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Abstract. This paper deals with the boundedness of the solutions and the stability

properties  of  the positive  solutions  of recursive  sequence
L Xk "

X g =A +ZB T2 - where A, and B;, are positive real sequences, p; and r; are
i=1 k+1l-s;

real constants and ¢; and s; are positive integers. The above recursive sequence
generalizes some previously studied recursive sequences in the literature.

1. Introduction

The positive solutions of recursive sequence:
d 1
+H1-0; .
Xk+l :Ak+zBikT y VkGZO+:Z+U{O} (1.1)
i=1 X k+1-s;
where A, and B;, are positive real sequences, p; and r; are real constants and ¢; and

s: are positive integers; vieqg:=1{12,..,q}. The above recursive sequence generalizes
i q q

some previously proposed ones investigated in the background literature. It is
investigated from a equilibrium stability and solution boundedness point of view. The
motivation of the choice of the recursive sequence (1.1) is the significant interest which
has been devoted in the recent past to recursive sequences of close structures where
quotients of different delayed values of the solution have been introduced to construct
their solutions. Some of those previous studies which have inspired this one are listed
below:

1) Yang, Sun and Zhang investigate in [1] the equilibrium points, boundedness of the
solutions and oscillatory character of the recursive difference equation:
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x P
Xp =A+ 0k - VneZ,
X o1
2) Amleh, Grove and Ladas study in [2] the second-order rational recursive difference
equation:

xn+1:a+xn’1 ; VneZy,

X n
3) Berenhaut and Stevic study in [3] and [4] the subsequent more general difference
equations:

p
X X p
Xps1 =0+ ”;" ; Xp :AJ{_H—ZJ
Xn Xn-1
4) Stevic investigates the difference equations below:
p P p
X
Xpyp =0+ ngl ; Xpp =0+ Xp" 7 Xpp=o+ Xr” S VneZ,
Xn Xn-1 Xn-1

in [5], [6] and [7], respectively.

5) Dehghan and Mazrooei-Sebdani investigate in [8] the properties of stability,
periodicity, boundedness and oscillatory behaviour of the rational difference equation:

o+YX g
A+Bx

Furthermore, it has to be pointed out that rational particular form of the difference
equation in [1] for the parameter r being unity, which is also close to particular forms
of the rational difference equation proposed in [3], has been investigated in [14]. The
stability properties and boundedness of the solutions of a class of rational difference
equations with periodic coefficients and those of second order systems of difference
equations have been investigated in [13] and [15], respectively. On the other hand, the
global stability and asymptotic of continuous- time dynamic systems under point and
distributed delayed dynamics has been investigated in [16] and references therein. The
provided results can be a starting point of parallel results concerning the discretization
of such dynamic systems.

Xni1 =

2. Boundedness of the solutions

This paper first considers the solutions of the following difference equation:

X laor

Xk+l:Ak+Ber+ f vkEZO+ (21)
k+1-s

which is a particular case of the recursive sequence (1.1) under admissible initial

conditions:

(x_j>0;Vje[0,s] nZ if s2¢)

A(x ;>0 Vje[0,s] nZ) A (x_j20;Vje[s+1,0] nZ)if s</]
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with given constants peR, reR, ¢eZ,, sez, and real positive uniformly bounded
sequences {A .-, and{B,},.,, ,respectively.

The following result of uniform boundedness of the solution sequence of the discrete
equation (2.1) follows:

Theorem 2.1. The following properties hold:
(i) Assume that there exist constants m, M(=m),

am, am(=am)bm.bym(=by)eR . which satisfy the subsequent constraints:

< i < < . < i < <
ST AT A A D S, B IR B D (22)
am<m< inf X< sup X <M (2.3)
" min(—,1-s)<j<0" ' " minfs 105 )<j<0
p-1 p-1
m[l—bmm r ]samgaM sM[l—bM M - ] (2.4)
M m
P P
M>max m,b¥'m r |; mepifmr (2.5)
b -1
[ M Jp Moy (2.6)
b m
Then, m < inf X < sup XK<M. (2.7)

min(l-¢ 1 J<k<o ¢ min(1-¢,1-s )<k <o0
(ii) Property (i) can be extended directly for the case b,eR, , byeR, ,
min B, < max B, by removing the constraint (2.7) and modifying the second

0<k<w 0<k<ow

inequality in the second relation (2.2) to a strict one.

Proof: Proceed by complete induction by assuming that

m< inf 0 ox;< sup x j<M; Viek, some given keZ, (2.8)
min(1-¢,1-s )<j<i min(1-¢,1-s )<j<i

Assume that min(p,r)>0. Then, one gets from (2.1) that

{ms _inf x5 < sup xjsM];VieE:z{l,Z,...,k}:>m£xk+1sM]
min(1-/,1-s )<j<i min(1-¢,1-s )<j<i
<:>[m < inf X< sup X < M] (2.9)
min(1-¢,1-s)<j<k+l ° min(l-¢,1-s )<j<k+l

Assume that the constraint (2.4) holds , subject to the necessary condition (2.5) (which
in turn requires the necessary condition (2.6)) in view of (2.1) subject to (2.2)-(2.3).
Thus, (2.9) guarantees (2.4) via complete induction. The proof of Property (i) is
complete. Property (ii) follows since Property (i) can be extended for the case b, =0

with the given modifications. O
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Theorem 2.1 might be simplified by noting that a ,, < inf x  from (2.1).
min(1-¢,1-s )<j<0

Thus, a ,, may be chosen replacing m as the uniform lower-bound of all the elements
of the sequence {x | under a sufficiently small b, related to an explicit upper-
bound obtained from M and a ,, . This philosophy is formally addressed in the
subsequent result:

Corollary 2.2. Assume that there exist real constants M, a, ,by R ,which satisfy
the constraints:

0<k<o 0<k<o

M P
am< min A< max Ag<Mi1-by -

am
r

H m
0< min By< max By<by<

0<k<m 0<k<m M P
a < inf X i < sup Xi<M (2.10)
min(—¢,1-s)<j<0" ' " mins 105 )<j<o

Then, (2.7) holds with the replacement m — a ,,. The result also holds for the case
min B, >0, max B, >0.

0<k<wo 0<k<wo

Proof: Proceed by complete induction by assuming that (2.8) holds with then
replacement m — a ,,. Then, one gets from (2.1), subject to the constraints (2.10), that

(2.9) also holds with then replacement m — a ,,. As a result, (2.7) also holds with such a
replacement . O

The set of constraints required by Corollary 2.2 is less involved than those of Theorem
2.1. However, the price to be paid is that the uniform lower-bound estimate to be used
for the solution sequence of (2.1) is necessarily a , and never a potential larger real

lower-bound. Theorem 2.1 and Corollary 2.2 have the following simpler parallel result.
All the elements of the sequence {x | belong to the interval [m,M]cR ., provided

that the initial conditions of (2.1) belong to such an interval, if all the member of the
parameterizing sequence {A ,} belong to some prescribed interval in R, provided that

Brelbm b ]| cRo, forsome b, eRo,, bm(=bm)eR,

Corollary 2.3. Assume that there exist m , M(=m)eR,, bmeR o,
bum(=b,)eR , which satisfy:

m P71 M P
ML-bp o |SA<M[1-by ~—— | ; Byelby.by] <Ry, (2.11)
M m

subject to the necessary conditions (2.5)-(2.6). If the initial conditions are constrained
to:
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m< inf o ox; < sup Xj<M (2.12)
min(L-¢,1-s )<j<0 min(1-¢,1-s )<j<0

Then, (2.7) holds.

Proof: It follows by complete induction in a similar way as the proof of Theorem 2.1.
O

The sequence (2.1) is generalized to the subsequent one whose study is the main
interest of this manuscript:

:q: XEJirlff,i .
XkJrl :Ak+ Bik—ri y vkEZO+ (213)
i=1 X k+1-s;

under admissible initial conditions:
(x_j>0;Vje[o,s] nzZ if s>¢)

A(x_j>0,Vje[0,s] nZ) A (x_j20;Vje[s+1,0] nZ)if s</]

with given constants peR, reR, E(:zmaxfijezw s(::r_naxsijez+ and real positive
ieq ieq
uniformly bounded sequences {Ak}kezm,{Bik}kezm; vieq, respectively. For the

estimation of uniform upper and lower bounds of the solution sequence, define the
following real constants:

up::(p 1M pj_1:=max(M pi_l:iea), somejeﬁ)

Vr::(rj:M " ;:min(M Fi :ieﬁ), somejeﬁ)

Vp! (pj:m pj_1:=min(mpi_1:ieﬁ), somejeﬁj

pr::(rj:mrj::max(m”:ieﬁ), somejea) (2.14)

for some real constants m, M(>m) eR . such that:

adpms<ms< inf =~ X< sup X
min(L-¢,1-5)<j<0 min(1-¢,1-s )<j<0

j<M (2.15)
The particular coefficients p;, r; (ieg) which define the definitions (2.14) depend on
the coefficients p;and r; being non less than unity and non less than zero, respectively

, If any and also if the real constants M and m are less than unity or not. Related to
these considerations, the subsequent technical result follows by direct inspection of
(2.14) .

Lemma 2.4. Decompose the sets of the coefficientsp;,rjbeA,:={p;:ieq} and
Ay:={r;:ieq} uniquely as the respective disjoint unions of the sets A, :={p;>1:i 7|
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and A, :={pj<liieq}; andA, :={r;20:ieq| and A,:={r;<0:ieq}.The following
properties hold:

(i.1) (Ap+ =D A le):pp::(max pj:pjeAp+)

(i.2) (Ap+ #DA Ap_ —®AM<1):>pp (mln Pj:pjeip, )

(i.3) (Ap+ DA Ap_ ¢®AM<1):pp::(m|n pj:—max‘pj‘: pjeAp_)
(i.4) (Ary #@ A M21)= vi=(minrj:rjen,, )

(i.5) (Ars 2OAA_ =BAM<L)= v, = (maxrj:r-eAH)

(i.6) ( Ay ¢®/\Ar,¢®/\M<l):>vr (maxrj_—m|n| J| rjeA, )

(ii.1) (Ap, #@ A m=21)= vy:=(minpj:p ey, )

(ii.2) (Ap+ 0] /\Ap_:Q/\m<l):> Vp: = ( max pj'pjeAp+)

(ii.3) (A + 2D A A ¢®Am<1):>vp (max pj——mln‘pj‘ PjeA,_ )
(ii.4) (A, 2@ A m>1)= pu,:=(max Fjir eA, )

(ii5) (Ary 2@ A A =@ am<l)=p=(minrjirjeA, )

(ii.6) ( Ay ¢®AAr_¢®Am<1): [T (mlnrjz—max‘ J‘ ri eAr_)

(iii.1) (Ap+ =T A le): pp::(max pj:—min‘pj‘: PjeAp_ )
(iii.2) (Ap+ =T A M<1): up::(min P =—min|pj|: PjeA, )
(iii.3) (Ar+ =D A le): vr:z(min rj:—min‘rj‘: rjeA )

(iii. 4) (Ar+ =0 A M<1): V= (max rJ:—min|rJ—|: rjehA )

(iv.1) (Ap+ =D A mzl):> vp::(min p j:—min|p j|: PjeA, )
(iv.2) (Ap+ =T A m<1):> Vo ':(max p jz—min‘p j" PjeA )
(iv.3) ( Ay =D A m>1): W= (max r ——m|n| l| rjei, )

(iv.4) (Ar+ =T A m<l): i .:(mln g =—m|n‘ rj‘. rjeA ) O

The following result is the generalization of Theorem 2.1 if the discrete equation (2.1)
is replaced by its generalization (2.13):

Theorem 2.5. Assume that the sequences {A , }and {B ;. |; i <q satisfy:

0O<an,< min A< max Ag<ay

0<k<w 0<k<wo

0<b,ms min B, < max B; < b;y ; max B >0
0<k<o 0<k<ow

<k<w

vp-1 v pp-l
m P m P M*™P
m[l—bm m Jsam+bm gamgaMsM[l—bM J
r

M M Hr mVr
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bmi= 2bim ; bmi= 2bim

i=1 i=1
vp-1 Mpp—l
m(l—bm mM“r JsamsaMsM[l—bM . (2.16)
vp-1 np-1
M>max m,ba* m " | mxp M T (2.17)

with the real constants (2.14) being calculated from Lemma 2.4, and that the solution
sequence of (2.13) is subject to initial conditions satisfying:

m< inf Xj< sup X <M

min(1-¢,1-s )<j<0 min(1-¢,1-s )<j<0

Then, (2.7) holds.

Proof: It follows by complete induction. On gets directly from (2.13) and (2.16) that
Vp MHP
m <apyt+bwm

m<am,+b

<M (2.18)

with p,, p,, vpand v defined in Lemma 2.4 from the corresponding powers in the

right-hand-side of (2.13) . Thus, the proof follows as that of Theorem 2.1 in view of
(2.18). 0

It is obvious from Theorem 2.1 and Theorem 2.5 that for m eR , the sequences
{1/x | obtained from (2.1) and (2.13) are also positive and uniformly bounded

satisfying M ™ <x,'<m 1. Formally, one gets the following results which follow
directly by replacing x ,— 1/x, in (2.1) and (2.13), respectively:

Corollary 2.6. Assume that Theorem 2.1 holds with m =0. Then, the solution sequence
of the discrete equation:

X1 .
K= VkeZ,, (2.19)
kX ki1 TB KX k15

satisfies 0 <M t<x,<m™<wprovided that M t<x,<m™; vkemin(l-¢,1-s)nZ.
O

Corollary 2.7. Assume that Theorem 2.5 holds with m =0. Then, the solution
sequence of the discrete equation
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X g = L vkez,, (2.20)

J Xklls

1os.

A+ By 1
i=1

p.
Xihiov,

satisfies 0<M t<x, <m™ <o provided that M t<x,<m™; vkemin(l-¢,1-s)nZ. O
Theorem 2.8. The following properties hold:

(i) Assume that p; <(0,1);vieg and a,,ap <R .. Then, all solution sequences of (2.13)
generated under admissible bounded initial conditions are bounded.

(ii) Assume that pe(0,1) and a,.,ayeR.. Then, all solution sequences of (2.1)
generated under admissible bounded initial conditions are bounded.

Proof: (i) The proof is made by contradiction. If a solution sequence S={x,} of (2.13)
is unbounded then there is a strictly monotone increasing subsequence S;cS which
diverges as k — « and which can be built as follows:

X k+1r X ks1-5, are two consecutive elements of s, for k>Ngez,, 8, ez, (being
dependent on k ) for some N, finite and sufficiently large, such that for
ﬁM:=rin€aqx(pa)e(0,l)

q Xfd1—r q Xid1—s q Xiis
Xk+1:Ak +i§18ik r-;—_vl SaM+i§lBik +i_“I SaM+ElBik%;Vkezo+
a Xk+lfsi a &m B am
Thus,
Bj 2 B;
2 2 o .2 q ik q ik 2
0<vk._xk+1—xk+1_6ksvk.—aM— 1- L e 5 -2 L 75 Xk+l—8k
|,]_a Ix M |,]_a 1 X M
m= k+1-38 i m k+1-3
(2.21)

since S, is strictly monotone increasing. But, for some sufficiently large x(>1)<R .,

there exists a sufficiently large finite z,,5No=Ng(%) such that x >x and

k+1-3 i
Vi <0 if Z,, 5 k>N which is a contradiction to (2.21). Thus, all solutions of (2.13) are
bounded for any admissible set of initial conditions and the proof of Property (i) is
complete. Property (ii) follows in a similar way for the discrete sequence (2.1) which
is a particular case of (2.13). O

Remark 2.9. A particular case of Theorem 2.8 (ii) for constant parametrical sequences
Ag=Aand By =1; VkeZ,,, has been proven in [1]. O
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3. Equilibrium points

The following two results follow from the limiting equations of (2.1), (2.13), (2.19) and
(2.20) as the parameter sequences converge asymptotically to finite limits.

Lemma 3.1. Assume that A, —>AeR,, B;,—»>B;eR, a k—w; Vieg with
B, <R, for at least one ieq. Then, the following properties hold:

(i) xeR is an equilibrium point of (2.13) if and only if

x—Az_g B;x ' i7Pi (3.2)
i=1

x 1s an equilibrium point of (2.13) only if x> A.

q
x=1 is an equilibrium point of (2.13) if and only if A+z B, =1.
i=1

(if) xeR is an equilibrium point of (2.20) if and only if

i=1

(A+_% B;x"i"Pi jizl (3.2)
A necessary condition is x<1/A. Also, x=1 is an equilibrium point of (2.20) if and

q
only if A+ B, =1.

i=1

q
(iii) x=x= 1 is an equilibrium point of both (2.13) and (2.20) if and only if A+z B, =1.
i=1
(iv) Define the disjoint sets Qq:={ieq:r;=p;-1}, Q,:={ieq:ri>p;-1},
Qg:={ieq:r;<p;-1}. Then, x=0is the unique equilibrium point of (2.20) if and only if
ri>p;-1; vieq(i.e. Q3=) and 3(at least one)iecq such that p;=r;+1(i.e. Q;#23)

with =B;=1.
ieQq

q 1—_% B;

(V) Ifpj=r;+1; Vieg and x B; <1 then i:% is the unique equilibrium point of
i=1

(2.20) so that x= ':‘ is then the unique equilibrium point of (2.13).

1- 3 Bi
i=1
(vi) If
s B+ x Bl Pt
i€Qy i€Q3

then (2.20), and thus (2.13), have no equilibrium points.

Proof: Properties (i)-(ii) follows after direct substitution of A, >A, By, >B,x, —>X;
vkeZ,, in(2.13) and (2.20), respectively. Note that x , >0(x, >0if A>0; vkez,,)
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from Theorem 2.5 what implies from (3.1)-(3.2) that any equilibrium point satisfies
x>A>0 andx<1/A , respectively, and note also that x=x=1 in (3.1)-(3.2) if and only

9

if A+Z B, =1from Properties (i) —(ii) . Property (iii) has been proven. Note that
i=1

G=Q; U Q, UQj; so that (3.2) can be rewritten as:

- _ri-pi+l B
AX+ sBij+ sB;x PPty oy P
icQ, icQ, ingY"’i—pi*'l‘

1 (3.3)

which is satisfied with x=0if and only if Q,#@ with =B;=1 and Q;=@. The
ieQq

sufficiency part of Property (iv) has been proven. The necessary part is proven by

contradiction as follows. Assume that Q ;=2 and sB;=1 with Q, =@ orthat Q, =@
ieQq

then (3.3) fails if x=0. Then Q=@ with ZQBizl is needed for x=0 to be an
1€Q1

equilibrium point of (2.20). Assume that Q ;=@ . Then, the left —hand-side of (3.3) is
+oo if x=0 and thus (3.3) fails so that it is needed Q ;=@ for x=0 to be an equilibrium
point of (2.20). The uniqueness of the equilibrium point x=0 follows from the

uniqueness of the solution of the linear algebraic system Ax+ =B; =1= xB;obtained
i€Q1 i€Qq

from (3.2). Property (v) has been proven. Note from (3.3) that an equilibrium point
x=%X "2>A >0 exists if and only if :

; B _ Cr._n. B
b ———t L_>1-A%X- ¥ B;= s Bjx"iPitly v i
icQp, ATiPitl e xlri-pi+l] icQ; icQ icQgyxlri—pi+l

> 3 Bix"iPithy y galli TP

ieQ i€Q3

=1- 3 Bj- = BiAripi+12[A+ b Biiri_pijizo
ieQ1q ieQ3 ieQ

— s Bj+ x BAlN Pty
ieQq i€Q3

<:>( s Bj+ x BAlN—Pi*
i€Qy i€Q3

and Property (vi) has been proven. O

>L:ﬁ3YeRm_wMWMg(&DJ

Lemma 3.2. Assume thatA, >AcR,, B ,—>BeR, a k—wx; Vieg Then, the
following properties hold:

(i) xeR is an equilibrium point of (2.1) if and only if
x—A=Bx'P
x is an equilibrium point of (2.1) only if x>A.

(if) xeR is an equilibrium point of (2.19) if and only if
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(A+Bir‘p)x=1
A necessary condition isx<1/A. Also, x=01is the unique equilibrium point of (2.19) if
and only if r=p-1 and B=1.

(iii) x =x =1 is an equilibrium point of both (2.1) and (2.19) if and only if A+B=1.

(iv) Ifp=r+1 and B<1 then 7:% is the unique equilibrium point of (2.20) so that

X= % is then the unique equilibrium point of (2.1).

Ifp=r+1 and B>1 then (2.19) has no equilibrium point so that (2.1) has no equilibrium
point either.

Proof: The proofs of Properties (i)-(iii) are similar to that of Lemma 3.1 by the
appropriate substitutions in (2.1) and (2.19), respectively. Property (iv) follows from
Properties (iv) - (v) of Lemma 3.1, its last part being a particular case of Lemma 3.1
(vi). O

Some simple global stability results for any set of bounded initial conditions of the
difference equations (2.1) and (2.13) follow in the sequel by excluding x:=x =0 to be
an equilibrium point of the inverse sequences (2.19) —(2.20) , respectively. In the case
that x=01is a locally stable equilibrium point of (2.19) (respectively, (2.20)) then the
solution of (2.1) ( respectively, (2.13) ) satisfies x, —-+o as k — o« for certain sets of

admissible bounded initial conditions even under the uniform boundedness results of
Section 2 for different sets of bounded initial conditions.

Proposition 3.3. Assume that Q;#@, Q3=@ and = B;=1.Then, there are
i€Qq

unbounded solutions of (2.13) for bounded admissible initial conditions if the

equilibrium point x=0 of (2.20) is locally stable.

Proof: x=0is an equilibrium point of (2.20) from Lemma 3.1 (iv). Thus, if it is locally

unstable, then there exist unbounded solutions of (2.13) for admissible bounded initial
conditions. O

Proposition 3.4. If s B, + s B;Al"i"Pi*¥.1 then all the solutions of (2.13) and
i€Qy i€Q3

(2.20) are oscillatory and uniformly bounded, under admissible bounded initial
conditions, in the sense that for each keZz, , there exist finite N, M, cz,, dependent

in general on K, such that sign(x i, n,+m =X keny )= =590 (X kiny =Xk )-

Proof: From Lemma 3.1 (vi), the solution of (2.20), and then that of (2.13), have no
equilibrium points. Thus, no solution of (2.20) converges asymptotically to zero so that
no solution of (2.13) diverges asymptotically to+« . Thus, all solutions of (2.13) are



372 M. De la Sen

bounded but non constant and not asymptotically constant (since there are no
equilibrium points) for any admissible bounded initial conditions. As a result all the
solutions are oscillatory uniformly bounded . O

Proposition 3.5. If r=p-1 and B=1 then there are unbounded solutions of (2.19) for
bounded admissible initial conditions if the equilibrium point x=0 of (2.1) is locally
stable.

Proof: It is close to that of Proposition 3.3 from Lemma 3.2 (ii). O

Proposition 3.6. If r=p-1 and B>1 then all the solutions of (2.13) and (2.20) are
oscillatory and uniformly bounded under admissible bounded initial conditions.

Proof: It is close to that of Proposition 3.4 from Lemma 3.2 (iv). O

It is clear that because of because of the summation of terms in the right- hand-side of
(2.13) with a potential presence of possible rational powers, it is quite difficult to
determine analytically the set of equilibrium points of that difference equation ,
provided it is non empty, and even the cardinal of this set . However, it is possible to
determine their possible existence and upper and lower -bounds of their potential
location by discussing the equilibrium solutions of upper- bounding and lower-
bounding simpler difference equations provided that they exist. However, if the
equilibrium points of such a lower-bounding and upper- bounding equations do not
exist then it cannot be concluded the existence of equilibrium points of (2.13). To
investigate those issues , first define:

pr=max(p;-r;) i &:=min(p;-ry) (34)

so that & <p. Assume that the real limits A, >A; By —>B:= 3 B; as k—o exist and
i=1

define the sequences:

o)k+1:A+Bmin((oﬁ ,(oﬁ) (3.5a)

vkﬂ:A+BmMﬁ¢,vw (3.5b)

vkeZgy, under initial conditions satisfying the constraints of (2.13). If the initial

conditions of (3.5) are the same as any given admissible set of them for (2.13) then, for
such a set:

O<XK SV, YkeZ 3.6
k k k

The equilibrium points, if any, of the solutions of (3.5) are, respectively, the existing
solutions of

f(0)=0-A=g(0):=Bmin(0} of); fv)=h(v):=Bmax(v v (3.7)
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Remark 3.7. In the particular case that A>1then x,>1; vk(>k,)ez,, for some finite
koeZ,, SO that the equilibrium points, if any, of the solutions of (3.5) are, from (3.7),
the respective existing solutions of

f(0):=0-A=g(0):=Bwd ; f(v)=h(v):=Bv?{ (3.8)
since (3.5) becomes:
o =A+Bo} ; Vi =A+Bv (3.9)

The result which follows is useful to allocate valid intervals for the allocation of the
possible equilibrium points of (2.13), if any.

Lemma 3.8. Assume that A >1. Then, the following properties hold:
(i) f(w)=g(o) has no solution if 5>0so that (3.5a) has no equilibrium point.
(ii) f(0)=g(w) has a unique solution if 5<0 which satisfies the constraint:

B
Aldl
And which is the equilibrium point of (3.5a).

(iii) f(v)=h(v) has no solution if p>o0(i.e. if Jieg:p,>r;) so that (3.5b) has no
equilibrium point.
(iv) f(v)=h(v) has a unique solution if p<o(i.e. if p;<r;;vieq) which satisfies the
constraint:

A<o=A+Bo’<A+ (3.10)

A<v=A+BVvP<A+ B
A‘P‘

Both difference equations (3.5) have respective unique equilibrium points which are
solutions of f(w)=g(w)and f(v)=h(v) , and satisfy the constraints :

(3.11)

1SAS(DSmin(V,A+B(D8)Smin[V,A-i—iJSl-i-i 7 1<A<o<v<A+ B <1+ B

A“S‘ A‘S‘ A‘P‘_ A‘P‘
(3.12)
Both equilibrium points are identical if p=5.

Proof: (i) It follows from (3.8) since f:R o, —»Ris linear with unity slope and f(0)=-A
and g:R, >R, is constant if 5=0and monotone strictly increasing growing faster than
linearly if §>0 with B=g(0)>f(0)=—-A. Thus, the functions f:R,, —»R and
9:R o, >R, have a unique coincidence point. (ii) It follows since g:R(, >R, strictly
monotone strictly decreasing growing faster than linearly if &§<0, and
B=g(0)>f(0)=—Aand 0=g(w)<f(w)=0. Then, the functions f:R,, —»R and
9:R o, >R, have a unique coincidence point. Property (iii) and the first part of

Property (iv) are proven in a similar way to Property (i) and Property (ii), respectively.
The second part of Property (iv) is a conclusion of Property (ii) and the first part of
Property (iv) since o<v, in view of (3.6), and p=max(p,&)<0=38 <0 provided that they
exist but the last right-hand-side term of (3.10) is not necessarily upper-bounded by that
of (3.11). O
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The following result is direct from Lemma 3.1 and Lemma 3.8.

Theorem 3.9. Assume that A>1 and that the empty or nonempty set of equilibrium
points of (2.13)is E=E,UE ,where E, is the subset of locally asymptotically stable
equilibrium points of (2.13) and E, is the subset of its locally unstable and locally
critically stable equilibrium points.

Define nonempty  sets of integers Qs:={ieq:irj-s;j=8}cqg and
Q,={ieq:ri-sj=p}cq;and

Define sets of Q; and Q,polynomials T;;(z)and T ,;(z)of real coefficients as
follows:

ngi 9 _ ngi—Si Ngi—1{;i .U
Tsj(z)=2 b‘+i§1(w618i)(lojz R S ‘) » naji=max(s ¢ vieQs
ij(z)zznpj+i%l(vp‘18i)(pjznpj_sj—rjznpj_l‘jj , npj=max(sj, ¢;); vieQ,
Then, the following properties hold:

(i) If p<othen a unique v exists so that x;e[A,v]; vx,cE if E=@. The equilibrium
point of (3.5b) is locally asymptotically stable if the Q , polynomials T ,;(z) have all
their zeros in the complex unit open disk centered at z=0, i.e. C(0,1):={zeC:|z|<1}.
Furthermore, limsup x , <v for any set of bounded admissible initial conditions of (2.13)

k—
allocated within a sufficiently small ball centered at v.

(i) If s;=¢;=1;Vieq, then the local asymptotic stability condition of the unique
equilibrium point of Property (i) becomes in particular v“"*l>|p| so that so that, in such

a case, the equilibrium point of (3.5b) is asymptotically stable if it satisfies the
subsequent constraint:

(A+ B JZV>|p|/%p+l)

A\p\

Furthermore, the solution sequence of (2.13) for bounded admissible initial conditions
satisfies:

pl+1l
maX(A,|p|%p+1)]slimsupxks[A+ B ] |

k—o0 A‘p‘

If |p] Mo “). A then the first of the above inequalities is strict.

(iii) If 5<0then a unique o exists so that x,e[w,« ) if E=@. The equilibrium point of
(3.5a) is locally asymptotically stable if the Q , polynomials T 5;(z) have all their zeros

in the complex unit open disk centered at z=0, i.e. C(0,1):={ze C:|z| <1}. Furthermore,



Basic properties of a rational recursive sequence 375

liminf x , > for any set of bounded admissible initial conditions of (2.13) allocated

k -

within a sufficiently small ball centered at .

(iv) If s;=¢;=1,vieq, then the local asymptotic stability condition of the unique
equilibrium point of Property (iii) of the first difference equation in (3.5a) is locally
asymptotically stable if m‘5‘+l>|6| so that, in such a case, it satisfies the subsequent
constraint:

(A+ B ] >0 >|6|%‘5‘”)

A5

Furthermore, the solution sequence of (2.13) for bounded admissible initial conditions
around o satisfies:

liminf x 2maxHA+ B j8+l,|5|%5+1)J

k — A‘S‘

If {A+i§] i <|3| Aial+1) then the above inequality is strict.
A

(V) max(p,5)<0=X;e[max(A, ®),v] ; ¥vX;eE if E=@ and the obtained bounds for

limsup x and liminf x  in Properties (i)-(iv) still hold.

k—w k—o0
(vi) [(pisri+1+1;Vieﬁ)/\(pj=rj+1+l;Vjte(¢®)cﬁ)]:>[(E=®)/\(xk—>oo as k—wo)]
provided that =B;=1.

i€eQg
(vii) [(pi=ri;z1+1:Vjeq) o IB;i<l||=| (E#D)>{x= ':‘
ieq 1—ZBi
i=1

Proof: The local asymptotic stability issues for the equilibrium points » and v of the
lower-bounding and upper-bounding solution sequences (3.5a) and (3.5b) for the
solution of (2.13) follow directly from the linearized stability theorem [10] (see also [1]
and [9]). Thus, the characteristic polynomials of the local perturbationsAeand

Avaround such equilibrium points have to be stable assumed that those equilibrium
points o and v are locally asymptotically stable.

Proofs of (i) and (iii): Consider the equilibrium point v:klim v of (3.5b) and a local
—00

perturbation Av around it. Then, the local stability around such a point is characterized
by the following dynamics:

ri pi-1 pij rij-1
Jij W Ao g vV TAY G

q s
AViya=| = Bj - ) vJer
i=1 v 2

Define the one-step advance and delay operatorsqand g, respectively, as x ,;=qxy,
X =0 1X 1. Since p<0 from Lemma 3.8 (iv) , the above first-order incremental
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equations around v , whose number is card Q,, may be rewritten asT ;(z)Av,
whereT ;(z) is defined as follows for appropriately defined real coefficients t; from
the polynomial identities below:

ny,i—-1 :

Pj n,i—i n,i 4 B; n,i—si n,i—/; .

+ X otz Pl=z M| — (p-z PI iz Pl J);VJEQ
H. s +1 J J P
i=1 i=1 V\p\

Npj
ij(z):z P
Then, v is locally asymptotically stable if and only if the polynomials T ,;(z) ; vjeQ,
are all stable; i.e. with all their zeros lying in |z|<1, where z is the complex

indeterminate argument of the discrete z-transform (which is formally identical to the
one-step-temporal advance operator q). Also, the boundedness relation (3.6) implies
limsup x , <v for initial conditions within a sufficiently small ball centered at v. The

k—o0

proof of Property (iii) for the equilibrium point o of (3.5a) is similar to that of Property
(i) with the replacements p—38,T ,;(z)>Tsj(z), ny»ns, Qp,>Qs, voo. Also, the

boundedness relation (3.6) implies limsupx, >w for initial conditions within a

k—o

sufficiently small ball centered at w.

Proofs of (i) and (iv): Now, s;=¢;=1,vViegand p<00r5<0. Then,
|AV|<‘pvp_1Av‘ irrespective of Av implying that o/?I"'>[p| so that v is locally
asymptotically stable. Also, the limit superior of any solution of (2.13) for any set of
bounded admissible conditions does not exceed the value of v.

|Aw|<‘6m5_1Aw‘ irrespective of Aw implying that o'°l">|3] so that o is locally
asymptotically stable. Also, the limit inferior of the solution of (2.13) for any set of
bounded admissible initial conditions is non less than ». The remaining parts of the

proof follow directly from Lemma 3.1 and Lemma 3.8.
The proof of (v) follows from the above results by noting that max(p,8)<0<|38|>|p|

since 5<p.
The proofs of (vi)-(vii) follow from Lemma 3.1 and Lemma 3.8. O

If A <1 then the above two lat results become modified as follows:

Lemma 3.10. Assume that A <1. Then, the following properties hold:
(i) f(o)=g(w) has no equilibrium point if §>0.
(ii) f(w)=g(w) has a unique equilibrium point if 5<0 which satisfies the constraint

Aldl
(iii) f(v)=h(v) has no equilibrium point if p>0.
(iv) f(v)=h(v) has a unique equilibrium point if p<0 which satisfies the constraint

As@)=A+Bmin(m5,mp)gA+Bmin[L,AP]=A+BAP (3.13)

Asv:A+Bmax(v5,v")sA+Bmin %L £A+i8 (3.14)
A‘ ‘ A‘P‘ A‘ ‘

(v) If max(p,5)<0 then both difference equations (3.5) have unique equilibrium points
which satisfy the constraints:
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A <o<min v,A+i A2 <A+B; A<wo<Vv<A+ B A+B (3.15)
A‘F" A‘S‘ A‘S‘

Both equilibrium points are identical if p=5.

Proof: (i) It follows from (3.8) since f:R o, »Ris linear with unity slope and f(0)=-A
and g:R, >R, is constant if 5=0and monotone strictly increasing growing faster than
linearly if §>0 with B=g(0)>f(0)=-A. Thus, the functions f:R,, —»R and
9:R o, >R, have a unique coincidence point. (ii) It follows since g:R, >R, strictly
monotone strictly decreasing growing faster than linearly if &§<0, and
B=g(0)>f(0)=—Aand 0=g(w)<f(w)=o. Then, the functions f:R, —»R and
9:R o, >R, have a unique coincidence point. Property (iii) and Property (iv) are proven

in a similar way to Property (i) and Property (ii), respectively. Property (v) is a
conclusion of Property (ii) and Property (iv) since w<v, in view of (3.6), provided that

they exist but the last right-hand-side term of (3.10) is not necessarily upper-bounded by
that of (3.11). O

The following two results are direct from Lemma 3.1 and Lemma 3.8 for the case A<1.

Theorem 3.11. Assume that A<1 and that the empty or nonempty set of equilibrium
points of (2.13)is E =E,UE ,where E, is the subset of locally asymptotically stable

equilibrium points of (2.13) and E, is the subset of its locally unstable and locally

critically stable equilibrium points. Then, Theorem 3.9 (i) and Theorem 3.9 (iii) still
hold. O

Theorem 3.12. Assume that A<1. Then, if s;=¢;=1;Vieq, the following properties
hold:

(i) If p<othen aunique v exists so that x;e[A,v] ; vX,cE if E=@. The equilibrium
point of the second difference equation in (3.5b) is locally asymptotically stable if
\7‘5‘”>| 3| so that so that, in such a case, it satisfies the subsequent constraint:
(A+ BSJZV>|6|%8+1)

A
(ii) If s<0then a unique o exists so that X,e[w,») if E=@. The equilibrium point of

the first difference equation in (3.5a) is locally asymptotically stable if olPl

that, in such a case, it satisfies the subsequent constraint:

[A+ J2m>|p|/%p+l)

(iii) max(p,8)<0=x;e[max(A,v),v]; vxjeE if E=@ and the obtained bounds for
limsup x and liminf x , in Properties (i)-(ii) still hold.

k —>o0 k =

>[p| so

B
A‘P‘
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(iv) [(pisri+l+1;vieﬁ)A(pjzrj+1+1;vjte(¢®)cﬁ)]:[(Ez@)/\(xk—mo as k—oo)]

provided that =B;=1.
ieQq

A
q
1-)°B,
i=1
Proof: It is very close to that of Theorem 3.9 [(ii) , (iv), (v) , (vi) and ( vii) ] by noting

that —+ >_1
A‘S‘ A\p\

(V) [(pi=ri +LVijeq). ¥B;<1

ieq

}: (E=D)>4 x=

if 5<p<0<|3|2|p|. Then, the proof is omitted. O

Remark 3.13. It is difficult to calculate the exact allocations equilibrium points of (2.13)
for large values of g, except in simple cases, because the exponents in (2.13) are in
general rational numbers. However, if such points can be calculated or approximated
then the ideas in Theorem 3.9 and Theorem 3.11 about the use of the linearized stability
theorem can be used to determine the local stability of each of those points. In
particular, first-order incremental dynamic systems around the equilibrium points may
be built for that purpose as follows:

pix"itPi-l ri+pi-1

AXypg—r; = Ti X
2r;

AX k+1-s;

q
AXk+1=ZBi , VxeE
i=1

X

This leads to the following polynomials that characterize the local stability properties of
the incremental equationsT(x,z)Ax=0;vxeE, where the polynomial T(x,z) is

parameterized at the equilibrium points of (2.13) and defined as follows:
T(xz)=2"+ s t; (x)z"T=z"+ 5 Bixpi_ri_l(piz“_si —riz“‘zi)

i=1 i=1
n:=max(max€i , maxsiJ

ieq ieq

Thus, if T(x,z) is stable then x<E is a locally asymptotically stable equilibrium point of
(2.13). O

A practical test to investigate the local stability of the equilibrium points can be
performed via comparison tests with known given stable polynomials as follows:

Remark 3.14. The stability character of the polynomials T(x,z); vxeE may be
investigated from a sufficiency point of view by comparing them to given polynomials

* n-1 . i . .
T (x,z)=z"+ = tj(x)z"~" which are known to be stable as follows. Define error
i=1

polynomials:
T(x,2):=T(x,z)-T"(x,2)

Il
Il ™M
—
—
x
~—
N
=}
|
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-1 * i e 1, .
=ﬁzlﬁi(x)—tﬂX))zn_'= 5 B,x i 1(piz”"5i—riz”‘éi)—nzlti(x)z”‘I
1= i=1 i=1
; Vx e E. Define indicator subsets of §:
Qg:={ieq:n-s;=i} ; Q,i:={ieq:n—¢;=i} ; Vieq
which can be empty. Thus, the coefficients of the error polynomials are given by:
~ s =1 *
t.xX)=| = pBi—- = roBx P T (x
() (]EQsi gy ’] )
The Rouché theorem for zeros of analytic functions establishes that T(x,z) is stable (i.e.
with all its zeros in the complex open unit disk |z|<1) if T"(x,z) is stable and,

furthermore, "T'(x,z)‘<‘T*(x,z)‘On the boundary of the unit disk |z|=1. In fact, such a

property guarantees that T(x,z) has the same number of zeros in |z|<1than T7(x,z) so

that T(x,z)is stable since T " (x,z)is also stable for any given x <E (see, for instance, [11],
[12]). O
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