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Abstract

Motivated by the recent work of Schechtman and Sherman [The two-
sample t-test with a known ratio of variances. Statistical Methodology
4, 508-514, (2007).], we investigate, in this paper, a new exact confidence
interval for the difference between two normal population means when
the ratio of their variances is known. This is an extension of the case
of equal variances where a confidence interval is constructed using an
exact t-distribution, as opposed to the case of unequal variances with
an approximate confidence interval. We derived analytic expressions to
find the coverage probabilities and expected lengths of two confidence
intervals, the Schechtman-Sherman confidence interval and the Welch-
Satterthwaite confidence interval, in comparison with each other. Monte
Carlo simulation results indicate that the new confidence interval for the
difference between two normal means gives a better coverage probability
(and a shorter expected length) than that of the well-known Welch-
Satterthewaite confidence interval when a known ratio of their variances
is large.
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1 Introduction

In this paper, we re-examine confidence intervals for the difference of two nor-
mal population means. Classically, when population variances are equal, a
confidence interval based on the t-distribution with pooled sample variances
is appropriate; otherwise, the Welch-Satterthwaite (WS, hereafter) confidence
interval is preferable, see e.g. Satterthwaite (1941, 1946), Welch (1938). Miao
and Chiou (2008) mentioned that the WS confidence interval also performs
well, based on its coverage probability, in case of two population variances
are equal. A confidence interval following the result of a preliminary F -test,
that the population variances are equal, has been also examined recently, see
e.g. Gans (1981) and Kabaila (2005) and references therein. This confidence
interval is constructed using the preliminary F -test that is calculated first to
motivate the prior belief (thought not certain) that the population variance
are equal, followed by the choice between a confidence interval based on the
pooled estimate of the common variance and the WS confidence interval. Con-
fidence intervals for the difference of two means when both normality and equal
variances assumptions may be violated are also considered in Miao and Chiou
(2008) and references therein. These authors considered three confidence in-
tervals; WS confidence interval and two adaptive confidence intervals. They
used two pretests; Shapiro-Wilk test (Shapiro and Wilk (1965)) for normality
test and a t-test for symmetry of distributions based on Miao et al. (2006).
For normality pretest they suggested to use the WS confidence interval for the
difference of two means when data is from normal distribution; otherwise, they
suggested to transform data into the scale of logarithm, then apply the WS
confidence interval to the log-transformed data and finally transform the in-
terval back to the original scale. A confidence interval following the resulting
of the symmetric pretest statistics t-test is constructed similarly. In addi-
tion, they suggested that the confidence interval following the resulting of the
preliminary t-test outperforms other confidence intervals when data are from
non-normal distributions.

Schechtman and Sherman (2007) described “ a situation of a known ratio of
variances arises in practice when two instruments reports (averaged) response
of the same object based on a difference number of replicates. If the two
instruments have the same precision for a single measurement, then the ratio of
the variance of the responses is known, and it is simply the ratio of the number
of replicates going into each response.” They proposed a t-test statistic, which
has an exact t-distribution with n+m−2 degrees of freedom, compared to the
Satterthwaite’s t-test statistic. They found that their proposed test has more
power than an existing Satterthwaite’s test. However, they did not investigate
the coverage probability and the expected length of the confidence interval for
the difference of two normal population means when the ratio of variances is
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known.
Our aim in this short paper is therefore to propose a new confidence interval

for the difference of two normal population means when we know the ratio of
two population variances. As in Niwitpong and Niwitpong (2008), we derive
the coverage probability and its expected length of the new confidence interval
compared to the well known WS confidence interval. Typically, confidence
interval with a minimum coverage probability 1 − α and a shorter expected
length is preferable.

The paper is organized as follows. Section 2 presents confidence intervals
for difference of two normal population means. Coverage probabilities and
expected lengths of confidence intervals in Section 2 are derived in Section 3.
Section 4 gives simulation results of coverage probabilities and ratio of expected
lengths of confidence intervals for difference of two normal population means
for selected sample sizes with a range of values of known ratio of variances.
Section 5 contains a discussion of the results and conclusions.

2 Confidence intervals for the difference of two

normal population means

Let X1, . . . , Xn and Y1, . . . , Ym be random samples form two independent nor-
mal distributions with means μx, μy and standard deviations σx and σy, re-
spectively. The sample means and variances for X and Y are also denoted
as X̄, Ȳ , S2

x and S2
y , respectively. We are interested in 100(1-α)% confidence

interval for μ = μx − μy when we know the ratio of variances, say, σ2
y/σ

2
x = c,

where c ≥ 1.

2.1 The Confidence interval for μ based on pooled esti-
mate of variances and Welch-Satterthwaite methods

When it is assumed that σ2
x = σ2

y , it is well-known that, by using the pivotal
quantity T1 which is

T1 =
(X̄ − Ȳ ) − (μx − μy)

Sp

√
1
n

+ 1
m

,

the 100(1-α)% confidence interval for μ is

CI1 =

[
(X̄− Ȳ )−t1−α/2,n+m−2Sp

√
1

n
+

1

m
, (X̄− Ȳ )+t1−α/2,n+m−2Sp

√
1

n
+

1

m

]

where

S2
p =

(n − 1)S2
x + (m − 1)S2

y

n + m − 2
,
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S2
x = (n − 1)−1 ∑n

i=1 (Xi − X̄)2, S2
y = (m − 1)−1 ∑m

i=1 (Yi − Ȳ )2 and t1−α/2 is
the (1−α/2)th percentile of t-distribution with n+m− 2 degrees of freedom.
Note that T1 has an exact t-distribution with n + m − 2 degrees of freedom .

In the case where the two variances differ, i.e. σ2
x �= σ2

y, the confidence
interval for μ is constructed using the pivotal quantity T2,

T2 =
(X̄ − Ȳ ) − (μx − μy)√

S2
x

n
+

S2
y

m

.

It is well-known that T2 is approximately distributed as a t-distribution with
degrees of freedom equal

df =
(A + B)2

A2

n−1
+ B2

m−1

, A =
S2

x

n
, B =

S2
y

m
.

An approximate 100(1-α)% confidence interval for μ is therefore

CI2 =

[
(X̄ − Ȳ ) − t1−α/2,df

√
S2

x

n
+

S2
y

m
, (X̄ − Ȳ ) + t1−α/2,df

√
S2

x

n
+

S2
y

m

]

where t1−α/2,df is the (1− α/2)th percentile of T2 distribution with degrees of
freedom df .

The confidence interval CI2 is known as the WS confidence interval, see
e.g. Miao and Chiou (2008).

2.2 Confidence interval for μ with a known ratio of
variances

Schechtman and Sherman (2007) proposed the test statistic T3 (below), based
on Sprott and Farewell (1993), of the hypothesis H0 : μx − μy = Δ0 against
the alternative hypothesis HA : μx − μy �= (<, >)Δ0. By means of Monte
Carlo simulation, they found that the test statistic T3 has better power than
the test statistics T2. However, they have not studied the confidence interval
for μ using the pivotal test statistic T3. Although the correspondence between
hypothesis testing, H0 : μx − μy = Δ0 against the alternative hypothesis
HA : μx − μy �= (<, >)Δ0, and the confidence interval estimation had been
well documented, it is worth to derive explicit expressions for the coverage
probability and the expected length of the confidence interval for μ with a
known ratio of variances.

As a result, it is of interest to construct the confidence interval for μ when
we know the ratio of variances. The proposed confidence interval is constructed
using the pivotal quantity,

T3 =
(X̄ − Ȳ ) − (μx − μy)

S̃p

√
1
n

+ c
m



Confidence interval for the difference of two means 351

where

S̃2
p =

(n − 1)S2
X + (m − 1)S2

ỹ

n + m − 2
, S2

ỹ = (m − 1)−1
m∑

i=1

(
Ỹi − Ȳ ∗)2

,

Ỹi = Yi/
√

c, (i = 1, 2, . . . , m), c ≥ 1 and Ȳ ∗ is the sample mean of Ỹi,
(i = 1, 2, . . . , m). Schechtman and Sherman (2007) pointed out that the test
statistic T3 is an exact t-distribution with n + m − 2 degrees of freedom. We
now propose the new confidence interval for μ when a ratio of variances is
known using the pivotal quantity T3.

We choose the t1−α/2 ,n+m−2 , which is the (1 − α/2)th percentile of the t
distribution with n + m − 2 degrees of freedom, such that

1 − α = Pr
[
− t1−α/2 ,n+m−2 < T3 < t1−α/2 ,n+m−2

]
.

It is easy to see that 100(1 − α/2)% confidence interval for μ is

CI3 =

[
(X̄−Ȳ )−t1−α/2,n+m−2S̃p

√
1

n
+

c

m
, (X̄−Ȳ )+t1−α/2,n+m−2S̃p

√
1

n
+

c

m

]
.

We evaluate these confidence intervals i.e. CI2 and CI3 using their coverage
probabilities and expected lengths which are derived in the next section. We
prefer a confidence interval with minimum coverage probability equal to a
pre-specified value 1 − α and with a shorter expected length.

3 Coverage probabilities and expected lengths

of confidence intervals for μ with a known

ratio of variances

Theorems 1-2, below, show explicit expressions for the coverage probabilities
and the expected lengths of confidence intervals CI2 and CI3 respectively.

Theorem 1. The coverage probability and the expected length of CI2 when
we know the ratio of variances, σ2

y/σ
2
x = c, are respectively

E[Φ(W )−Φ(−W )] and

⎧⎪⎪⎨
⎪⎪⎩

2dσx(nm)−1/2δ
√

r1F
[
−1
2

, m−1
2

, m+n−2
2

; r1−r2

r1

]
if r2 < 2r1

2dσx(nm)−1/2δ
√

r2F
[
−1
2

, n−1
2

, m+n−2
2

; r2−r1

r2

]
if 2r1 ≤ r2

where W = dσ−1
x

√
mS2

x+nS2
y

m+cn
, d = t1−α/2,df , δ =

√
2Γ(m+n−1

2
)

Γ(m+n−2
2

)
, r1 = m

n−1
, r2 = cn

m−1
,

E(·) is an expectation operator, F (a, b, c; k) is the hypergeometric function
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defined by F (a, b, c; k) = 1 + ab
c

k
1!

+ a(a+1)b(b+1)
c(c+1)

k2

2!
+ ... where |k| < 1, see Press

(1966), Γ[·] is the gamma function and Φ[·] is the cumulative distribution
function of N(0, 1).

Proof. Since, for normal samples, X̄, Ȳ , S2
x and S2

y are independent of one
another. From CI2, we have

1 − α = P

[
(X̄ − Ȳ ) − d

√
S2

x

n
+

S2
y

m
< μx − μy < (X̄ − Ȳ ) + d

√
S2

x

n
+

S2
y

m

]

= P

[ −d
√

S2
x

n
+

S2
y

m

σx

√
n−1 + cm−1

<
(μx − μy) − (X̄ − Ȳ )

σx

√
n−1 + cm−1

<
d
√

S2
x

n
+

S2
y

m

σx

√
n−1 + cm−1

]

= P

[ −d
√

S2
x

n
+

S2
y

m

σx

√
n−1 + cm−1

< Z <
d
√

S2
x

n
+

S2
y

m

σx

√
n−1 + cm−1

]

= E[I{−W<Z<W }(ξ)], I{−W<Z<W }(ξ) =

{
1, if ξ ∈ {−W < Z < W}
0, otherwise

= E[E[I{−W<Z<W }(ξ)]|S], S = (S2
x, S

2
y)

′

= E[Φ(W ) − Φ(−W )]

where Z ∼ N(0, 1).

The length of CI2, LCI2 , is 2d
√

S2
x

n
+

S2
y

m
and the expected length of LCI2 is

2dE

[√
mS2

x + nS2
y

nm

]
= 2dσx(nm)−1/2E

[√√√√mS2
x + nS2

y

σ2
x

]

= 2dσx(nm)−1/2E

[√√√√
(

m
n−1

)
(n − 1)S2

x

σ2
x

+
c
(

n
m−1

)
(m − 1)S2

y

cσ2
x

]

= 2dσx(nm)−1/2E[
√

r1Z1 + r2Z2]

=

⎧⎪⎪⎨
⎪⎪⎩

2dσx(nm)−1/2δ
√

r1F
[
−1
2

, m−1
2

, m+n−2
2

; r1−r2

r1

]
if r2 < 2r1

2dσx(nm)−1/2δ
√

r2F
[
−1
2

, n−1
2

, m+n−2
2

; r2−r1

r2

]
if 2r1 ≤ r2

where Z1 = (n−1)S2
x

σ2
x

∼ χ2
n−1, Z2 =

(m−1)S2
y

σ2
y

∼ χ2
m−1 and for more details of

E[
√

r1Z1 + r2Z2], see Press (1966, pp. 456-458). Thus we complete the proof.

Theorem 2. The coverage probability and the expected length of CI3 when
we know the ratio of variances, σ2

y = cσ2
x, are respectively

E[Φ(W1) − Φ(−W1)] and 23/2d1σx

√
m+nc

nm(n+m−2)

Γ(n+m−1
2

)

Γ(n+m−2
2

)
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where W1 = d1σ
−1
x S̃p, d1 = t1−α/2,n+m−2 and Φ[·] is the cumulative distribution

function of N(0, 1).

Proof. From CI3, we have

1 − α = P

[
(X̄ − Ȳ ) − d1S̃p

√
1

n
+

c

m
< μx − μy < (X̄ − Ȳ ) + d1S̃p

√
1

n
+

c

m

]

= P

[ −d1S̃p

√
1
n

+ c
m

σx

√
n−1 + cm−1

<
(μx − μy) − (X̄ − Ȳ )

σx

√
n−1 + cm−1

<
d1S̃p

√
1
n

+ c
m

σx

√
n−1 + cm−1

]

= E[I{−W1<Z<W1}(τ)], I{−W1<Z<W1}(τ) =

{
1, if τ ∈ {−W1 < Z < W1}
0, otherwise

= E[E[I{−W1<Z<W1}(τ)]|S̃2
p ]

= E[Φ(W1) − Φ(−W1)]

where Z ∼ N(0, 1).

The length of CI3, LCI3 , is 2d1S̃p

√
1
n

+ c
m

and the expected length of LCI3

is

2d1

√
1

n
+

c

m
E[S̃p] = 2d1σx

√
1

n
+

c

m

√
1

n + m − 2
E

[√√√√(n − 1)S2
x + (m − 1)S2

ỹ

σ2
x

]

= 2d1σx

√
1

n
+

c

m

√
1

n + m − 2
E

[√√√√(n − 1)S2
x

σ2
x

+
(m − 1)S2

y

cσ2
x

]

= 2d1σx

√
1

n
+

c

m

√
1

n + m − 2
E(

√
V )

= 23/2d1σx

√
1

n
+

c

m

√
1

n + m − 2

Γ(n+m−1
2

))

Γ(n+m−2
2

)

where V ∼ χ2
n+m−2 and E(

√
V ) =

21/2Γ( 1
2
+ n+m−2

2
)

Γ(n+m−2
2

)
, see Casella and Berger

(1990). Thus we complete the proof.

4 Simulation results

In this section, we compare confidence intervals for μ via Monte Carlo simula-
tion, using functions written in R, in variety of situations to see how coverage
probabilities and expected lengths of confidence intervals CI2 and CI3, see
Theorems 1-2, may depend on sample sizes and on the ratio of the variances.
Our simulation experiments are as follows:

Setup 1. n = 20 and m = 5,
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Setup 2. n = 20 and m = 10,
Setup 3. n = 20 and m = 20,
Setup 4. n = 40 and m = 20,
Setup 5. n = 40 and m = 40.
Following Schechtman and Sherman (2007), we chose σ2

y/σ
2
x = c = 1, 2, 4, 8,

μx − μy = �, � = 0, 1, 2, 3 and σ2
x = 1. We compare confidence intervals of

CI2 and CI3 based on their coverage probabilities and expected lengths, with
a nominal value of 0.95 throughout. Comparison of coverage probabilities of
above intervals, using Theorems 1-2, for Setup 1 - Setup 5, based on 100,000
simulations, are given in Tables 1-3. The ratio of expected lengths for each
intervals, using Theorems 1-2, are also given in Tables 1-3. Note that our
proposed confidence interval CI3 reduces to the pooled estimate of variances,
confidence interval CI1 when c = 1. From Tables 1-3, coverage probabilities of
our proposed confidence interval, CI3 are equal or above the nominal value of
0.95. In addition, for n = m, CI2 is slightly better than CI3 when c ≤ 2, while
CI3 is better than when c > 2, in term of coverage probability. A ratio of ex-
pected lengths, E( lengtht of CI2)/E( lengtht of CI3) given in Theorems 1-2,
is estimated using Monte Carlo simulation. Results of this ratio of expected
lengths of each intervals in Tables 1-3 show that our proposed confidence in-
terval CI3 has shorter expected lengths than that of WS confidence interval
CI2 for every case of � and the value c ≥ 1, especially for case m = 20, n = 5
and for every case of � and the values of c ≥ 1. Additionally, for large value
of c, i.e. c=8, the expected length of the confidence interval CI3 is far shorter
than the expected length of the confidence interval CI2 for every sample sizes
of n and m except n = m. Furthermore, it is straightforward, from Theorems
1-2, to see that for n = m and c = 1, both confidence intervals have the same
length.

5 Conclusion

We proposed, in this paper, the confidence interval for the difference of two
normal population means when a ratio of variances is known. As in Schecht-
man and Sherman (2007), our proposed confidence interval, constructed using
the pivotal quantity T3, has more data from the second sample, while the WS
confidence interval did not use the fact that a ratio of variances is known.
Therefore our proposed interval performs well in term of its coverage prob-
ability, for c > 3, and its expected length. In other words, for most cases,
coverage probabilities of CI3 are equal or above the nominal value of 0.95 and
this confidence interval has also a shorter confidence interval compared to the
WS confidence interval for n > m. These results are similar to those results of
Niwitpong and Niwitpong (2008) who constructed prediction intervals for the
difference of two normal sample means with a known ratio of variances. Based
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on our Monte Carlo results, we recommend our proposed confidence interval,
CI3, for the difference of two normal population means with a known ratio of
variances, i.e. c ≥ 1.

We also note here that there is no need to use the preliminary test F -test
in comparing two sample means, see e.g. Gans (1981) and Kabaila (2005), for
this case since we assume that the ratio of variances is known.
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Table 1: The coverage probabilities of CI2, CI3 and E(CI2)/E(CI3) and the
number of simulation runs = 100,000.

n m � c CI2 CI3 E(CI2)/E(CI3)

20 5 0 1 0.94411 0.94996 1.13853
2 0.94293 0.94998 1.16563
4 0.94407 0.95024 1.18158
8 0.94689 0.95016 1.19026

1 1 0.94376 0.94988 1.13853
2 0.94284 0.94996 1.16563
4 0.94403 0.95005 1.18158
8 0.94699 0.95008 1.19026

2 1 0.94419 0.95010 1.13853
2 0.9427 0.94982 1.16563
4 0.94387 0.94982 1.18158
8 0.94667 0.95002 1.19026

3 1 0.94398 0.95004 1.13853
2 0.94307 0.95016 1.16563
4 0.94429 0.94995 1.18158
8 0.94626 0.94985 1.19026

20 10 0 1 0.94963 0.94993 1.01746
2 0.94921 0.95007 1.03294
4 0.94873 0.95002 1.04475
8 0.94878 0.95003 1.05210

1 1 0.95003 0.95014 1.01746
2 0.94907 0.94995 1.03294
4 0.94887 0.95011 1.04475
8 0.94913 0.94990 1.05210

2 1 0.94971 0.94994 1.01746
2 0.94892 0.94997 1.03294
4 0.94902 0.95016 1.04475
8 0.94892 0.95000 1.05210

3 1 0.94980 0.95011 1.01746
2 0.94893 0.94996 1.03294
4 0.94895 0.95025 1.04475
8 0.94871 0.95014 1.05210
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Table 2: The coverage probabilities of CI2, CI3 and E(CI2)/E(CI3) and the
number of simulation runs = 100,000.

n m � c CI2 CI3 E(CI2)/E(CI3)

20 20 0 1 0.95043 0.95008 1.00000
2 0.95010 0.94987 1.00089
4 0.94993 0.95001 1.00439
8 0.94989 0.94998 1.00817

1 1 0.95044 0.95009 1.00000
2 0.95027 0.95009 1.00089
4 0.94995 0.95005 1.00439
8 0.94981 0.94994 1.00817

2 1 0.95018 0.94983 1.00000
2 0.95015 0.94994 1.00089
4 0.94996 0.95002 1.00439
8 0.94967 0.95000 1.00817

3 1 0.95026 0.94991 1.00000
2 0.95028 0.95010 1.00089
4 0.95002 0.95012 1.00439
8 0.94989 0.95003 1.00817

40 20 0 1 0.94992 0.95005 1.01689
2 0.94979 0.94999 1.03209
4 0.94996 0.94992 1.04372
8 0.94997 0.94995 1.05097

1 1 0.94994 0.95001 1.01689
2 0.94986 0.94997 1.03209
4 0.94978 0.95012 1.04372
8 0.95009 0.95017 1.05097

2 1 0.95004 0.95010 1.01689
2 0.94990 0.95007 1.03209
4 0.94970 0.95002 1.04372
8 0.94965 0.94992 1.05097

3 1 0.94992 0.95010 1.01689
2 0.94981 0.95004 1.03209
4 0.94974 0.94992 1.04372
8 0.94991 0.94997 1.05097
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Table 3: The coverage probabilities of CI2, CI3 and E(CI2)/E(CI3) and the
number of simulation runs = 100,000.

m � c CI2 CI3 E(CI2)/E(CI3)

40 40 0 1 0.95011 0.95002 1.00000
2 0.95007 0.95003 1.00111
4 0.95005 0.95001 1.00495
8 0.94994 0.94994 1.00896

1 1 0.95005 0.94997 1.00000
2 0.94991 0.94990 1.00111
4 0.94995 0.94998 1.00495
8 0.94992 0.94993 1.00896

2 1 0.95008 0.95000 1.00000
2 0.95004 0.95001 1.00116
4 0.94990 0.94999 1.00495
8 094998 0.95002 1.00896

3 1 0.95005 0.94996 1.00000
2 0.95004 0.95001 1.00111
4 0.94999 0.95000 1.00495
8 0.94989 0.95000 1.00896


