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Abstract 

 
Bayes and classical estimators have been obtained for two parameters 

exponentiated Pareto distribution when sample is available from complete, type I 
and type II censoring scheme. Bayes estimators have been developed under 
squared error loss function as well as under LINEX loss function using non-
informative type of priors for the parameters. It has been seen that the estimators 
obtained are not available in nice closed forms, although they can be easily 
evaluated for the given sample by using suitable numerical methods. The 
performance of the proposed estimators have been compared on the basis of their 
simulated risks obtained under squared error as well as under LINEX loss 
functions. 
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1. INTRODUCTION 
 

The exponentiated Pareto distribution with cumulative distribution 
function is expressed as 

( )[ ]θαθα −+−= xxF 11),;(                          000 >>> θα ,,x .     (1.1) 
 

was introduced by Gupta et al. (1998) as a lifetime model. The probability density 
function  with two shape parameters α  and θ  is given by  
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When 1=θ , the above distribution corresponds to standard Pareto 

distribution of the second kind [see Johnson et al. (1994)]. 
 

The estimation procedure for exponentiated Pareto distribution under 
censoring case seems to be untouched and, therefore, we are interested to develop 
the estimation procedure for exponentiated Pareto distribution for censored 
sample case [see Lawless (1982)]. 
  

On another important issue, it is to be noted that the inferential procedures 
for lifetime models are often developed using squared error loss function. No 
doubt, the use of  squared error loss function is well justified when the loss is 
symmetric in nature. Its use is also very popular, perhaps, because of its 
mathematical simplicity. But in life testing and reliability problems, the nature of 
losses are not always symmetric and hence the use of squared error loss function 
is forbidden and unacceptable in many situations. Inappropriateness of squared 
error loss function has also been pointed out by different authors. Ferguson 
(1967), Zellner and Geisel (1968) Aitchison and Dunsmore (1975), Varian (1975) 
and introduced LINEX loss function which is the simple generalization of squared 
error loss function and can be used in almost every situation. squared error loss 
function can  also be considered as particular case of LINEX loss function [see 
Zellner (1986); Parsian (1990); Khatree (1992), etc.]. Gupta et al. (1998) showed 
that the exponentiated Pareto distribution can be used quite effectively in 
analyzing many lifetime data. The exponentiated Pareto distribution can have 
decreasing and upside-down bathtub shaped failure rates depending on the shape 
parameter θ. Shawky and Abu-Zinadah (2009) studied how the different 
estimators of the unknown parameters of an exponentiated Pareto distribution can 
behave for different sample sizes and for different parameter values. Finally; 
Singh et al. (2005) studied exponentiated Weibull family based on  type II 
Censored Scheme..  Here, we mainly compare the maximum likelihood estimators 
with the other estimators such as the method of moment estimators, estimators 
based on percentiles, least squares estimators, weighted least squares estimators 
and the estimators based on the linear combinations of order statistics, mainly 
with respect to their biases and root mean squared errors using extensive 
simulation techniques. 
 
 

Recently, it is very important to introduce and study point estimators for 
both the shape parameters of exponentiated Pareto distribution under complete, 
censored type I and censored type II samples respectively. The organization of the 
paper is as follows: Section 2  maximum likelihood estimators are discussed with 
regardless types of sample and Fisher information matrix will be obtained. Bayes 
estimators have been developed under squared error loss function as well as under 
LINEX loss function using non-informative type of priors for the parameters in 
section 3. Finally; in section 4 an example will be discussed to illustrate the 
application of results.  
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2. MAXIMUM LIKELIHOOD ESTIMATORS 
 

In a typical life test, n  specimens are placed under observation and as 
each failure occurs the time is noted. Finally at some pre-determined fixed time T  
or after pre-determined fixed number of sample specimens fail r , the test is 
terminated. In both of these cases the data collected consist of observations 

)()()( ,...,, rxxx 21  plus the information that )( rn − specimens survived beyond the 
time of termination, T  in the former case and )(rx  in the latter. When T  is fixed 
and r  is thus a random variable, censoring is said to be of single censored type I, 
when r  is fixed and the time of termination T  is a random variable, censoring is 
said to be of single censored type II. In both type I and type II censoring, Cohen 
(1965) gave the likelihood function as  
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where ),;( θαxf  and ),;( θαxF  are the density and distribution functions 
respectively, and in the type I the time of termination at Tx =0  and in the type II  
at )(rxx =0 . If nr = , then, equation (2.1) reduces to complete samples. By taking 
logarithm likelihood function with cumulative function (1.1) and probability 
density function (1.2) based on equation (2.1) is given by 
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where ( )!! rnnC −= . 

Thus, the maximum likelihood estimates α̂  and θ̂  can be obtained by 
differentiating (2.2) with respect to α  and θ  and equating to zero; that is, by 
simultaneously solving the estimating equations, 
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therefore 
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where 
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Note that  if  nr =  the normal equations in (2.3) and (2.4) will reduce to 

the normal equations from complete sample in  Shawky and Abu-Zinadah (2009). 
 

Again, to solve the system of the non linear equations (2.5) and (2.6), 
restoring to numerical techniques and mathematical packages.  

 
The asymptotic variance covariance matrix of the estimators of the 

parameters is obtained by inverting the Fisher information matrix in which 
elements are negatives of expected values of the second partial derivatives of the 
logarithm of the likelihood function. The elements of the sample information 
matrix, for censored schemes sample will be 
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therefore  the  approximate sample information matrix will be 
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[see Cohen (1963)]. For large n , ( 50≥n ), matrix (2.7) is a reasonable 
approximation to the inverse of the Fisher information matrix. Note that closed 
form expressions of the expected values of these second order partial derivatives 
are not readily available. These terms can be evaluated by using numerical 
methods. Furthermore, define )ˆ,ˆ,ˆ(lim 1

1 θβα−

∞→
= nIV

n
. The joint asymptotic 

distribution of the maximum likelihood estimators of α  and θ   is multivariate 
normal [see Lawless(1982)]. 
 

3. Bayes Estimators 
 
Consider independent non-informative type of priors for parameters α  and θ  as 
 

c
g 1

1 =)(α ;                           c<< α0                        (3.1) 

and                             
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θ

θ 1
2 =)(g ;                                0>θ .                         (3.2) 

respectively. 
 

Combining (3.1) and (3.2) with likelihood function (2.1) with cumulative 
function (1.1) and probability density function (1.2) and using Bayes theorem, the 
joint posterior distribution is derived as follows 
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Marginal posterior of a parameter is obtained by integrating the joint 

posterior distribution with respect to the other parameter and hence the marginal 
posterior of α  can be written, after simplification, as 
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Similarly integrating the joint posterior with respect to α , the marginal 
posterior θ  can be obtained as  
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The Bayes estimators for parameters α  and θ  of exponentiated Pareto 
under squared error loss function may be defined as  
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respectively. These estimation can be expressed as  
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Following Zellner (1986), the Bayes estimators for the shape parameters 
α  and θ  of  exponentiated Pareto under LINEX loss function are 
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respectively, where (.)E  denotes the posterior expectation. After simplification, 
we have  
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There are no explicit forms for obtaining estimators for the exponentiated 

Pareto distribution under censored schemes samples. Therefore, numerical solution 
and computer facilities are needed. 

 
 
 

4. A Numerical Illustration 
 
To illustrate the usefulness of the propose estimators obtained in section 2 

and section 3. Using “MATHCAD” (2001), a sample of size 50 was generated 
from the exponentiated Pareto distribution, with parameters 2=α , and 5.0=θ .  

 
Table 1 shows the different estimators for different  sample schemes. It 

may be seen from table 1 that maximum likelihood estimators is closed to the true 
values of  α  and θ   as compared to sample schemes. The change in the types of 
schemes does not effects the maximum likelihood estimates only, but on mean 
square error of  the types of schemes also. It will be illogical and inappropriate to 
suppose that type I censored and type II censored perform better than complete 
sample. 

 
Table 1 

Maximum Likelihood Estimators 
 
 

                Estimators  
   Samples                α̂  θ̂  )ˆ(αMSE  )ˆ(θMSE  

Complete 1.824 0.447 0.031 0.00279 
Type I censored 1.767 0.445 0.054 0.00306 
Type II censored 1.580 0.417 0.176 0.00682 
 

Bayes estimators under different schemes have evaluated for the prior 
hyper parameter =c  4,10 and 12 and their corresponding values have shown in 
table 2,3 and 4. these tables revealed that the Bayes estimators are not seems very 
sensitive with variation of  "c". It also worth mentioned that thought the Bayes 
estimators developed with non informative prior yet the estimated values of Bayes 
estimators are not very far from the estimated values of maximum likelihood 
estimators. Also , these tables shows the different estimators  under different 
sample schemes for =a 1, 0.01 and -1. It may be seen from  these tables that 
Bayes estimators under squared error loss function and LINEX loss function are 
close to the true values of  α  and θ  as compared to maximum likelihood 
estimators in table 1. the change in the values of  " a "  does effect the Bayes 
estimators under LINEX loss function estimates only, but on the basis of single 
sample estimate, it will be illogical and inappropriate to infer that Bayes 
estimators under squared error loss function and LINEX loss function perform 
better than maximum likelihood estimators. 
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Table 2 
 

Bayes Estimator Under Complete Sample 
 

Hyper Parameter 4=c  10=c  12=c  

Estimators α̂  θ̂  α̂  θ̂  α̂  θ̂  
Squared Error Loss 2.273 0.53 2.273 0.53 2.273 0.53 

LINEX Loss 
Function 

1=a  0.937 0.229 0.937 0.228 0.937 0.228 
01.=a  0.831 0.21 0.831 0.21 0.831 0.21 
1−=a  1.02 0.238 1.02 0.238 1.02 0.238 

 

  
 Table 3 

Bayes Estimator Under Type I Sample 
Hyper Parameter 4=c  10=c  12=c  

Estimators α̂  θ̂  α̂  α̂  θ̂  α̂  
Squared Error Loss 2.221 0.431 2.272 0.434 2.272 0.434 

LINEX Loss 
Function 

1=a  1.163 0.221 1.241 0.322 1.24 0.322 
01.=a  0.866 0.186 0.865 0.177 0.865 0.177 
1−=a  1.259 0.321 1.479 0.372 1.479 0.372 

 

 
Table 4 

 

Bayes Estimator Under Type II Sample 
Hyper Parameter 4=c  10=c  12=c  

Estimators α̂  θ̂  α̂  α̂  θ̂  α̂  
Squared Error Loss 2.163 0.324 2.64 0.56 2.904 0.568 

LINEX Loss 
Function 

1=a  0.551 0.356 0.549 0.252 0.509 0.241 
01.=a  0.431 0.24 0.41 0.21 0.41 0.21 
1−=a  0.772 0.472 0.707 0.332 0.7 0.332 
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