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Abstract

A module is almost finitely cogenerated, or 1-critical, if it is not
finitely cogenerated but all its proper factors are finitely cogenerated.
In this paper, we study almost finitely cogenerated modules over a com-
mutative rings.
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1 Introduction

The rings considered are associative with unit, and the modules considered are

left unitary modules.

Modules that are not finitely generated but whose proper submodules are

finitely generated are called “almost finitely generated” by W. D. Weakly, and

were studied in [3] and [9]. This can be dualized as follows. A module M is

almost finitely cogenerated (a.f.cog.) if M is not finitely cogenerated, but for

any nonzero submodule N of M , M/N is finitely cogenerated. Recall that a
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module M is finitely cogenerated if for any family (Mi)i∈I of submodules of M

with ∩
i∈I

Mi = 0, there is a finite subset J of I such that ∩
j∈J

Mj = 0.

In fact, it turns out that the a.f.cog. modules are the 1-critical modules. Re-

call that for an ordinal α, a module M is called α-critical, if α = K-dim(M/N)

(the Krull dimension of M), and α > K-dim(M/N), for each nonzero submod-

ule N .This paper explores the structure and properties of a.f.cog. modules. In

section 2, we establish some properties of a.f.cog. modules and we give some

examples in the noncommutative case. In section 3, we study a.f.cog. modules

over commutative rings. The main result states that a commutative ring R has

a faithful a.f.cog. module iff R is a noetherian integral domain of dimension 1

and when R is as above, an R-module M is a.f.cog. iff M is isomorphic to a

nonzero R-submodule of a fractional ideal of R of the form ∪
k�1

(Ik)−1 where I

is an intersection of a finite number of maximal ideals of R. In particular if R

is semilocal noetherian integral domain of dimension 1, then an R-module M

is a.f.cog. iff M is isomorphic to a nonzero fractional ideal of R.

2 Properties of a.f.cog. modules

Proposition 2.1 For any R-module M , the following are equivalent:

(1) M is a.f.cog.

(2) M is not artinian, but M/N is artinian for any nonzero submodule

N of M .

(3) M is 1-critical.

Proof. (1)⇐⇒(2). From ([1], Proposition 10.10).

(2)⇐⇒(3). See for instance [7].

Proposition 2.2 Let M be an a.f.cog. R-module, then:

(1) M is uniform

(2) Any nonzero submodule of M is an a.f.cog. module.

(3) For any f ∈ EndR(M), f = 0 or Kerf=0 and if f(M) �= M then

∩
n�1

fn(M) = 0.

Proof. The assertions (1) and (2) follow from ([7], Lemma 6.2.11). For

(3), let f be an R-endomorphism of M . Since we have, f(M) � M/Kerf ,

Kerf �= 0 implies f(M) = 0. On the other hand, if N = ∩
n�1

fn(M) and N �= 0,

then ker f = 0 and M/N is artinian and so there exists a nonzero integer n
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such that fn+1(M) = fn(M), it follows That f(M) = M .

Proposition 2.3 If a ring R is a.f.cog. (as a left R-module) then,

(1) R is left Ore domain, and

(2) Every nonzero prime left ideal of R is maximal.

Proof. (1). Proposition 2.2 implies that R is a domain by taking the

multiplications from right by the elements of R . Let (x, y) ∈ R2 with x �= 0

and y �= 0 and let I = Rx + Ry . Since I is uniform, then Rx ∩ Ry �= 0.

(2). See ([8], Proposition 3.5.45).

Proposition 2.4 For any ring R, the following are equivalent:

(1) R is a.f.cog. (as a left R-module).

(2) R is an integral domain of Krull dimension 1.

Proof. (1) =⇒ (2) is trivial.

(2) =⇒ (1). R is not artinian and by ( [8], Lemma 3.5.43) for any nonzero left

ideal I of R, R/I is an artinian R-module.

Proposition 2.5 If R is a commutative ring, then the following are

equivalent :

(1) R is an a.f.cog. R-module.

(2) R is a noetherian integral domain of dimension 1.

Proof. (1) =⇒ (2) by Proposition 2.3 and Hopkins-Levitzki theorem.

(2) =⇒ (1). R is not artinian and for any nonzero element x of R, R/Rx is

artinian ( [5], Lemma 8.4).

Examples 2.6

(1) Z is a. f. cog.

(2) If R is a left discrete valuation ring ( [4], Exercise 19.7), then R

is a.f.cog. left R-module. As an example of noncommutative left discrete

valuation ring, we take a field K with an endomorphism σ, σ �= id, and let

R = K[[X, σ]] be the ring of formal power series of the form ΣαiX
i

i�0
(αi ∈ K ),

with multiplication induced by the twist Xα = σ(α)X for all α ∈ K . Then

R is a nocommutative left discrete valuation ring.

(3) The Weyl algebra A1(K) is an a.f.cog. A1(K)-module for any field K

of characteristic 0 ( [8]; p. 462)

(4) If R is left hereditary, noetherian integral domain which is not a
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division ring, then R is an a.f.cog. R-module ( [7]; p. 197).

(5) Let K be a field with an automorphism σ and δ a σ-derivation, if

R = K[X, σ, δ] or R = K[X, X−1, σ], then R is an a.f.cog. R-Module ( [7]; p.

197).

(6) If M is a noetherian R-module with K- dim(M) � 1, then there

exists a submodule N of M such that M/N is an a.f.cog. R-module ( [7]; p.

185).

3 A.f.cog. modules over a commutative rings

Throughout section 3, R will be a commutative ring with unit, Q(R) will

denote the total ring of quotients of R and M an unitary R-module.

Some notations and definitions.

(1) For any subset X of M , the annihilator in R of X ( denoted annR(X))

is the set {r ∈ R : for all x ∈ X, rx = 0} .

(2) A prime ideal P of R is said to be associated to M if P = annR(x)

for some x ∈ M . The set of prime ideals of R associated to M is denoted

AssR(M).

(3) Let I be an ideal of R, the I-torsion submodule of M is the set

TI(M) =
{
x ∈ M : Ikx = 0 for some integer k � 1

}
.

(4) The R-submodules of Q(R) are called fractional ideals of R. For a

fractional ideal F , the set F−1 = {x ∈ Q(R) : Fx ⊆ R} is also a fractional

ideal , and if for two fractional ideals F1and F2 ; F1 ⊆ F2 then F−1
2 ⊆ F−1

1 .

(5) Let I be an ideal of R. We will write F (I) for the fractional ideal

∪
k�1

(Ik)−1. Then F (I) =
{
x ∈ Q(R) : Ikx ⊆ R for some integer k � 1

}
.

The next proposition enables us to focus our attention on the a.f.cog. faith-

ful R-modules.

Proposition 3.1 Let M be an a.f.cog. R-module, and let P the annihi-

lator in R of M . Then:

(1) P is prime ideal of R which is not a maximal ideal. In particular, if

R is of dimension 1, then P = 0.

(2) M is a.f.cog., faithful and torsionfree R/P -module.

Proof. The multiplications by the elements of R are an R-endomorphisms

of M . By Proposition 2.2 (3), if rx = 0 (r ∈ R, x ∈ M) then x = 0 or rM = 0,

which implies that P is a prime ideal of R and M , as R/P -module, is a.f.cog.,

faithful and torsionfree. Now because of Propositions 2.2 and 2.5, a vector
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space canot be a.f.cog. Therefore P is not a maximal ideal.

Lemma 3.2 ( [9], Lemma 1.7) If M is a nonzero artinian R-module.

Then:

(1) AssR(M) = {P1, ..., Pn} is a finite set of maximal ideals.

(2) M = ⊕
1�i�n

TPi
(M).

Lemma 3.3 Let M be a fractional ideal of R. If R ⊆ M and M/R is a

nonzero artinian R-module, then there is a finite number P1, ..., Pn of maximal

ideals of R such that: M ⊆ F ( ∩
1�i�n

Pi).

Proof. By Lemma 3.2, M/R = ⊕
1�i�n

TPi
(M/R) for some maximal ideals

P1, ..., Pn of R. Let x ∈ M , there exist x1, ..., xn ∈ M and k � 1 such that

P k
i xi ⊆ R (1 � i � n) and x − Σ

1�i�n
xi ∈ R. If I = ∩

1�i�n
Pi, then Ikx =

P k
1 ...P k

n x ⊆ R.

Remark 3.4 In Lemma 3.3, the inclusion can be strict, for example if

R = Z and M = 1
2
Z then M/Z =

{
Z, 1

2
Z
}
, Ass�(M/Z) = {2Z} and F (2Z) =

Z
[

1
2

]
.

Lemma 3.5 Suppose that R is a noetherian integral domain of dimension

1 and P a maximal ideal of R. Then F (P )/R is an artinian R-module.

Proof. Let A be the localization of R at P . We have R ⊆ A and Q(A) =

Q(R). Let N1 ⊇ N2 ⊇ ... ⊇ Nj ⊇ ... be a descending chain of submodules of

F (P ) such that Nj ⊇ R for all j � 1. If S = R \ P , S−1Nj is A-submodule

of Q(R) for all j � 1. Since Q(R)/A is an artinian A-module ([6], Theorem

5.5), then there is an integer m such that S−1Nj = S−1Nm for all j � m. If

x ∈ Nm and j � m, then sx ∈ Nj and P kx ⊆ R for some s ∈ S and k � 1.

Since P is maximal, there is t ∈ P k and a ∈ R such that 1 = t + as hence

x = tx + asx ∈ R + Nj ⊆ Nj.

Corollary 3.6 If R is a noetherian integral domain of dimension 1 and

P1, ..., Pn are maximal ideals of R, then F ( ∩
1�i�n

Pi)/R is an artinian R-

module.

Proof. It will suffice to see that F ( ∩
1�i�n

Pi)/R = ⊕
1�i�n

F (Pi)/R.

We are now ready to prove the main theorem.

Theorem 3.7 For any R-module M , the following are equivalent:

(1) M is a.f.cog. and faithful.

(2) R is a noetherian integral domain of dimension 1, and there exist

maximal ideals P1, ..., Pn of R such that M is isomorphic to a nonzero R-

submodule of the fractional ideal F ( ∩
1�i�n

Pi).
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Proof. (1) =⇒ (2). By Proposition 3.1, M is torsionfree. Then it fol-

lows from Proposition 2.5 that R is a noetherian integral domain of dimen-

sion 1. Fix a nonzero element x0 of M . By Proposition 2.2 (1), for any

x ∈ M there exist a, b ∈ R with b �= 0, such that bx = ax0. If we put

σ(x) = a
b
∈ Q(R), then σ : M → Q(R) is an injective R-homomorphism and

σ(M) ⊇ R. Now by Proposition 3.3, there exist maximal ideals P1, ..., Pn of R

such that σ(M) ⊆ F ( ∩
1�i�n

Pi).

(2) =⇒ (1). By Proposition 2.2, it suffices to show that if P1, ..., Pn are maxi-

mal ideals of R, then F = F ( ∩
1�i�n

Pi) is an a.f.cog. R-module. Since R is not

artinian, F is also not artinian. Let N be a nonzero submodule of F . From

Corollary 3.6 , F/R is artinian. Since we have N ∩ R �= 0, R/(N ∩ R) is

artinian. Therefore F/(N ∩ R) is artinian and so F/N is artinian.

Corollary 3.8 An abelian group A is a.f.cog. Z-module iff A is isomorphic

to a nonzero subgroup of Z
[

1
n

]
for some nonzero integer n.

Proof. It suffices to observe that if n = Π
1�i�r

pei
i is the decomposition of

n into prime numbers, then F ( ∩
1�i�r

Zpi) = Z

[
1

Πpi

]
= Z

[
1
n

]
.

Corollary 3.9 For any ring R, the following are equivalent:

(1) Any nonzero fractional ideal of R is an a.f.cog. R-module.

(2) Q(R) is an a.f.cog. R-module.

(3) R is semilocal noetherian integral domain of dimension 1.

Proof. (1) =⇒ (2) is trivial, and (2) =⇒ (1) follows from Proposition 2.2

(2).

(2) =⇒ (3). Since Q(R) is a faithful R-module, then from Theorem 3.7, R

is noetherian integral domain of dimension 1 and there exists an injective R-

homomorphism σ : Q(R) → F ( ∩
1�i�n

Pi), where P1, ..., Pn are maximal ideals

of R. We can suppose that R ⊆ σ(Q(R)) (see the proof of Theorem 3.7).

Since we have 1 ∈ σ(Q(R)), it is easy to see that Q(R) ⊆ σ(Q(R)), and so

Q(R) = F ( ∩
1�i�n

Pi). Let I be a maximal ideal of R, we will show that I = Pi

for some i (1 � i � n). According to ([2], Proposition 1.11), it will suffice to

prove that I ⊆ ∪
1�i�n

Pi. Assume for the moment that there exists a ∈ I

with a /∈ ∪
1�i�n

Pi. For any i(1 � i � n), we can find xi ∈ Pi and ri ∈ R

such that 1 = xi + ria. If k is a nonzero integer such that ( ∩
1�i�n

Pi)
k 1

a
⊆ R,

then 1 = ( Π
1�i�n

(xi + ria))k = x + ra where x ∈ ( ∩
1�i�n

Pi)
k and r ∈ R. Now

1
a

= x
a

+ r ∈ R, a contradiction.



Modules of which all proper factor modules are finitely cogenerated 19

(3) =⇒ (2). Let P1, ..., Pn be the maximal ideals of R. Fix an element

x ∈ Q(R) and let Ai be the localization of R at Pi (1 � i � n). Since

Q(R)/Ai is an artinian Ai-module ([6] ,Theorem 5. 5), it follows from Lemma

3.3, that there exists ki � 1 such that P ki
i x ⊆ Ai. If k � ki, for any i, then

( ∩
1�i�n

Pi)
kx ⊆ ∩

1�i�n
Ai = R. Hence Q(R) = F ( ∩

1�i�n
Pi) and so, from Theorem

3.7, Q(R) is an a.f.cog. R-module.

From Proposition 3.1, Theorem 3.7 and Corollary 3.9, we can deduce the

two following results:

Corollary 3.10 Let R be semilocal noetherian integral domain of dimen-

sion 1. Then an R-module M is a.f.cog. iff M is isomorphic to a nonzero

fractional ideal of R.

Corollary 3.11 For any R-module M , the following are equivalent:

(1) M is a.f.cog. and injective.

(2) R/annR(M) is a semilocal noetherian integral domain of dimension

1 and M is isomorphic to Q(R/annR(M)).

References

[1] F. W. Anderson and K. R. Fuller, Ring and Categories of Modules ,

GTM 13, Springe, New York, 2nd edition, 1992.

[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Alge-

bra, Addison-Wesley, London, 1969.

[3] W. Heinzer and D. Lantz, Artinian modules and modules of which all

proper submodules are finitely generated, J. Algebra, 95(1), 201-216, 1985.

[4] T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Math-

ematics, Springer, Berlin, Heidelberg, New York, 1995.

[5] M. P. Malliavin, Algèbre Commutative, Masson, 1985.

[6] E. Matlis, 1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Math-

ematics, 327, Springer-Verlag, 1973.

[7] J. C. McConnel and J. C. Robson, Noncommutative noetherian rings,

GSM, V. 30, 2001.



20 H. Essannouni and A. Q. Kaed

[8] L. H. Rowen, Ring Theory, V. 1, Academic Press, New York, 1988.

[9] W. D. Weakly, Modules whose proper submodules are finitely generated,

J. Algebra 84, 189-219, 1983.

Received: April, 2009


