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Abstract. This paper deals with the boundedness of the solutions and  the stability 
properties of the positive solutions of  recursive sequence 
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BAx l where kA and kiB are positive real sequences, ip  and ir  are 

real constants and il  and is  are positive integers. The above recursive sequence 
generalizes  some previously studied recursive sequences in the literature.  
 
 
 
1. Introduction 
 
The positive solutions of  recursive sequence: 
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where kA and kiB are positive real sequences, ip  and ir  are real constants and il  and 

is  are positive integers; { }q,...,2,1:qi =∈∀ . The above recursive sequence generalizes 
some previously proposed ones investigated in the background literature. It is 
investigated from a equilibrium stability and  solution boundedness point  of view. The 
motivation of the choice of the recursive sequence (1.1) is the significant interest which 
has been devoted in the recent past to recursive sequences of close structures where 
quotients of different delayed values of the solution have been introduced to construct 
their solutions.  Some of those previous studies which have inspired this one are listed 
below: 
 
1) Yang, Sun and Zhang  investigate  in [1] the equilibrium points, boundedness of the 
solutions and oscillatory character of the recursive difference equation: 
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2) Amleh, Grove  and Ladas study in [2] the second-order rational recursive difference 
equation: 
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3) Berenhaut and Stevic study in [3] and [4] the subsequent more general difference 
equations: 
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4) Stevic investigates the difference equations below: 
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in [5], [6] and [7], respectively.   
  
5) Dehghan and Mazrooei-Sebdani investigate in [8] the properties of stability, 
periodicity, boundedness and oscillatory behaviour of the rational difference equation:  
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Furthermore, it has to be pointed out that rational particular form of the difference 
equation in [1] for the parameter r being unity, which is also close to particular forms 
of the rational difference equation proposed in [3], has been investigated in [14]. The 
stability properties and boundedness of the solutions  of a class of rational difference 
equations with periodic coefficients and those of second order systems of difference 
equations have been investigated in [13] and [15], respectively. On the other hand, the 
global stability and asymptotic of continuous- time dynamic systems under point and 
distributed delayed dynamics has been investigated in [16] and references therein. The 
provided results can be a starting point of parallel results concerning the discretization 
of such dynamic systems. 
 
 

2. Boundedness of the solutions 
 
This paper first considers  the solutions of  the following difference equation: 
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which is a particular case of the recursive sequence (1.1) under admissible initial 
conditions: 

jx( − ;0> [ ] Z∩∈∀ s,0j  if  l≥s ) 

                    ∧ [ jx( − ;0> [ ] Z∩∈∀ s,0j ) ∧ jx( − 0≥ ; [ ] Z∩+∈∀ l,1sj ) if  l<s ] 
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with given constants R∈p , R∈r , +∈Zl , +∈Zs  and real  positive uniformly bounded 
sequences { }

+∈ 0kkA Z and{ }
+∈ 0kkB Z , respectively.  

 
The following result of uniform boundedness of the solution sequence of the discrete 
equation (2.1) follows: 
 
Theorem 2.1. The following properties hold: 
(i) Assume that there exist constants m, M ( )m≥ , 

,a m ( ) ( ) +∈≥≥ RmMmmM bb,b,aa which satisfy the subsequent constraints: 
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Then, 
( ) ( )
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 (ii) Property (i) can be extended directly for the case  +∈ 0mb R  , +∈RMb  , 
k

k0
kk0
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< by removing the constraint (2.7) and modifying the second 

inequality in the second relation (2.2) to a strict one. 
 
Proof: Proceed by complete induction by assuming that  
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Assume that ( ) 0r,pmin ≥ . Then,  one gets from (2.1) that  
 

( ) ( )
]Mxsupxinfm j

ijs1,1min
j

ijs1,1min
≤⎢

⎣

⎡
≤≤

≤≤−−≤≤−− ll
; { }k,...,2,1:ki =∈∀ ]Mxm 1k ≤≤⇒ +   

                                    
( ) ( )

]Mxsupxinfm j
1kjs1,1min

j
1kjs1,1min

≤⎢
⎣

⎡
≤≤⇔

+≤≤−−+≤≤−− ll
             (2.9) 

 
Assume that the constraint (2.4) holds , subject to the necessary condition (2.5) (which 
in turn requires the necessary condition (2.6)) in view of (2.1) subject to (2.2)-(2.3). 
Thus, (2.9) guarantees (2.4) via complete induction. The proof of Property (i)  is 
complete. Property (ii) follows since Property (i) can be    extended for the case 0b m =  
with the given modifications.                                                          
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Theorem 2.1 might be  simplified by noting  that 

( ) j
0js1,1min

m xinfa
≤≤−−

≤
l

 from (2.1). 

Thus, ma  may be chosen replacing m  as the uniform  lower-bound of all the elements 
of the sequence { }kx   under  a sufficiently small Mb  related to an explicit  upper-
bound obtained from M and ma  . This philosophy  is formally addressed  in  the 
subsequent result: 
 
Corollary 2.2. Assume that there exist real constants M,  +∈RMm b,a which satisfy 
the constraints: 
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Then, (2.7) holds with the replacement mam → . The result also holds for the case 

0Bmin kk0
≥

∞<≤
, 0Bmax k

k0
>

∞<≤
. 

 
Proof: Proceed by complete induction by assuming that (2.8) holds with then 
replacement mam → . Then,  one gets from (2.1), subject to the constraints (2.10), that 
(2.9) also holds with then replacement mam → . As a result, (2.7) also holds with such a 
replacement .                                                      
 
The set of constraints required by Corollary 2.2  is  less involved than those of Theorem 
2.1. However, the price to be paid is that the uniform lower-bound estimate to be used  
for the solution  sequence of  (2.1) is necessarily ma  and never a potential larger real 
lower-bound. Theorem 2.1 and Corollary 2.2  have the following simpler parallel result. 
All the elements of the sequence { }kx  belong to the interval [ ] +⊂ RM,m , provided 
that the initial conditions of (2.1) belong to such an interval,  if all the member of the 
parameterizing sequence { }kA  belong to some prescribed interval in +0R  provided that 

[ ] +⊂∈ 0Mmk b,bB R  for some +∈ 0mb R , ( ) +∈≥ RmM bb . 
 
Corollary 2.3. Assume that there exist m , M ( ) +∈≥ Rm ,  +∈ 0mb R , 

( ) +∈≥ RmM bb which satisfy: 
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subject to the necessary conditions (2.5)-(2.6). If the initial conditions are constrained 
to: 
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( ) ( )
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Then,  (2.7) holds. 
  
Proof: It follows by complete induction in a similar way as the proof of Theorem 2.1.                     

 
 
The  sequence (2.1) is generalized to the subsequent one whose study is the main 
interest of this manuscript: 
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under admissible initial conditions: 
jx( − ;0> [ ] Z∩∈∀ s,0j  if  l≥s ) 

                    ∧ [ jx( − ;0> [ ] Z∩∈∀ s,0j ) ∧ jx( − 0≥ ; [ ] Z∩+∈∀ l,1sj ) if  l<s ] 

with given constants R∈p , R∈r , +
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uniformly bounded sequences { }
+∈ 0kkA Z , { }

+∈ 0kkiB Z ; qi∈∀ , respectively. For the 
estimation of uniform upper and lower bounds of the solution sequence, define the 
following real constants:  
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for some  real constants m, M ( )m≥ +∈R  such that: 
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The particular coefficients ip , ir  ( )qi∈  which define the  definitions (2.14) depend on 
the coefficients ip and ir  being non less than  unity and non less than zero, respectively 
, if any and  also if the real constants M and m are less than unity or not. Related to 
these considerations, the  subsequent technical result  follows by direct inspection of 
(2.14) . 
 
Lemma 2.4. Decompose the sets of the coefficients ip , ir be { }qi:p: ip ∈=Λ  and 

{ }qi:r: ir ∈=Λ  uniquely as the respective disjoint unions of the sets { }qi:1p: ip ∈≥=Λ +   
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and { }qi:1p: ip ∈<=Λ − ; and { }qi:0r: ir ∈≥=Λ +  and { }qi:0r: ir ∈<=Λ .The following 
properties hold: 
 
(i.1)  ( ) ( )++ Λ∈=μ⇒≥∧∅≠Λ pjjpp p:pmax:1M  
(i.2)  ( ) ( )+−+ Λ∈=μ⇒<∧∅=Λ∧∅≠Λ pjjppp p:pmin:1M  

(i.3)  ( ) ( )−−+ Λ∈−==μ⇒<∧∅≠Λ∧∅≠Λ pjjjppp p:pmaxpmin:1M  
 (i.4)  ( ) ( )++ Λ∈=ν⇒≥∧∅≠Λ rjjrr r:rmin:1M  
(i.5)  ( ) ( )+−+ Λ∈=ν⇒<∧∅=Λ∧∅≠Λ rjjrrr r:rmax:1M  

(i.6)  ( ) ( )−−+ Λ∈−==ν⇒<∧∅≠Λ∧∅≠Λ rjjjrrr r:rminrmax:1M  
 
(ii.1)  ( ) ( )++ Λ∈=ν⇒≥∧∅≠Λ pjjpp p:pmin:1m  
(ii.2)   ( ) ( )+−+ Λ∈=ν⇒<∧∅=Λ∧∅≠Λ pjjppp p:pmax:1m  

(ii.3)   ( ) ( )−−+ Λ∈−==ν⇒<∧∅≠Λ∧∅≠Λ pjjjppp p:pminpmax:1m  
  (ii.4)  ( ) ( )++ Λ∈=μ⇒≥∧∅≠Λ rjjrr r:rmax:1m  
 (ii.5)  ( ) ( )+−+ Λ∈=μ⇒<∧∅=Λ∧∅≠Λ rjjrrr r:rmin:1m  

(ii.6)  ( ) ( )−−+ Λ∈−==μ⇒<∧∅≠Λ∧∅≠Λ rjjjrrr r:rmaxrmin:1m  
 
(iii.1)  ( ) ( )−+ Λ∈−==μ⇒≥∧∅=Λ pjjjpp p:pminpmax:1M  

(iii.2)  ( ) ( )−+ Λ∈−==μ⇒<∧∅=Λ pjjjpp p:pminpmin:1M  

 (iii.3)  ( ) ( )−+ Λ∈−==ν⇒≥∧∅=Λ rjjjrr r:rminrmin:1M  

(iii. 4)  ( ) ( )−+ Λ∈−==ν⇒<∧∅=Λ rjjjrr r:rminrmax:1M  
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(iv.3)  ( ) ( )−+ Λ∈−==μ⇒≥∧∅=Λ rjjjrr r:rminrmax:1m  

(iv.4)  ( ) ( )−+ Λ∈−==μ⇒<∧∅=Λ rjjjrr r:rminrmin:1m                                    
 
The following result is the generalization of Theorem 2.1 if the discrete equation  (2.1) 
is replaced by its generalization (2.13): 
 
Theorem 2.5. Assume that  the sequences { }kA and { }kiB ; qi ∈  satisfy: 
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with the real constants (2.14) being calculated from Lemma 2.4, and that the solution 
sequence of  (2.13) is subject to initial conditions satisfying: 
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Then, (2.7) holds.  
 
 
Proof:  It follows by complete induction. On gets directly from (2.13)  and (2.16) that  
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with pμ ,  rμ ,  pν and  rν  defined in Lemma 2.4 from the corresponding powers in the 
right-hand-side of (2.13) . Thus, the proof follows as that of Theorem 2.1 in view of 
(2.18).                               
 
It is obvious from Theorem 2.1 and Theorem 2.5 that for +∈Rm  the  sequences 
{ }kx/1 obtained from (2.1) and (2.13) are also positive and uniformly bounded  
satisfying 11

k
1 mxM −−− ≤≤ . Formally, one gets the following results which follow 

directly by replacing kk x/1x →  in (2.1) and (2.13), respectively: 
 
Corollary 2.6.  Assume that Theorem 2.1 holds with 0m ≠ . Then, the solution sequence 
of the discrete equation: 
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Corollary 2.7.  Assume that Theorem 2.5 holds  with 0m ≠ . Then, the solution 
sequence of the discrete equation 
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Theorem 2.8.  The following properties hold: 
 
(i) Assume that ( ) qi;1,0p i ∈∀∈  and +∈RMm a,a . Then, all solution sequences of (2.13) 
generated under admissible bounded initial conditions are bounded. 
 
(ii) Assume that ( )1,0p ∈  and +∈RMm a,a . Then, all solution sequences of (2.1) 
generated under admissible bounded initial conditions are bounded. 
 
Proof: (i) The proof is made by contradiction.  If a solution sequence { }kxS =  of (2.13) 
is unbounded then there is a strictly monotone increasing subsequence SS 1⊂  which 
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since 1S  is strictly monotone increasing. But,  for some sufficiently large ( ) +∈> R1x̂ , 
there exists a sufficiently large finite ( )x̂NN 000 =∋+Z  such that x̂x

k1k ≥δ−+  and 

0v k <  if 00 Nk ≥∋+Z which is a contradiction to (2.21). Thus, all solutions of (2.13) are 
bounded for any admissible set of initial conditions and the proof of Property (i) is 
complete.  Property (ii) follows in a similar way for the discrete sequence  (2.1) which 
is a particular case of (2.13).                                                                      
 
Remark 2.9. A particular case of Theorem 2.8 (ii) for constant parametrical sequences 

AA k = and 1B k = ; +∈∀ 0k Z , has been proven in [1].                                                       
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3. Equilibrium points  
 
The following two results follow from the limiting equations of (2.1), (2.13), (2.19) and 
(2.20) as the parameter sequences converge asymptotically to finite limits. 
 
Lemma 3.1. Assume that +∈→ RAA k , +∈→ 0iki BB R  as ∞→k ; qi∈∀  with 

+∈RiB for at least one qi∈ . Then,  the following properties hold: 
 
(i) R∈x  is an equilibrium point of (2.13) if and only if  

ii prq

1i
i xBAx −

=
∑=−                                                                                                       (3.1) 

x  is an equilibrium point of (2.13) only if Ax ≥ . 

1x =  is an equilibrium point of (2.13) if and only if 1BA
q

1i
i =+∑

=

. 

 (ii) R∈x  is an equilibrium point of (2.20) if and only if  

1xxBA
q

1i
pr

i ii =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

=

−                                                                                                (3.2) 

A necessary condition is A/1x ≤ . Also, 1x =  is an equilibrium point of (2.20) if and 

only if 1BA
q

1i
i =+∑

=

. 

(iii) x= x = 1 is an equilibrium point of both (2.13) and (2.20) if and only if 1BA
q

1i
i =+∑

=

. 

(iv) Define the disjoint sets { }1pr:qi:Q ii1 −=∈= , { }1pr:qi:Q ii2 −>∈= , 
{ }1pr:qi:Q ii3 −<∈= . Then, 0x = is the unique equilibrium point of (2.20) if and only if 

1pr ii −≥ ; qi ∈∀ (i.e. ∅=3Q ) and ( ) qioneleastat ∈∃  such that 1rp ii += (i.e. ∅≠1Q ) 
with 1B i

Qi 1
=∑

∈
. 

 (v) 1rpIf ii += ; qi∈∀  and 1B
q

1i
i <∑

=
 then 

A

B1
x

q

1i
i∑

=
−

=  is the unique equilibrium point of 

(2.20) so that 
∑
=

−
= q

1i
iB1

Ax  is  then the unique equilibrium point of (2.13). 

 (vi)  If  
1ABB 1pr

Qi
i

Qi
i

ii

31
>+ +−

∈∈
∑∑   

 
then (2.20), and thus (2.13), have no equilibrium points. 
 
Proof: Properties (i)-(ii) follows after direct substitution of AA k → , BB ki → , xx k → ; 

+∈∀ 0k Z  in (2.13) and (2.20), respectively. Note that 0x k ≥ ( kx  > 0 if A > 0; +∈∀ 0k Z )  
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from Theorem 2.5 what implies from (3.1)-(3.2) that any equilibrium point satisfies 

0Ax >≥  and A/1x ≤  , respectively,  and note also that 1xx ==  in (3.1)-(3.2) if and only 

if 1BA
q

1i
i =+∑

=

from Properties (i) –(ii) . Property (iii) has been proven. Note that 

321 QQQq ∪∪=  so that (3.2) can be rewritten as: 
 

1
x

BxBBxA
3 ii

ii

21 Qi 1pr
i1pr

i
Qi

i
Qi

=+++ ∑∑∑
∈ +−

+−

∈∈
                                                         (3.3) 

which  is satisfied with 0x = if and only if ∅≠1Q  with 1B i
Qi 1

=∑
∈

 and ∅=3Q . The 

sufficiency part of Property (iv) has been proven. The necessary part is proven by 
contradiction as follows. Assume that ∅=3Q  and 1B i

Qi 1
≠∑

∈
 with ∅≠1Q   or that ∅=1Q  

then (3.3) fails if 0x = . Then  ∅≠1Q  with 1B i
Qi 1

=∑
∈

 is needed for 0x =  to be an 

equilibrium point of (2.20). Assume that ∅≠3Q . Then, the left –hand-side of (3.3) is 
∞+  if 0x =  and thus  (3.3) fails so that it is needed ∅=3Q  for 0x =  to be an equilibrium 

point of (2.20). The uniqueness of the equilibrium point 0x =  follows from the 
uniqueness of the solution of the linear algebraic system i

Qi
i

Qi 11
B1BxA ∑∑

∈∈
==+ obtained 

from (3.2).   Property (v) has been proven. Note from  (3.3) that an equilibrium point 
0Axx 1 >≥= −  exists if and only if : 

 
∑∑∑∑∑

∈ +−
+−

∈∈∈ +−∈ +− +=−−≥+
3 ii

ii

213 ii2 ii Qi 1pr
i1pr

Qi
i

Qi
i

Qi 1pr
i

Qi 1pr
i

x

BxBBxA1
x

B
A

B  

                                                               1pr

Qi
i

1pr
Qi

i
ii

3

ii

2
ABxB +−

∈

+−

∈
∑∑ +≥  

         0xxBAABB1 ii

2

ii

31

pr
Qi

i
1pr

Qi
i

Qi
i ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≥−−⇒ −

∈

+−

∈∈
∑∑∑  

              1ABB 1pr

Qi
i

Qi
i

ii

31
≤+⇒ +−

∈∈
∑∑       

                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∃¬⇒>+⇔ +

+−

∈∈
∑∑ )2.3(satisfyingx1ABB 0

1pr

Qi
i

Qi
i

ii

31
R                                                  

 and Property (vi) has been proven.                                                                                   
 
Lemma 3.2. Assume that +∈→ RAA k , +∈→ RBB k  as ∞→k ; qi∈∀  Then,  the 
following properties hold: 
 
(i) R∈x  is an equilibrium point of (2.1) if and only if  

prxBAx −=−  
x is an equilibrium point of (2.1) only if Ax ≥ . 
 
(ii) R∈x  is an equilibrium point of (2.19) if and only if  
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( ) 1xxBA pr =+ −  
A necessary condition is A/1x ≤ . Also, 0x = is the unique equilibrium point of (2.19) if 
and only if 1pr −=  and B=1.  
 
(iii) x = x = 1 is an equilibrium point of both (2.1) and (2.19) if and only if 1BA =+ . 

(iv) 1rpIf +=  and 1B <  then 
A

B1x −
=   is the unique equilibrium point of (2.20) so that 

B1
Ax
−

=  is  then the unique equilibrium point of (2.1).  

1rpIf +=  and 1B >  then (2.19) has no equilibrium point so that (2.1) has no equilibrium 
point either. 
 
Proof: The proofs of Properties (i)-(iii) are similar to that of Lemma 3.1 by the 
appropriate substitutions in (2.1) and (2.19), respectively. Property (iv) follows from 
Properties (iv) - (v) of Lemma 3.1, its last part  being a particular case of Lemma 3.1 
(vi).                                                                                      
 
Some simple  global stability results for any set of bounded initial conditions of  the 
difference equations  (2.1) and (2.13) follow in the sequel by excluding 0x:x 1 == −  to be 
an equilibrium point of the inverse sequences (2.19) –(2.20) , respectively. In the case 
that 0x = is a locally stable equilibrium point of (2.19) (respectively,  (2.20)) then  the 
solution of (2.1) ( respectively, (2.13) ) satisfies ∞+→kx  as  ∞→k for certain sets of 
admissible bounded initial conditions  even under the uniform boundedness results of 
Section 2 for different sets of bounded initial conditions. 
 
Proposition 3.3. Assume that ∅≠1Q , ∅=3Q  and 1B

.
Qi

i
1

=∑
∈

.Then, there are  

unbounded solutions of (2.13)  for bounded admissible initial conditions if the 
equilibrium point 0x =  of (2.20) is locally stable.  
 
Proof: 0x = is an equilibrium point of (2.20) from Lemma 3.1 (iv). Thus, if it  is locally 
unstable, then there exist unbounded solutions  of (2.13) for admissible bounded initial 
conditions.                   
 
Proposition 3.4. If 1ABB 1pr

Qi
i

Qi
i

ii

31
>+ +−

∈∈
∑∑  then all the solutions of (2.13) and 

(2.20) are oscillatory and uniformly bounded, under admissible bounded initial 
conditions, in the sense that  for each +∈ 0k Z , there exist finite +∈Zkk M,N ,  dependent 
in general on k, such that ( ) ( )kNkNkMNk xxsgnxxsign kkkk −−=− ++++ .    
 
Proof: From Lemma 3.1 (vi), the solution of (2.20), and then that of (2.13), have no 
equilibrium points. Thus, no solution of (2.20) converges asymptotically to zero so that 
no solution of (2.13) diverges asymptotically to ∞+ . Thus, all solutions of (2.13) are  
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bounded but non constant and not asymptotically constant (since there are no 
equilibrium points) for any admissible bounded initial conditions. As  a result all the 
solutions are oscillatory uniformly bounded .                                                                   
 
Proposition 3.5.  If 1pr −=  and B=1 then there are unbounded solutions of (2.19) for 
bounded admissible initial conditions if the equilibrium point 0x =  of (2.1) is locally 
stable.  
 
Proof: It is close to that of Proposition 3.3 from Lemma 3.2 (ii).                                         
 
Proposition 3.6. If 1pr −=  and 1B >  then all the solutions of (2.13) and (2.20) are 
oscillatory and uniformly bounded under admissible bounded initial conditions. 
 
Proof: It is close to that of Proposition 3.4 from Lemma 3.2 (iv).                                    
 
It is clear that because of because of the summation of terms in the right- hand-side of 
(2.13) with a  potential presence of possible rational powers, it is quite difficult to 
determine analytically the set of equilibrium points of that difference equation , 
provided it is non empty, and even the cardinal of this set . However, it is possible to 
determine their possible existence and upper and lower -bounds of their potential 
location by discussing the equilibrium solutions of upper- bounding and lower- 
bounding simpler difference equations provided that they exist. However, if the 
equilibrium points of such a lower-bounding and upper- bounding equations do not 
exist then it cannot be concluded the existence of equilibrium points of (2.13). To 
investigate those issues , first define: 
 

( )ii
qi

rpmax: −=ρ
∈

  ;   ( )iiqi
rpmin: −=δ

∈
                                                                             (3.4) 

so that ρ≤δ . Assume that the real limits AA k → ; ∑
=

=→
q

1i
ik B:BB  as ∞→k  exist and 

define the sequences: 
( )ρδ

+ ωω+=ω kk1k ,minBA                                                                                               (3.5a) 
( )δρ

+ += kk1k v,vmaxBAv                                                                                               (3.5b) 
 

+∈∀ 0k Z  under  initial conditions satisfying the constraints of (2.13). If the initial 
conditions of (3.5) are the same as any given admissible set of them for (2.13) then, for 
such a set: 
 

kkk vx ≤≤ω ; Z∈∀k                                                                                                     (3.6) 
 
The equilibrium points, if any, of the solutions of (3.5) are, respectively, the existing  
solutions of 
 
( ) ( ) ( )ρδ ωω=ω≡−ω=ω kk ,minB:gA:f  ;  ( ) ( ) ( )δρ=≡ kk v,vmaxB:vhvf                                    (3.7) 
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Remark 3.7. In the particular case that 1A≥ then 1x k ≥ ; ( ) +∈≥∀ 0okk Z  for some finite 

+∈ 00k Z  so that the equilibrium points, if any, of the solutions of (3.5) are, from (3.7), 
the respective existing  solutions of 
 
( ) ( ) δω=ω≡−ω=ω kB:gA:f    ;  ( ) ( ) ρ=≡ kvB:vhvf                                                               (3.8) 

since (3.5) becomes: 
δ

+ ω+=ω k1k BA     ;     ρ
+ += k1k vBAv                                                                               (3.9) 

 
The result  which follows is useful to allocate valid intervals for the allocation of the 
possible equilibrium points of (2.13), if any. 
 
Lemma 3.8. Assume that 1A ≥ . Then, the following properties hold: 
(i)  ( ) ( )ω≡ω gf has no solution if 0≥δ so that (3.5a) has no equilibrium point. 
(ii) ( ) ( )ω≡ω gf has a unique solution if 0<δ  which satisfies the constraint:  

                    
δ

δ +≤ω+=ω≤
A

BABAA                                                                        (3.10) 

And which is the equilibrium point of (3.5a). 
 (iii)  ( ) ( )vhvf ≡ has no solution if 0≥ρ (i.e. if ii rp:qi >∈∃ ) so that (3.5b) has no 
equilibrium point. 
(iv)  ( ) ( )vhvf ≡ has a unique solution if 0<ρ (i.e. if qi;rp ii ∈∀< ) which satisfies the 
constraint:  

                    
ρ

ρ +≤+=≤
A

BAvBAvA                                                                         (3.11) 

Both difference equations (3.5) have respective unique equilibrium points which are 
solutions of  ( ) ( )ω≡ω gf and ( ) ( )vhvf ≡ , and satisfy the constraints : 

( )
δδ

δ +≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤ω+≤ω≤≤

A

B1
A

BA,vminBA,vminA1   ;    
ρρ

+≤+≤≤ω≤≤
A

B1
A

BAvA1   

                                                                                                                                   (3.12) 
Both equilibrium points are identical if δ=ρ . 
 
Proof: (i) It follows from (3.8) since RR →+0:f is linear with unity slope and ( ) A0f −=  
and ++ → 00:g RR is constant if 0=δ and monotone strictly increasing growing faster than 
linearly if 0>δ  with ( ) ( ) A0f0gB −=>= . Thus, the functions RR →+0:f  and 

++ → 00:g RR have a unique coincidence point. (ii) It follows since ++ → 00:g RR  strictly 
monotone strictly decreasing growing faster than linearly if 0<δ , and 

( ) ( ) A0f0gB −=>= and ( ) ( ) ∞=∞<∞= fg0 . Then, the functions RR →+0:f  and 

++ → 00:g RR have a unique coincidence point. Property (iii) and the first part of 
Property (iv) are proven in a similar way to Property (i) and Property  (ii), respectively. 
The second part of Property (iv) is a conclusion of Property (ii) and the first part of 
Property (iv) since v≤ω , in view of (3.6), and ( ) 00,max <δ⇒<δρ=ρ  provided that they 
exist but the last right-hand-side term of (3.10) is not necessarily upper-bounded by that 
of (3.11).                                                                       
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The following result is direct from Lemma 3.1 and Lemma 3.8. 
 
Theorem 3.9. Assume that 1A≥  and that the empty or nonempty set of equilibrium 
points of )13.2( is us EEE ∪= where sE is the subset of locally asymptotically stable 
equilibrium points of (2.13) and uE is the subset of its locally unstable and locally 
critically stable equilibrium points.  
Define nonempty sets of integers { } qsr:qi:Q ii ⊂δ=−∈=δ  and 

{ } qsr:qi:Q ii ⊂ρ=−∈=ρ ; and 
Define sets of δQ  and ρQ polynomials ( )zT jδ and ( )zT jρ of real coefficients as 
follows: 

 ( ) ( )∑ δδδ

=

−−−δ
δ ⎟

⎠
⎞⎜

⎝
⎛ −ω+=

q

1i

n
j

sn
ji

1n
j

jjjjj zrzpBzzT l  ,  ( )jjj ,smax:n l=δ ; δ∈∀ Qj  

 ( ) ( )∑ ρρρ

=

−−−ρ
ρ ⎟

⎠
⎞⎜

⎝
⎛ −+=

q

1i

n
j

sn
ji

1n
j

jjjjj zrzpBvzzT l  ,  ( )jjj ,smax:n l=ρ ; ρ∈∀ Qj  

Then, the following properties hold: 
 
(i) If 0<ρ then a unique v  exists so that [ ]v,Ax i∈  ; Ex i∈∀  if  ∅≠E . The equilibrium 
point of (3.5b) is locally asymptotically stable if the ρQ  polynomials ( )zT jρ  have all 
their zeros in the complex unit open disk centered at z=0, i.e. ( ) { }1z:z:1,0C <∈= C . 
Furthermore, vxsuplim k

k
≤

∞→
 for any set of bounded admissible initial conditions of (2.13) 

allocated within a sufficiently small ball centered at v. 
 
 (ii) If qi;1s ii ∈∀==l , then the local asymptotic stability condition of the unique 
equilibrium point of Property (i) becomes in particular ρ>+ρ 1v  so that so that, in such 
a case, the equilibrium point of (3.5b) is asymptotically stable if it satisfies the 
subsequent constraint: 

( )1
1

v
A

BA +ρ
ρ

ρ>≥
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+  

Furthermore, the solution sequence of (2.13) for bounded admissible initial conditions 
satisfies: 
 

( ) 1
k

k

1
1

A

BAxsuplim,Amax
+ρ

ρ∞→

+ρ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
ρ  

If ( ) A1
1

>ρ +ρ then the first of the above inequalities is strict. 
 
(iii) If 0<δ then a unique ω  exists so that [ )∞ω∈ ,x i  if  ∅≠E . The equilibrium point of 
(3.5a) is locally asymptotically stable if the ρQ  polynomials ( )zT jδ  have all their zeros 
in the complex unit open disk centered at z=0, i.e. ( ) { }1z:z:1,0C <∈= C . Furthermore,  
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ω≥
∞→

k
k

xinflim  for any set of bounded admissible initial conditions of (2.13) allocated 

within a sufficiently small ball centered at ω . 
 
(iv) If qi;1s ii ∈∀==l , then the local asymptotic stability condition of the unique 
equilibrium point of Property (iii) of  the first difference equation in (3.5a) is locally 
asymptotically stable if δ>ω +δ 1  so that, in such a case,  it satisfies the subsequent 
constraint: 

( )1
1

A

BA +δ
δ

δ>ω≥
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+  

Furthermore, the solution sequence of (2.13) for bounded admissible initial conditions 
around ω  satisfies: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≥ +δ+δ

δ
∞→

1
11

k
k

,
A

BAmaxxinflim  

If ( )1
11

A

BA +δ+δ

δ
δ<

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+  then the above inequality is strict. 

 
(v) ( ) ( )[ ]v,,Amaxx0,max i ω∈⇒<δρ  ; Ex i∈∀  if  ∅≠E  and the obtained bounds for 

k
k

xsuplim
∞→

and k
k

xinflim
∞→

in  Properties (i)-(iv) still hold. 

(vi) ( )[ qi;1rp 1ii ∈∀+≤ + ( )( ) ] ( ) ( )[ ]∞→∞→∧∅=⇒⊂∅≠∈∀+=∧ + kasxEqQj;1rp k11jj    
 provided that 1B i

Qi 1
=∑

∈
.    

(vii) ( )[ ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
=⊃∅≠⇒

⎥
⎥

⎦

⎤
<∑∈∀+=

∑⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∧

=
∈

+ q

1i
i

i
qi

1ii
B1

AxE1Bqj;1rp   . 

Proof: The local asymptotic stability issues for the equilibrium points ω  and v of the 
lower-bounding and upper-bounding solution sequences (3.5a) and (3.5b) for the 
solution of (2.13)  follow directly from the linearized stability theorem [10] (see also [1] 
and [9]). Thus, the characteristic polynomials of the local perturbations ωΔ and 

vΔ around such equilibrium points have to be stable assumed that those  equilibrium 
points ω  and v are  locally asymptotically stable. 
 
Proofs of (i) and (iii): Consider the equilibrium point k

k
vlimv

∞→
=  of (3.5b) and a local 

perturbation vΔ  around it. Then, the local stability around such a point is characterized  
by the following dynamics: 

j

i
jj

i
jj

r2
s1k

1rp
j1k

1pr
jq

1i
i1k

v

vvvrvvp
Bv

−+
−

−+
−

=
+

Δ−ωΔ
⎟
⎠

⎞
⎜
⎝

⎛=Δ ∑
l ; ρ∈∀ Qj  

Define the one-step advance and delay operators q and 1q − , respectively, as k1k xqx =+ , 

1k
1

k xqx +
−= . Since 0<ρ  from Lemma 3.8 (iv) , the above first-order incremental  
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equations around v , whose number is card ρQ , may be rewritten as ( ) vzT j Δρ , 
where ( )zT jρ  is defined as follows for appropriately defined real coefficients it  from 
the polynomial identities below: 

( ) ∑ ρρρρ∑
ρρ

=

−−
+ρ

−−

=
ρ ⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≡+=

q

1i

n
j

sn
j1

inin1n

1i
jij

jjjjjjjjn
zrzp

v

BzztzzT l ; ρ∈∀ Qj  

Then, v is locally asymptotically stable if and only if the polynomials ( )zT jρ  ; ρ∈∀ Qj  
are all stable; i.e. with all their zeros lying in 1z < , where z is the complex 
indeterminate argument of the discrete z-transform (which is formally identical to the 
one-step-temporal advance operator q). Also, the boundedness relation (3.6) implies 

vxsuplim k
k

≤
∞→

 for initial conditions within a sufficiently small ball centered at v. The 

proof of Property (iii) for the equilibrium point ω  of (3.5a) is similar to that of Property 
(i) with the replacements δ→ρ , ( ) ( )zTzT jj δρ → , jj nn δ→ρ , δρ→ QQ , ω→v . Also, the 
boundedness relation (3.6) implies ω≥

∞→
k

k
xsuplim  for initial conditions within a 

sufficiently small ball centered at ω . 
Proofs of (ii) and (iv): Now, qi;1s ii ∈∀==l and 0<ρ or 0<δ . Then, 

vvv 1Δρ<Δ −ρ irrespective of vΔ  implying  that ρ>ω +ρ 1  so that v is locally 

asymptotically stable. Also, the limit superior of any solution of (2.13) for any set of 
bounded admissible conditions does not exceed the value of v. 

ωΔωδ<ωΔ −δ 1 irrespective of ωΔ  implying that δ>ω +δ 1  so that ω  is locally 
asymptotically stable. Also, the limit inferior of the solution of (2.13) for any set of 
bounded admissible initial conditions is non less than ω . The remaining parts of the 
proof follow directly from Lemma 3.1 and Lemma 3.8. 
The proof of  (v) follows from the above results by noting that ( ) ρ≥δ⇔<δρ 0,max  
since ρ≤δ .  
The proofs of (vi)-(vii) follow from Lemma 3.1 and Lemma 3.8.                                   
 
If 1A <  then the above two lat results become modified as follows: 
 
Lemma 3.10. Assume that 1A < . Then, the following properties hold: 
(i)  ( ) ( )ω≡ω gf has no equilibrium point if 0≥δ . 
(ii) ( ) ( )ω≡ω gf has a unique equilibrium point if 0<δ  which satisfies the constraint  

                    ( ) ρρ
δ

ρδ +=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤ωω+=ω≤ ABAA,

A

1minBA,minBAA                        (3.13) 

 (iii)  ( ) ( )vhvf ≡ has no equilibrium point if 0≥ρ . 
(iv)  ( ) ( )vhvf ≡ has a unique equilibrium point if 0<ρ  which satisfies the constraint  

                    ( )
δρδ

ρδ +≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤+=≤

A

BA
A

1,
A

1minBAv,vmaxBAvA                      (3.14) 

(v) If ( ) 0,max <δρ  then both difference equations (3.5) have unique equilibrium points 
which satisfy the constraints: 
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BA
A

BAvA;BA
A

BA
A

BA,vminA +≤+≤≤ω≤+≤+≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤ω≤

δδρ
                         (3.15) 

Both equilibrium points are identical if δ=ρ . 
 
Proof: (i) It follows from (3.8) since RR →+0:f is linear with unity slope and ( ) A0f −=  
and ++ → 00:g RR is constant if 0=δ and monotone strictly increasing growing faster than 
linearly if 0>δ  with ( ) ( ) A0f0gB −=>= . Thus, the functions RR →+0:f  and 

++ → 00:g RR have a unique coincidence point. (ii) It follows since ++ → 00:g RR  strictly 
monotone strictly decreasing growing faster than linearly if 0<δ , and 

( ) ( ) A0f0gB −=>= and ( ) ( ) ∞=∞<∞= fg0 . Then, the functions RR →+0:f  and 

++ → 00:g RR have a unique coincidence point. Property (iii) and Property (iv) are proven 
in a similar way to Property (i) and Property  (ii), respectively. Property (v) is a 
conclusion of Property (ii) and Property (iv) since v≤ω , in view of (3.6),  provided that 
they exist but the last right-hand-side term of (3.10) is not necessarily upper-bounded by 
that of (3.11).                                     
 
The following two results are direct from Lemma 3.1 and Lemma 3.8 for the case A<1. 
 
Theorem 3.11. Assume that 1A <  and that the empty or nonempty set of equilibrium 
points of )13.2( is us EEE ∪= where sE is the subset of locally asymptotically stable 
equilibrium points of (2.13) and uE is the subset of its locally unstable and locally 
critically stable equilibrium points. Then, Theorem 3.9 (i) and Theorem 3.9 (iii) still 
hold.                                                                                           
 
Theorem 3.12. Assume that 1A < . Then,  if qi;1s ii ∈∀==l , the following properties 
hold: 
 
(i) If 0<ρ then  a unique v  exists so that [ ]v,Ax i∈  ; Ex i∈∀  if  ∅≠E . The equilibrium 
point of the second difference equation in (3.5b) is locally asymptotically stable if 

δ>+δ 1v  so that so that, in such a case, it satisfies the subsequent constraint: 

( )1
1

v
A

BA +δ
δ

δ>≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+  

 (ii) If 0<δ then a unique ω  exists so that [ )∞ω∈ ,x i  if  ∅≠E . The equilibrium point of 

the first difference equation in (3.5a) is locally asymptotically stable if ρ>ω +ρ 1  so 
that, in such a case,  it satisfies the subsequent constraint: 

( )1
1

A

BA +ρ
ρ

ρ>ω≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+  

(iii) ( ) ( )[ ]v,v,Amaxx0,max i∈⇒<δρ  ; Ex i∈∀  if  ∅≠E  and the obtained bounds for 
k

k
xsuplim

∞→
and k

k
xinflim

∞→
in  Properties (i)-(ii) still hold. 
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 (iv) ( )[ qi;1rp 1ii ∈∀+≤ + ( )( ) ] ( ) ( )[ ]∞→∞→∧∅=⇒⊂∅≠∈∀+=∧ + kasxEqQj;1rp k11jj    
 provided that 1B i

Qi 1
=∑

∈
.    

(v) ( )[ ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

=⊃∅≠⇒
⎥
⎥
⎥

⎦

⎤
<∑∈∀+=

∑
=

∈
+

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∧ q

1i
i

i
qi

1ii

B1

AxE1Bqj;1rp   . 

Proof: It is very close to that of Theorem 3.9 [(ii) , (iv), (v) , (vi) and ( vii) ] by noting 

that 
ρδ

≥
A

1

A

1  if ρ≥δ⇔<ρ≤δ 0 . Then, the proof is omitted.                                     

 
Remark 3.13. It is difficult to calculate the exact allocations equilibrium points of (2.13) 
for large values of q, except in simple cases, because the exponents in (2.13) are in 
general rational numbers. However, if such points can be calculated or approximated 
then the ideas in Theorem 3.9 and Theorem 3.11 about the use of the linearized stability 
theorem can be used to determine the local stability of each of those points. In 
particular, first-order incremental dynamic systems around the equilibrium points may 
be built for that purpose as follows:  

i

i
ii

i
ii

r2
s1k

1pr
i1k

1pr
iq

1i
i1k

x

xxrxxp
Bx

−+
−+

−+
−+

=
+

Δ−Δ
=Δ ∑

l ; Ex∈∀  

This leads to the following polynomials that characterize the local stability properties of 
the incremental equations ( ) 0xz,xT =Δ ; Ex∈∀ , where the polynomial ( )z,xT  is 
parameterized at the equilibrium points of (2.13) and defined as follows: 
 

( ) ( ) ( )iiii n
i

sn
i

1rpq

1i
i

nin1n

1i
i

n zrzpxBzzxtzz,xT l−−−−

=

−−

=
−+≡+= ∑∑   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈∈
i

qi
i

qi
smax,maxmax:n l  

 
Thus, if ( )z,xT  is stable then Ex∈ is a locally asymptotically stable equilibrium point of 
(2.13).  
 
A practical test to investigate the local stability of the equilibrium points can be 
performed via comparison tests with known given stable polynomials as follows:  
 
Remark 3.14. The stability  character of the polynomials ( )z,xT ; Ex∈∀  may be 
investigated from a sufficiency point of view by comparing them to given polynomials 

( ) ( ) in1n

1i
*
i

n* zxtz:z,xT −−

=
∑+=  which are known to be stable as follows. Define error 

polynomials:  

( ) ( ) ( ) ( ) in1n

1i i
* zxt~z,xTz,xT:z,xT~ −−

=
∑=−=  
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          ( ) ( )( ) in1n

1i
*
ii zxtxt −−

=
∑ −= = ( ) ( ) in1n

1i
*
i

n
i

sn
i

1rpq

1i
i zxtzrzpxB iiii −−

=

−−−−

=
∑∑ −− l  

; Ex∈∀ . Define indicator subsets of q : 
{ }isn:qi:Q iis =−∈=   ;   { }in:qi:Q ii =−∈= ll   ; qi∈∀  

which can be empty. Thus, the coefficients of the error polynomials are given by: 

( ) ( )xtxBrBpxt~ *
i

1rp

Qj
jj

Qj
jji

ii

iis
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−−

∈∈
∑∑
l

 

The Rouché theorem for zeros of analytic functions establishes that ( )z,xT  is stable (i.e. 
with all its zeros in the complex open unit disk 1z < ) if ( )z,xT *  is stable and, 

furthermore, ( ) ( )z,xTz,xT~ *< on the boundary of the unit disk 1z = . In fact, such a 

property guarantees that ( )z,xT  has the same number of zeros in 1z < than ( )z,xT *  so 
that ( )z,xT is stable since ( )z,xT * is also stable for any given Ex∈ (see, for instance, [11], 
[12]).                                                         
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