR βα=)( , 0,0 ≠> βα . The linear type 
demand show steady increase )0( >b  or decrease )0( <b  in the demand rate, 
which is rarely seen in real market. Also the exponential rate is being very high. 
i.e. it increases )0( >β  or decreases )0( <β  exponentially with the demand rate. 
Therefore the real market demand of any product may rise or fall exponentially.  
The demand rate function of the form 2)( ctbtatR ++= , 0,0,0 ≠≠≥ cba .  

ctb
dt

tdR 2)(
+= , c

dt
tRd 2)(

2

2

=  

Then we have the following cases depending on b  and c : 
a) For 0>b  and 0>c , the rate of increase of demand rate )(tR  is itself an 

increasing function of time which is termed as accelerated growth in demand.  
b) For 0>b , 0<c , there is retarded growth in demand for all time.  
c) For 0<b and 0<c , the demand rate )(tR  decreases at a decreasing rate 

which we may call it as accelerated decline demand. This case usually 
happens to the spare parts of an obsolete aircraft model or microcomputer chip 
of high technology products substituted by another.  

d) For 0<b  and 0>c , the demand rate falls at an increasing rate for  
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⎟
⎠
⎞

⎜
⎝
⎛−>

c
bt
2

.  

Thus we may have different types of realistic demand patterns from the functional 
form 2)( ctbtatR ++=  depending on the signs of b and c . Therefore the 
quadratic time-dependence of demand is more realistic than its linear or 
exponential time-dependent demand. 
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