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Abstract

In this paper the 2 point 2 step methods (2PG, M2PG, M2PF) for
solving system of first order ordinary differential equations are proposed.
These methods at each step will approximate the solutions of initial
value problems at two points simultaneously using variable step size. In
addition, the stability of the proposed method are discussed. Examples
are presented to illustrate the computational aspect of these methods.
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1 Introduction

This paper considers a system of first order ordinary differential equations
in the following form

Y ′ = F (x, Y ) Y (a) = Y0 , a ≤ x ≤ b (1)

where a and b are finite and Y ′ = [y′
1, y

′
2, . . . , y′

n]
T , Y = [y1, y2, . . . , yn] and

F = [f1, f2, . . . , fn]T . Block methods for numerical solution of first order ODEs
have been proposed by several researcher [1, 2, 6, 7, 8]. These methods are
one of the efficient methods for solving ordinary differential equations. The
advantage of block method compare to single and multistep methods, is that,
at each application of a block method, the solution will be approximated in
more than one point. The number of points is depend on the structure of the
block method.
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Figure 1: 2-point 2-step method

In Fig 1, at each step, these methods will estimate the solution at two
points with step size h concurrently using three back approximated values of
the previous block with setp size rh. The methods are based on predictor-
corrector scheme PE(CE)m of Adams type methods with variable step size.

Majid et al. [5] introduced the 2-point fully implicit block method (2PF).
The value of yn+1 and yn+2 were approximated by integrating (1) over the
interval [xn, xn+1] and [xn, xn+2] respectively. In this paper, we try to derive
three possible type of 2-point 2-step methods (2PG, M2PG, M2PF), us-
ing Lagrange interpolation polynomial. During the implementation of 2PG
method, the iteration Gauss Siedel style will be involved i.e. for obtaining
corrector formula, the closest point in the interval for integrating (1) is con-
sidered. Therefore the approximated values of yn+1 and yn+2 are obtained by
integrating (1), over the interval [xn, xn+1] and [xn+1, xn+2] respectively.

In M2PG method (modified 2PG method), our aim is to decrease the
number of function called without losing desired accuracy. This may be done
by involving the first approximated point, in the set of interpolation points for
obtaining predictor formula for second point. Similar way can be applied for
modifying 2PF method [5] and obtaining M2PF.

2 The 2PG method

In Figure 1, the solution of yn+1 and yn+2 at the points xn+1 and xn+2 respec-
tively with step size h, will be approximated simultaneously using three back
values at the points xn,xn−1,xn−2 of the previous two step with step size rh.
The method will compute two points concurrently using two earlier steps.

The formula of the 2PG method are derived using Lagrange interpolation
polynomial. The involved interpolation points for obtaining the corrector for-
mula to approximate the solutions for the first and second point i.e. xn+1 and
xn+2 are {(xn−2, fn−2), . . . , (xn+2, fn+2)}. The interval of integration for the
first and second point are [xn, xn+1], [xn+1, xn+2] respectively. by integrating
(1) over the corresponding interval, using MATHEMATICA, we may obtain
the corrector formula for first and second point respectively,
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The 1st point,

yn+1 = yn + h

�
− 3 + 15r + 20r2

240(1 + r)(2 + r)
fn+2 +

18 + 75r + 80r2

60(1 + r)(1 + 2r)
fn+1

+
7 + 45r + 100r2

240r2
fn − 7 + 30r

60r2(1 + r)(2 + r)
fn−1 +

7 + 15r

240r2(1 + r)(1 + 2r)
fn−2

�
(2)

The 2nd point,

yn+2 = yn+1 + h

�
147 + 255r + 100r2

240(1 + r)(2 + r)
fn+2 +

78 + 165r + 80r2

60(1 + r)(1 + 2r)
fn+1

− 23 + 45r + 20r2

240r2
fn +

23 + 30r

60r2(1 + r)(2 + r)
fn−1 − 23 + 15r

240r2(1 + r)(1 + 2r)
fn−2

�
(3)

The predictor formula are derived similarly, but the involved interpolation
points are {(xn−3, fn−3), . . . , (xn, fn)}, so the predictor formula for first and
second point in terms of r and q are respectively,

The 1st point,

yn+1 = yn + h

�
− (1 + 2r)2

4q(q + r)(q + 2r)
fn−3 +

3 + 4q + 12r + 6qr + 12r2

24qr2
fn−2

− 3 + 4q + 16r + 12qr + 24r2

12r2(q + r)
fn−1 +

3 + 4q + 20r + 18qr + 48r2 + 24qr + 48r3

24r2(q + 2r)
fn

�
(4)

The 2nd point,

yn+2 = yn+1 + h

�
− (3 + 2r)(5 + 6r)

4q(q + r)(q + 2r)
fn−3 +

45 + 28q + 84r + 18qr + 36r2

24qr2
fn−2

− 45 + 28q + 112r + 36qr + 72r2

12r2(q + r)
fn−1

+
45 + 28q + 140r + 54qr + 144r2 + 24qr2 + 48r3

24r2(q + 2r)
fn

�
(5)

2.1 The M2PG method

In this approach, the predictor formula for second point is improved. Therefore
after prediction of the solution value at first point i.e. xn+1, this point will be
involved in the set of interpolation points for obtaining predictor formula for
second point. The advantage of this approach is that, the order of predictor
formula for second point is one more than the order of predictor formula for
first point, Hence we may obtain better predicted value for the second point.
Since subsequent corrector formula will use these two predicted values, so
this approach will affect in number of iteration for obtaining desired accuracy,
consequently we expect the decrease of the number of function called. Using
MATHEMATICA, we may obtain the predictor formula for second point as
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follow,

yn+2 = yn+1 + h

�
147 + 255r + 100r2

60q(q + r)(q + 2r)(1 + q + 2r)
fn−3 − 147 + 85q + 255r + 50qr + 100r2

120qr2(1 + 2r)
fn−2

+
147 + 85q + 340r + 100qr + 200r2

60r2(1 + r)(q + r)
fn−1

− 147 + 85q + 425r + 150qr + 400r2 + 60qr2 + 120r3

120r2(q + 2r)
fn

+
372 + 225q + 1125r + 420qr + 1120r2 + 180qr2 + 360r3

60(1 + r)(1 + 2r)(1 + q + 2r)
fn+1

�
(6)

The remainder of the formula are the same as the 2PG method.

2.2 The M2PF method

The idea for deriving this method, is exactly the same idea for deriving M2PG
method. Predictor formula for second point will stands for predicted value of
first point. Therefore the predictor formula for second point is as follow,

yn+2 = yn + h

�
4(9 + 15r + 5r2)

15q(q + r)(q + 2r)(1 + q + 2r)
fn−3 − 18 + 10q + 30r + 5qr + 10r2

15qr2(1 + 2r)
fn−2

+
4(9 + 5q + 20r + 5qr + 10r2)

15r2(1 + r)(q + r)
fn−1 − 18 + 10q + 50r + 15qr + 40r2

15r2(q + 2r)
fn

+
4(24 + 15q + 75r + 30qr + 80r2 + 15qr2 + 30r3)

15(1 + r)(1 + 2r)(1 + q + 2r)
fn+1

�
(7)

The remainder of the formula are the same as the 2PF method.

3 stepsize control

The step size strategy in the code is the same as in [5], the choice for next
step size will be limited to half, double or the same as the current step size. If
the approximated solution at step k, has desired accuracy, i.e. it is acceptable,
therefore the choice for next step will be double or the same as current step
size which may be specified by step size controller. Otherwise the step size
controller will allow the step size to become half.
Generally because of two reason, we need to have an estimation of local trun-
cation error (LTE) at each step. Firstly one step is acceptable if the truncation
error is less or equal to the given tolerance provided by user. Secondly step size
controller needs to have local traction error at current step, for approximating
new step size for next step. In our code an estimation of local truncation error
is obtained by comparing the derived corrector formula of order p for second
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point, and the same corrector formula for that point of order p − 1.
The first predicted step size for hn+1 is given by,

hn+1 = τ × hn ×
(

TOL

LTE

) 1
p

where τ is a safety factor. The aim of utilizing this safety factor is to reduce
the risk of the failure step. In the developed code, when the next step size is
double, the ratio r is 0.5 and q can be 0.5 or 0.25, but if the next step size
remain constant, r is 1 And q can be 1 or 2 or 0.5. In case of step size failure,
r is 2, and q is 2. In order to reducing cost of time, all the coefficients of the
formula are stored in the developed code.

4 Absolute Stability

Here we will discuss the absolute stability of 2PG method using a linear first
order test problem

y′ = f = λy (8)

The stability region is plotted when the step size ratio is constant, doubled and
halved for the method. The test equation (8) is substituted into the corrector
formula of the 2PG method. Setting the determinant of the corrector formula
written in matrix form to zero will give the stability polynomial. The stability
polynomials of 2PG method at r = 1, 0.5, 2 are as follow,

For r = 1 we have,

t4(1 − 289

360
h̄ +

413

2160
h̄2) + t3(−1 − 191

180
h̄ − 559

720
h̄2) + t2(− 49

360
h̄ − 59

720
h̄2) +

t

2160
h̄2 = 0 (9)

For r = 2 we have,

t4(1 − 87

100
h̄ +

623

2700
h̄2) + t3(−1 − 5291

4800
h̄ − 289

540
h̄2) + t2(− 133

4800
h̄ − 1237

86400
h̄2) +

t

86400
h̄2 = 0 (10)

For r = 0.5 we have,

t4(1 − 147

200
h̄ +

847

5400
h̄2) + t3(−1 − 407

600
h̄ − 1493

1080
h̄2) + t2(−44

75
h̄ − 589

1350
h̄2) +

8t

675
h̄2 = 0 (11)

where h̄ = hλ and the stability regions are plotted in Figure 2.

The stability region is inside the boundary of the dotted points. This is
expectable that the region should get larger with smaller step sizes. This can
be seen easily in Fig 2, the stability region is larger when the step size is half
(r = 2) compare to the step size being double (r = 0.5) or constant (r = 1).
Since 2PG, M2PG methods have the same corrector formula, therefore they
have the same stability regions.
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r = 2

r = 1

r = 0.5

Figure 2: Stability region for 2PG method at r=2, 1 and 0.5

5 Numerical Results

In order to show the efficiency and applicability of our presented methods,
we consider four given problems to compare our computed solutions with the
solutions obtained by method in [5]. The following notation are used in the
tables:

TOL Tolerance
MTD Method Employed
TS Total Successful Steps
FS Total Failure Steps
MAXE Absolute value of the maximum error of the computed solution
AVERR Average error
FN Total Function Calls
TIME The execution time taken in microsecond
2PF Implementation of the two point block method in [5]
2PG Implementation of the two point block method using

Gauss Seidel iteration
M2PG Implementation of the modified two point block method

using Gauss Seidel iteration
M2PF Implementation of the modified two point block method in [5]

Problem 1: y′ = −0.5y, y(0) = 1, [0, 20]
Exact solution: y(x) = e−0.5x

Source: Artificial problem

Problem 2: Nonlinear non stiff Krogh’s problem
y′

i = −βiyi + y2
i , yi(0) = −1, [0, 20], i = 1, 2, 3, 4
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β1 = β2 = 0.2, β3 = 0.3, β4 = 0.4
Exact solution: yi(x) = βi

1+cieβix , ci = −(1 + βi)

Source: Johnson and Barney [4]

Problem 3: A two-body orbit problem (Mildly stiff)
y′

1 = y3, y′
2 = −y4, y′

3 = −y1

r3 , y′
4 = −y2

r3 , r =
√

y2
1 + y2

2

y1(0) = 1, y2(0) = 0, y3(x) = 0, y4(x) = 1, [0, 20]
Exact solution:
y1(x) = cos(x) , y2(x) = sin(x)
y3(x) = − sin(x) , y4(x) = cos(x)
Source: Hairer,et al. [3]

Problem 4: Linear nonstiff complex eigenvalues
y′

1 = −Ay1 + By2, y′
2 = −By1 − Ay2, y′

3 = −Cy3 + Dy4, y′
4 = −Dy3 − Cy4

A = C = 1, B = D =
√

3
y1(0) = 1, y2(0) = 1, y3(0) = 1, y4(0) = 1, [0, 20]
Exact solution:
y1(x) = e−Ax(cos Bx + sin Bx) , y2(x) = e−Ax(cos Bx − sinBx)
y3(x) = e−Cx(cos Dx + sin Dx) , y4(x) = −e−Cx(cos Dx − sinDx)
Source: Johnson and Barney [4]

The error calculated are defined as

(ei)t =

∣∣∣∣(yi)t − (y(xi)t)

A + B(y(xi))t

∣∣∣∣
Where (y)t, is the t-th component of the approximate y. A = 1, B = 0
corresponds to the absolute error test, A = 0, B = 1 corresponds to the
relative error test and finally A = 1, B = 1 corresponds to the mixed error
test. The mixed error test is used for all the above problems. The maximum
error and average error are defined as follows:

MAXE = max
1≤i≤TS

( max
1≤i≤N

(ei)t)

AV ER =

∑TS
i=1

∑N
t=1(ei)t

(P )(N)(TS)

Where N is the number of equation in the system, TS is the number of suc-
cessful steps and P is the number of points in the block. In the code, we iterate
the corrector to convergence using the convergence criteria:

∣∣yr+1
n+2 − yr

n+2

∣∣ < 0.1 × TOL
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Table 1: 2PF, 2PG, M2PG and M2PF methods for solving problem 1,τ=0.8
TOL MTD TS FS MAXE AVER FN TIME

10−2 2PF 18 0 1.27 × 10−4 9.35 × 10−6 107 305
2PG 19 0 2.90 × 10−4 2.06 × 10−5 105 134

M2PG 19 0 2.07 × 10−4 1.36 × 10−5 81 329
M2PF 19 0 3.26 × 10−4 2.14 × 10−5 105 272

10−4 2PF 29 0 2.06 × 10−6 1.10 × 10−7 173 410
2PG 30 0 9.92 × 10−7 1.13 × 10−7 177 177

M2PG 30 0 5.31 × 10−6 3.90 × 10−7 135 420
M2PF 29 0 2.21 × 10−6 1.56 × 10−7 157 350

10−6 2PF 51 0 1.24 × 10−8 2.56 × 10−9 311 534
2PG 55 0 1.31 × 10−8 2.24 × 10−9 331 245

M2PG 55 0 6.58 × 10−8 4.97 × 10−9 261 537
M2PF 51 0 2.21 × 10−8 2.69 × 10−9 257 450

10−8 2PF 104 0 1.50 × 10−10 3.94 × 10−11 633 1207
2PG 115 0 1.32 × 10−10 3.47 × 10−11 677 471

M2PG 115 0 2.19 × 10−10 3.34 × 10−11 583 1210
M2PF 105 0 1.75 × 10−10 4.56 × 10−11 471 1017

10−10 2PF 236 0 1.97 × 10−12 4.18 × 10−13 1417 2593
2PG 261 0 1.29 × 10−12 3.03 × 10−13 1537 1066

M2PG 261 0 1.40 × 10−12 3.08 × 10−13 1359 2769
M2PF 236 0 2.17 × 10−12 4.54 × 10−13 1007 2055

and r is the number of iteration. The numerical results are tabulated in Tables
1-4. The results of Function called and execution time for the tested problems
are also indicated in the histograms and graph lines in Fig 3 and 4, respectively.
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Table 2: 2PF, 2PG, M2PG and M2PF methods for solving problem 2,τ=0.8
TOL MTD TS FS MAXE AVER FN TIME

10−2 2PF 20 0 3.02 × 10−4 6.19 × 10−5 121 864
2PG 22 0 3.76 × 10−4 9.16 × 10−5 127 569

M2PG 22 0 1.58 × 10−4 4.45 × 10−5 97 813
M2PF 20 0 4.94 × 10−4 5.25 × 10−5 115 778

10−4 2PF 34 0 2.12 × 10−6 1.382 × 10−6 217 918
2PG 39 0 1.74 × 10−6 1.00 × 10−6 229 620

M2PG 39 0 3.19 × 10−6 2.04 × 10−6 169 870
M2PF 34 0 3.04 × 10−6 1.21 × 10−6 181 848

10−6 2PF 66 0 2.81 × 10−8 2.49 × 10−8 419 1588
2PG 76 0 1.87 × 10−8 1.48 × 10−8 449 1206

M2PG 76 0 2.84 × 10−8 1.05 × 10−8 353 1554
M2PF 66 0 2.81 × 10−8 2.40 × 10−8 325 1396

10−8 2PF 143 0 3.47 × 10−10 3.43 × 10−10 875 3669
2PG 167 0 1.70 × 10−10 1.66 × 10−10 987 2626

M2PG 167 0 1.42 × 10−10 6.93 × 10−11 815 3725
M2PF 143 0 3.44 × 10−10 3.39 × 10−10 659 3177

10−10 2PF 331 0 3.46 × 10−12 3.80 × 10−12 1985 7512
2PG 394 0 1.46 × 10−12 1.60 × 10−12 2335 6150

M2PG 394 0 1.25 × 10−12 6.76 × 10−13 1949 8183
M2PF 331 0 3.73 × 10−12 3.96 × 10−12 1413 6546

Table 3: 2PF, 2PG, M2PG and M2PF methods for solving problem 3,τ=0.8
TOL MTD TS FS MAXE AVER FN TIME

10−2 2PF 30 0 1.02 × 10−1 2.23 × 10−2 261 1512
2PG 30 0 6.99 × 10−2 1.64 × 10−2 273 1081

M2PG 30 0 2.16 × 10−1 5.04 × 10−2 229 1306
M2PF 30 0 8.26 × 10−2 2.22 × 10−2 247 1498

10−4 2PF 61 0 1.47 × 10−3 3.87 × 10−4 443 2029
2PG 61 0 1.45 × 10−3 3.79 × 10−4 453 1560

M2PG 61 0 1.64 × 10−3 4.32 × 10−4 439 1858
M2PF 61 0 1.70 × 10−3 4.47 × 10−4 415 1959

10−6 2PF 137 0 2.01 × 10−5 6.01 × 10−6 1039 4681
2PG 139 0 1.92 × 10−5 5.59 × 10−6 1047 3620

M2PG 139 0 1.78 × 10−5 4.89 × 10−6 801 3714
M2PF 137 0 1.87 × 10−5 5.57 × 10−6 795 4006

10−8 2PF 322 0 2.09 × 10−7 6.36 × 10−8 1907 9825
2PG 327 0 1.96 × 10−7 5.68 × 10−8 1937 7076

M2PG 327 0 1.95 × 10−7 5.73 × 10−8 1913 8965
M2PF 322 0 1.80 × 10−7 5.23 × 10−8 1295 8249

10−10 2PF 781 0 2.21 × 10−9 6.99 × 10−10 4657 23027
2PG 797 0 2.09 × 10−9 6.33 × 10−10 4753 17455

M2PG 797 0 2.05 × 10−9 6.19 × 10−10 4687 21766
M2PF 781 0 2.11 × 10−9 6.55 × 10−10 3133 19022
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Table 4: 2PF, 2PG, M2PG and M2PF methods for solving problem 4,τ=0.5
TOL MTD TS FS MAXE AVER FN TIME

10−2 2PF 40 0 3.18 × 10−4 1.18 × 10−4 235 1541
2PG 50 0 1.70 × 10−4 1.03 × 10−4 231 1435

M2PG 44 0 3.95 × 10−4 1.47 × 10−4 215 1741
M2PF 47 0 3.33 × 10−4 1.72 × 10−4 209 1618

10−4 2PF 74 0 2.39 × 10−6 8.55 × 10−7 383 2048
2PG 79 0 3.73 × 10−6 1.11 × 10−6 393 1825

M2PG 79 0 4.46 × 10−6 1.71 × 10−6 333 2221
M2PF 75 0 4.58 × 10−6 1.34 × 10−6 335 2022

10−6 2PF 159 0 1.97 × 10−8 7.33 × 10−9 827 4463
2PG 179 0 1.83 × 10−8 8.95 × 10−9 869 4070

M2PG 177 0 2.71 × 10−8 1.58 × 10−8 719 5223
M2PF 157 0 3.96 × 10−8 8.51 × 10−9 653 4092

10−8 2PF 370 0 1.61 × 10−10 6.81 × 10−11 1953 10205
2PG 422 0 2.14 × 10−10 9.63 × 10−11 2051 9599

M2PG 420 0 2.56 × 10−10 1.68 × 10−10 1687 11554
M2PF 368 0 2.80 × 10−10 4.50 × 10−11 1489 9353

10−10 2PF 900 0 1.45 × 10−12 6.03 × 10−13 4795 24956
2PG 1027 0 1.80 × 10−12 9.12 × 10−13 5047 23428

M2PG 1027 0 2.62 × 10−12 1.78 × 10−12 4115 28209
M2PF 900 0 2.95 × 10−12 2.75 × 10−13 3607 22921

Figure 3: Results of function called for Problem 1-4
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Figure 4: Results of execution time for Problem 1-4

From Tables (1-4), it can be observed that in all tested problems, the total
number of steps and the maximum errors obtained by M2PF and M2PG meth-
ods, are comparable to those, obtained by 2PF and 2PG methods respectively.
However, in Fig 3, it is obvious that, the number of function called taken by
M2PF is less than that in other methods, specially for finer tolerance. This
could be justified by the fact that, M2PF method needs less iteration for the
solution to be convergent. Since in M2PF the order of predictor formula for
second point is greater than that in 2PF and 2PG, so the convergence crite-
ria will be satisfied and M2PF doesn’t need more iterations. Also in M2PF
method the value of yn which has obtained its sufficient accuracy in previous
block is involved for obtaining the predicted value for the second point in the
current block. But in M2PG method the value of yn+1 which is in current
block and it has not obtained its desired accuracy is involved. Therefore, the
M2PG method needs more iterations.

In Fig 4, it can be seen that, the execution time of the 2PG method is faster
than the other methods. Although M2PF method has less number of function
called compared to other methods but the execution time is still expensive.
The extra term in the predictor formula for the second point in M2PF method
has affected the timing. In problem 4, the execution time provided by M2PF is
faster than 2PG because of the big difference between the number of function
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called between M2PF and 2PG methods (especially for finer tolerance).

6 Conclusion

In this paper, we proposed three methods (2PG, M2PG, M2PF) for solving
system of initial value problems (ODEs). After comparing the results of these
methods with 2PF method [5] and with them selves as well, we can conclude
that, each of these methods will give comparable results in terms of maximum
error and total number of steps. But M2PF method has less number of function
called compare to other methods, whereas the execution time of 2PG method
is faster than the other methods.
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