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Abstract

In this note, we prove the conjecture of Payne and Schaefer [2], re-
garding an overdetermined boundary value problem for the triharmonic
operator, Δ3 = ΔΔΔ. It is deduced that if a solution of the problem
exists, then the domain must be a ball in R

N , N ≥ 2.
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1 Introduction

In [2], the authors considered a number of overdetermined elliptic boundary
value problems of second, fourth, and higher orders. First, an integral identity
equivalent to the problem was obtained, and then this integral dual was used
to conclude that the domain in the problem must be a ball. The authors also
conjectured that if the problem

Δ3u = −1 in D (1)

u =
∂u

∂n
= Δu = 0 on ∂D (2)

∂Δu

∂n
= −C on ∂D (3)
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where D is a bounded domain in R
N , (N > 2) with C6+ε boundary ∂D, has a

sufficiently smooth solution u in C6(D̄), then D is an N -ball.

Here, we prove the validity of this conjecture by the method of Weinberger
[3] and Bennett [1]. We shall use the comma notation for partial differentia-
tion and the summation convention, i.e., a repeated index in a term signifies
summation over the index from 1 to N .

2 Proof of the Conjecture

First we prove the following Lemmas:

Lemma 1 If u is a solution of the problem (1), (2), (3), then

∫
D

udx =
NV C2

N + 6
(4)

where V is the volume of D.

Proof. We note that if u satisfies (1) and r denotes the distance from x
to the fixed origin of D, then

Δ3

(
r
∂u

∂r

)
= r

∂

∂r
(Δ3u) + 6Δ3u = −6 (5)

From (5), we obtain
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∫
D

(
6u− r

∂u

∂r

)
dx =

∫
D

(
−uΔ3(r

∂u

∂r
) + r

∂u

∂r
Δ3u

)
dx

=

∫
∂D

(
r
∂u

∂r

∂Δ2u

∂n
− Δ2u

∂

∂n
(r
∂u

∂r
)

+Δ(r
∂u

∂r
)
∂Δu

∂n

)
ds

=

∫
∂D

(
r
∂r

∂n

∂u

∂n

∂Δ2u

∂n
− Δ2u

∂

∂n
(r
∂r

∂n

∂u

∂n
)

+(r
∂Δu

∂r
+ 2Δu)

∂Δu

∂n

)
ds

=

∫
∂D

[
−Δ2u

(
∂

∂n
(r
∂r

∂n
)
∂u

∂n
+ r

∂r

∂n

∂2u

∂n2

)

+r
∂r

∂n

∂Δu

∂n

∂Δu

∂n

]
ds (6)

where in the second equality, we used the Green Identity for the tri-Laplacian,
and in the last equality we used the fact that ∂u

∂n
= Δu = 0 on the boundary.

Now in view of u = ∂u
∂n

= 0 on the boundary, we observe that Δu = ∂2u
∂n2 on

∂D. Consequently, (6) reduces to

∫
D

(
6u− r

∂u

∂r

)
dx = C2

∫
∂D

r
∂r

∂n
ds = C2NV (7)

by the second Green Identity, where V is the volume of D and N is the number
of dimensions. Furthermore,

∫
D

r
∂u

∂r
dx =

∫
D

grad (
r2

2
) grad u dx = −

∫
D

Δ(
r2

2
)udx = −N

∫
D

udx, (8)

where in the equality before last, we used Green’s first identity and the fact
that u = 0 on ∂D. Consequently, by (7), and (8), we get

∫
D

udx =
NV C2

N + 6

and this completes the proof of lemma 1.

Lemma 2 The function Φ defined by

Φ = (Δu),i (Δu),i−ΔuΔ2u− u+ Δα+ Δψ (9)
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attains its maximum value on ∂D provided the functions α and ψ are such that

Δ2α =
2N − 3

2N
(Δ2u)2 in D (10)

Δα = − N

N + 6
C2 on ∂D (11)

∂α

∂n
= −V C

2

S
on ∂D (12)

and

Δ2ψ = −1

2
(Δu),ij (Δu),ij in D (13)

Δψ =
6C2

N + 6
on ∂D (14)

∂ψ

∂n
=

18V C2

S(N + 6)
on ∂D (15)

where S denotes the surface area of D.

Proof.
First, we show that the problem (10), (11) and (12) has a solution. Evi-

dently, if α is a solution, α+ constant is also a solution. We assert that for
fixed Δ2α and Δα there is a unique ∂α

∂n
to ensure the existence of α. To prove

this, we let

β(x) = Δα+
N

N + 6
C2.

Then β satisfies the Dirichlet problem

Δβ = 2N−3
2N

(Δ2u)2 in D
β = 0 on ∂D.

Thus, a unique β is guaranteed and by the maximum principle β < 0 in D.
To determine α, we have

Δα = β − NC2

N+6
in D

∂α
∂n

= −V C2

S
on ∂D.
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Integrating the equation over D and using the Second Green Identity, we
have ∫

∂D
∂α
∂n
dS =

∫
D
βdx− NC2

N+6
V

or,
(
−V C2

S

)
S =

∫
D
βdx− NC2

N+6
V.

Remeber that
∫
D
βdx is uniquely determined by 2N−3

2N
(Δ2u)2, so for fixed NC2

N+6

and 2N−3
2N

(Δ2u)2 there is only one V C2

S
, given by the relation above, to ensure

the existence of α.
Likewise, in the case of (13), (14) and (15), we define

w(x) = Δψ − 6C2

N + 6

and, as above, for any fixed Δ2ψ and Δψ, there is a unique ∂ψ
∂n

to ensure the
existence of ψ.

Now we compute

ΔΦ = 2(Δu),ij (Δu),ij +2(Δu),i (Δ
2u),i−(Δ2u)2 − 2(Δu),i (Δ

2u),i

−ΔuΔ3u− Δu+ Δ2α + Δ2ψ

= 3
2

(
(Δu),ij (Δu),ij − 1

N
(Δ2u)2

)
+

(
Δ2α− 2N−3

2N
(Δ2u)2

)
= 3

2

(
(Δu),ij (Δu),ij − 1

N
(Δ2u)2

)
≥ 0.

Hence, Φ is subharmonic in D and therefore attains its maximum value on
∂D. This proves lemma 2.

Our next step is to show that Φ is constant in D. We note that by the
boundary conditions (2), (3), (11) and (14)

Φ =
12C2

N + 6
on ∂D

and, hence, by lemma 2

Φ ≤ 12

N + 6
C2 in D. (16)

Now integrating φ on D

∫
D

Φdx =

∫
D

udx+

∫
∂D

∂α

∂n
ds+

∫
∂D

∂ψ

∂n
ds =

12C2

N + 6
V (17)
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where we have used lemma 1, Green Identities and the boundary conditions
(12) and (15). Hence with the help of (16) and (17)

Φ ≡ 12

N + 6
C2 in D̄.

This implies that ΔΦ vanishes identically in D̄ and therefore

(Δu),ij (Δu),ij −(Δ2u)2

N
≡ 0 in D̄. (18)

To prove that D is an N -ball, we first demonstrate the proof in 3 dimen-
sions. Henceforth we shall use the notation (Δu),ij = Δuij. If N = 3, then
(18) can be written as

(Δu11 − Δu22)
2 + (Δu11 − Δu33)

2 + (Δu22 − Δu33)
2

+6(Δu12)
2 + 6(Δu13)

2 + 6(Δu23)
2 = 0

which implies that

Δu11 = Δu22 = Δu33 (19)

and

Δu12 = 0,Δu13 = 0,Δu23 = 0 (20)

Now integrating Δu12 = 0, we get, Δu = f(x1) + h(x2) where f and h are
arbitrary functions. Using Δu11 = Δu22, we obtain f ′′(x1) = h′′(x2) which is
not possible unless f ′′(x1) = h′′(x2) = k for some constant k. Thus,

Δu =
k

2
[(x1 − a1)

2 − d1 + (x2 − a2)
2 − d2] (21)

for suitable choices of a1, a2, d1, and d2.
In the same way, we integrate Δu13 = 0, and then with the help of Δu11 =

Δu33, we get

Δu =
k

2
[(x1 − a1)

2 − d1 + (x3 − a3)
2 − d3]. (22)

Lastly, integrating Δu23 = 0, and using Δu22 = Δu33, we obtain
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Δu =
k

2
[(x2 − a2)

2 − d2 + (x3 − a3)
2 − d3]. (23)

Now adding (21), (22), and (23), we have

Δu =
k

3
[(x1 − a1)

2 + (x2 − a2)
2 + (x3 − a3)

2 − d],

where d = d1 + d2 + d3. Since Δu = 0 on ∂D, we finally get

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 = d (24)

which shows that D is a 3-sphere. In N dimensions, we get

Δu11 = Δu22 = Δu33 = · · · = ΔuNN (25)

and N(N−1)
2

equations

Δu12 = 0,Δu13 = 0,Δu14 = 0, . . . ,Δu1N = 0

Δu23 = 0,Δu24 = 0, . . . ,Δu2N = 0 (26)

Δu34 = 0,Δu35 = 0, . . . ,Δu3N = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

ΔuN−2N−1 = 0,ΔuN−2N=0

ΔuN−1N = 0.

In this case also, as before,

Δu =
N − 1

2N
k[(x1 − a1)

2 + (x2 − a2)
2 + · · ·+ (xN − aN )2 − d]

where a1, a2, . . . , aN , and d are suitably chosen constants. Again since Δu = 0
on ∂D, we conclude that D is an N -ball

(x1 − a1)
2 + (x2 − a2)

2 + · · ·+ (xN − aN )2 = d. (27)

It is easily checked that when D is an N -Ball its radius R and the solution of
the problem (1), (2), (3) are given respectively by
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R = {CN(N + 2)(N + 4)}1/3 (28)

and

u = − r6

48N(N + 2)(N + 4)
+

(
C2

N(N + 2)(N + 4)

)1/3
r4

16

− (
C4N(N + 2)(N + 4)

)1/3 r2

16
+
C2N(N + 2)(N + 4)

48
. (29)

We summarize the foregoing in the following theorem

Theorem 1 Let D be a bounded domain in R
N(N ≥ 2) with C6+ε boundary

∂D and suppose that the overdetermined problem (1) (2), (3) has a solution in
C6(D̄). Then D is an open N-ball of radius R given by (28) and the solution
by (29).

As a consequence of theorem 1, we derive the following corollary:

Corollary 1 Let D be a bounded domain in R
N with C6+ε boundary ∂D of

positive Gaussian curvature and suppose there is a real constant M such that

∫
D

B(1 + uQ)dx = M

∫
∂D

ΔBds (30)

for every function B satisfying

Δ3B −QB = 0 in D

B =
∂B

∂n
= 0 on ∂D (31)

where the function Q ≥ 0 and u ∈ C6(D̄) is the solution of the boundary value
problem

Δ3u = −1 in D

u =
∂u

∂n
= Δu = 0 on ∂D (32)

then D is an N-ball.
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Proof.
From the Green Identity for the triharmonic operator, (31) and (32), it

follows that ∫
D

B(1 + uQ)dx = −
∫
∂D

ΔB
∂Δu

∂n
ds.

We see from (30) that

∫
∂D

ΔB

(
∂Δu

∂n
+M

)
ds = 0. (33)

Now we choose B ∈ C6(D̄) to be the solution of

Δ3B = QB in D

B = ∂B
∂n

= 0 and ΔB = ∂Δu
∂n

+M on ∂D.

It is immediate from (33) that

∂Δu

∂n
= −M on ∂D.

Hence the theorem 1 implies that D is an open N -ball. This proves the Corol-
lary 1.

3 Concluding Remark

An alternative proof of theorem 1 can be given by reformulating the problem
in an equivalent integral form. As in [2], the integral dual of the problem (1),
(2) and (3) is

∫
D

tdx = C

∫
∂D

Δtds (34)

for any triharmonic function t such that

Δ3t = 0 in D (35)

t =
∂t

∂n
= 0 on ∂D.

Now let t = xiu,i−6u in (34) where u solves (1), (2) and (3). Since Δt =
xi(Δu),i−4Δu, it is easily deduced that

∫
D

udx =
C2NV

N + 6
. (4)



346 S. Goyal and V. Goyal

Define the function λ such that

Δλ = −1 in D (36)

λ = 0 on ∂D.

With Φ as in Lemma 2 and λ in (36), we get, by second Green Identity

∫
D

λΔφdx = 0 (37)

where we have used ∫
D

φdx =
12C2V

N + 6
and φ|∂D =

12C2

N + 6
.

Since λ > 0 and Δφ ≥ 0 in D, (37) yields

ΔΦ = (Δu),ij (Δu),ij −(Δu)2

N
= 0

in D. Hence, as in theorem 1, D is open N -ball (N ≥ 2).
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