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Abstract
In many practical situations, we have a (partially) ordered set V

of different values. For example, we may have the set of all possible
values of temperature, or the set of all possible degrees of confidence in
a statement. In practice, we are often uncertain about the exact value
of the quantity. Due to this uncertainty, at best, we know a set S ⊆ V of
possible values of the quantity: e.g., an interval of possible values. For
such sets, it is natural to define a relation “possibly larger” S1 ♦ ≤ S2

meaning that v1 ≤ v2 for some v1 ∈ S1 and v2 ∈ S2. In this paper, we
prove that an arbitrary reflexive relation can be thus represented.

Similar representation theorems are proven for different versions of
this relation.
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1 Formulation of the Problem

In many practical situations, we have a (partially) ordered set V of different
values. For example, we may have the set of all possible values of temperature,
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or the set of all possible degrees of confidence in a statement (see, e.g., [1, 3]).
In practice, we are often uncertain about the exact value of the quantity.

Due to this uncertainty, at best, we know a set S ⊆ V of possible values of the
quantity: e.g., an interval of possible values (see, e.g., [2, 4]).

It is necessary to define ordering between such sets.

2 Need for an Ordering Between Sets

In the original set V , we had a (partial) ordering v1 ≤ v2 meaning that the
value v2 is larger than (or equal to) the value v1.

In practice, as we have mentioned, we do not know the actual value v ∈ V .
Instead, for each statement, we only know the set S ⊆ V of possible values.
Let us assume that for two quantities, we know the corresponding sets of values
S1 and S2.

A natural question is: which set corresponds to the larger quantity? In
this form, this question may not have a definite answer. For example,

• it may be that v1 < v2 for some v1 ∈ S1 and v2 ∈ S2, and

• it may also be that for some other values v′
1 ∈ S1 and v′

2 ∈ S2, we have
v2 < v1.

For example, when S1 = [0, 1] and S2 = [0.5, 0.5]:

• on one hand, for v1 = 0 ∈ [0, 1] and v2 = 0.5 ∈ [0.5, 0.5], we have v1 < v2;

• on the other hand, for v1 = 1 ∈ [0, 1] and v2 = 0.5 ∈ [0.5, 0.5], we have
v2 < v1.

This example shows that in case of uncertainty, we are not always sure
whether the value described by the set S2 is larger then (or equal to) the value
described by the set S1.

3 “Possibly Larger” Relation

Definition. What we can always check if whether it is possible that the value
described by the set S2 is larger than (or equal to) the value described by the
set S1. The corresponding “possibly larger” relation means that there exist
values v1 ∈ S1 and v2 ∈ S2 for which v1 ≤ v2:

S1 ♦ ≤ S2 ⇔ ∃v1 ∈ S1 ∃v2 ∈ S2 (v1 ≤ v2). (1)

Main problem. A natural question is: what are the properties of the “pos-
sibly more confident” relation (1)?
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Example: it is not always an order. The “possibly larger” relation is not
always an order. Indeed, for an order relation, a ≤ b and b ≤ a imply a = b.

However, here, we have

• [0, 1]♦ ≤ [0.5, 0.5],

• [0.5, 0.5]♦ ≤ [0, 1], but

• [0, 1] �= [0.5, 0.5].

Example: it is not always transitive. The “possibly larger” relation is
not even always transitive. For example:

• on one hand, [0.8, 1]♦ ≤ [0, 1]: indeed,

0.8 ∈ [0.8, 1], 1.0 ∈ [0, 1], 0.8 < 1.0;

• on the other hand, [0, 1]♦ ≤ [0, 0.2]; indeed,

0 ∈ [0, 1], 0.2 ∈ [0, 0.2], 0 < 0.2;

• however, it is not true that [0.8, 1]♦ ≤ [0, 0.2]: indeed, every value
v1 ∈ [0.8, 1] is larger than every value v2 ∈ [0, 0.2].

Analysis: it is always reflexive. The only thing we can conclude about
this relation is that it is reflexive: S ♦ ≤ S for every set S, since v ≤ v for
every v ∈ S.

What we do in this paper. In this paper, we show that reflexivity is all
we can conclude about the “possibly larger” relation. Namely, we will prove
that every reflexive relation can be represented as a “possibly larger” relation
for some class of subsets of an appropriate fuzzy set V .

4 “Possibly Larger” Relation: Formulation and

Proof

Theorem 4.1 For every reflexive relation uRu′ on a set U , there exists an
ordered set V and a mapping f : U → 2V − {∅} that maps each element of U
into a non-empty set f(u) ⊆ V in such a way that

uRu′ ⇔ ∃v ∈ f(u) ∃v′ ∈ f(u′) (v ≤ v′). (2)

Comment. In other words, uRu′ if and only if f(u)♦ ≤ f(u′).



406 K. Villaverde and O. Kosheleva

Proof. As the desired set V , let us take

V
def
= {a+

uu′ : uRu′} ∪ {a−
uu′ : uRu′}, (3)

where a±
uu′ are different elements. For example, we can consider them as triples

〈±, u, u′〉, then V ⊆ {+,−} × U2.
The ordering relation ≤ on this set V is defined as follows: v ≤ v′ if and

only if:

• either v = v′,

• or v = a−
uu′ and v′ = a+

uu′ for some u and u′.

One can easily check that it is indeed a (partial) order.
To every element u ∈ U , we now put into correspondence the following set

f(u)
def
= {a−

uu′ : uRu′} ∪ {a+
u′u : uRu′}. (4)

From each element v ∈ f(u), we can easily tell to which u ∈ U this element
corresponds. Indeed:

• either this element has the form a+
uu′ with the desired u,

• or this element has the form a−
u′u with the desired u.

Thus, if u �= u′, the sets f(u) and f(u′) do not have any common elements:

f(u) ∩ f(u′) = ∅. (5)

Let us now prove the equivalence (2).
First, let us prove that if uRu′, then there exist v ∈ f(u) and v′ ∈ f(u′)

for which v ≤ v′. Indeed, if uRu′, then we can take v
def
= a−

uu′ and v′ def
= a+

uu′.

• By definition of the ordering relation, we have v ≤ v′.

• By definition (4) of the set f(u), we have v ∈ f(u).

• By the same definition (4) of the set f(u), we have v′ ∈ f(u′).

• Thus, there exist value v ∈ f(u) and v′ ∈ f(u′) for which v ≤ v′.

Vice versa, for u �= u′, let v ≤ v′ for some v ∈ f(u) and v′ ∈ f(u′). Let us
prove that in this case, we have uRu′.

Indeed, since the sets f(u) and f(u′) are disjoint, the values v and v′ must
differ, so v ≤ v′ means v < v′. By definition of the ordering ≤, the condition
v < v′ means that v = a−

ab and v′ = a+
ab for some a and b.

By definition of the set f(u), we have v = a−
ab ∈ f(u) if and only if a = u

and we have aRb. Similarly, we have v′ = a+
ab ∈ f(u′) if and only if b = u′ and

we have aRb. Thus, a = u, b = u′, and aRb means that uRu′.
The representation theorem is proven.



Ordering subsets of (partially) ordered sets: Representation theorems 407

5 “Necessarily Larger” Relation: Formulation

and Proof

“Necessarily larger” relation. In addition to the “possibly larger” rela-
tion, we can also defined a “necessarily larger” relation � ≤, meaning that
v1 ≤ v2 for all values v1 ∈ S1 and v2 ∈ S2:

S1 � ≤ S2 ⇔ ∀v1 ∈ S1 ∀v2 ∈ S2 (v1 ≤ v2). (6)

This relation is transitive. One can easily check that the “necessarily
larger” relation is transitive. Let us assume that S1 � ≤ S2 and S2 � ≤ S3.
Let us prove that S1 � ≤ S3. Indeed:

• The condition S1 � ≤ S2 means that v1 ≤ v2 for all v1 ∈ S1 and v2 ∈ S2.

• Similarly, the condition S2 � ≤ S3 means that v2 ≤ v3 for all v2 ∈ S2

and v3 ∈ S3.

• Thus, for every v1 ∈ S1 and for every v3 ∈ S3, once we have picked any
v2 ∈ S2, we get v1 ≤ v2 and v2 ≤ v3.

• Since the relation ≤ on the set V is an ordering, it is transitive and thus,
v1 ≤ v3.

• So, indeed, for every v1 ∈ S1 and for every v3 ∈ S3, we have v1 ≤ v3. By
definition of the “necessarily larger” relation, this means that S1 � ≤ S3.

Transitivity is proven.

This relation is antisymmetric. Let us show that the “necessarily larger”
relation is antisymmetric, i.e., S1 � ≤ S2 and S1 � ≤ S2 imply S1 = S2.

Indeed, let us assume that S1 � ≤ S2 and S1 � ≤ S2. Let us prove that
S1 = S2. Indeed:

• The condition S1 � ≤ S2 means that v1 ≤ v2 for all v1 ∈ S1 and v2 ∈ S2.

• Similarly, the condition S2 � ≤ S1 means that v2 ≤ v1 for all v2 ∈ S2

and v1 ∈ S1.

• Thus, for every v1 ∈ S1 and for every v2 ∈ S2, we have v1 ≤ v2 and
v2 ≤ v1.

• Since v1 ≤ v2 is an ordering relation, we conclude that for every v1 ∈ S1

and v2 ∈ S2, we have v1 = v2.

• Thus, indeed, S1 = S2.
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Example: this relation is not always reflexive. Let us show that the
“necessarily larger” is not necessarily reflexive. Specifically, we will give an
example of a set S for which the relation S � ≤ S is not true.

Indeed, let us take V = [0, 1] and S = [0, 1]. The relation S � ≤ S would
mean that for every v1 ∈ S and for every v2 ∈ S, we would have v1 ≤ v2.
However, we have v1 = 1 ∈ S = [0, 1], v2 = 0 ∈ S = [0, 1], but 1 �≤ 0.

Theorem 5.1 For every transitive antisymmetric relation uRu′ on a set
U , there exists an ordered set V and a mapping f : U → 2V − {∅} that maps
each element of U into a non-empty set f(u) ⊆ V in such a way that

uRu′ ⇔ ∀v ∈ f(u) ∀v′ ∈ f(u′) (v ≤ v′). (7)

Comment. In other words, uRu′ if and only if f(u) � ≤ f(u′).

Proof. As the desired set V , let us take

V
def
= {u : uRu} ∪ {u− : ¬uRu} ∪ {u+ : ¬uRu}, (8)

where u− and u+ are different elements. For example, we can consider them
as pairs 〈±, u〉, then V ⊆ U ∪ ({+,−}× U).

The ordering relation ≤ on this set V is defined as follows: v ≤ v′ if and
only if:

• either v = v′,

• or v, v′ ∈ U and vRv′,

• or v = u± for some u ∈ U , v′ ∈ U , and uRv′;

• or v ∈ U , v′ = u± for some u ∈ U , and vRu;

• or v = u− and v′ = u+ for the same u ∈ U ;

• or v = u± and v′ = (u′)± for some u ∈ U and u′ ∈ U for which uRu′ and
u �= u′.

One can easily check that it is indeed a (partial) order.
To every element u ∈ U for which uRu, we now put into correspondence

the set f(u) = {u}. To every other element u ∈ U , we put into correspondence
the set f(u) = {u−, u+}.

Let us prove that uRu′ if and only if f(u) � ≤ f(u′).
Let us first assume that uRu′, and let us show that in this case, for every

v ∈ f(u) and for every v′ ∈ f(u′), we have v ≤ v′. We will consider two
possible cases:
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• u = u′, and

• u �= u′.

When u = u′, the condition uRu means that f(u) = {u}. Thus, v ∈ f(u)
implies that v = u, and similarly v′ ∈ f(u) implies that v′ = u. In this case,
we have v = u ≤ u = v′, so indeed v ≤ v′.

When u �= u′, then, according to our definition of ≤, we also have v ≤ v′

for all v ∈ f(u) and for all v′ ∈ f(u′). The first implication is proven.
To complete the proof, we need to show that if for some u and u′, we have

v ≤ v′ for every v ∈ f(u) and for every v′ ∈ f(u′), then uRu′. Indeed, let us
assume that we have two values u, u′ ∈ U for which v ≤ v′ for every v ∈ f(u)
and for every v′ ∈ f(u′). We will also consider two possible cases:

• u = u′, and

• u �= u′.

When u = u′ and ¬uRu, then f(u) = {u−, u+}. In this case, u+ ∈ f(u),
u− ∈ f(u′) = f(u), but u+ �≤ u− – which contradicts to our assumption that
v ≤ v′ for every v ∈ f(u) and for every v′ ∈ f(u′). Thus, in this case, we
cannot have ¬uRu – thus, we have uRu.

When u �= u′, then for any v ∈ f(u) and v′ ∈ f(u′), from v ≤ v′ and our
definition of the relation ≤, we have uRu′.

The statement is proven.

6 Relation ∃v1 ∈ S1 ∀v2 ∈ S2 (v1 ≤ v2)

New relation. In addition to the “possibly larger” and “necessarily larger”
relations, we can also defined a relation ≤∃∀ as follows:

S1 ≤∃∀ S2 ⇔ ∃v1 ∈ S1 ∀v2 ∈ S2 (v1 ≤ v2). (9)

This relation is transitive. One can easily check that the relation ≤∃∀ is
transitive. Let us assume that S1 ≤∃∀ S2 and S2 ≤∃∀ S3. Let us prove that
S1 ≤∃∀ S3. Indeed:

• The condition S1 ≤∃∀ S2 means that there exists v1 ∈ S1 for which, for
all v2 ∈ S2, we have v1 ≤ v2.

• Similarly, the condition S2 ≤∃∀ S3 means that there exists v2 ∈ S2 for
which, for all v3 ∈ S3, we have v2 ≤ v3.

• Thus, for the fixed values v1 ∈ S1 and v2 ∈ S2, for every v3 ∈ S3, we
have v1 ≤ v2 and v2 ≤ v3 and therefore, v1 ≤ v3.
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• So, there exists v1 ∈ S1 for which for every v3 ∈ S3, we have v1 ≤ v3. In
other words, we have S1 ≤∃∀ S3.

Transitivity is proven.

Example: this relation is not always antisymmetric. Let us give an
example when S1 ≤∃∀ S2 and S2 ≤∃∀ S1 but S1 �= S2.

Indeed, we can take V = [0, 1], S1 = {0}, and S2 = [0, 1]. In this case,
S1 �= S2. Here:

• For v1 = 0 ∈ {0} we have v1 ≤ v2 for all v2 ∈ [0, 1]. Thus, S1 ≤∃∀ S2.

• For v2 = 0 ∈ [0, 1] we have v2 ≤ v1 for all v2 ∈ {0}. Thus, S2 ≤∃∀ S1.

Example: this relation is not always reflexive. Let us show that this
relation is not necessarily reflexive. Specifically, we will give an example of a
set S for which the relation S ≤∃∀ S is not true.

Indeed, let us take V = {a, b} and S = {a, b} with a �≤ b and n �≤ a. The
relation S ≤∃∀ S would mean that for one of the values v1 ∈ S and for every
v2 ∈ S, we have v1 ≤ v2. Since the set S consists of two elements a and b,
there are only two choices: v1 = a and v1 = b.

• For v1 = a, the inequality v1 ≤ v2 is not true for v2 = b.

• For v1 = b, the inequality v1 ≤ v2 is not true for v2 = a.

Thus, the relation S ≤∃∀ S is not satisfied.

Theorem 6.1 For every transitive relation uRu′ on a set U , there exists
an ordered set V and a mapping f : U → 2V − {∅} that maps each element of
U into a non-empty set f(u) ⊆ V in such a way that

uRu′ ⇔ ∃v ∈ f(u) ∀v′ ∈ f(u′) (v ≤ v′). (10)

Comment. In other words, uRu′ if and only if f(u) ≤∃∀ f(u′).

Proof. As the desired set V , let us take

V
def
= {u : uRu} ∪ {u− : ¬uRu} ∪ {u+ : ¬uRu}, (11)

where u− and u+ are different elements. For example, we can consider them
as pairs 〈±, u〉, then V ⊆ U ∪ {+,−} × U .

The ordering relation ≤ on this set V is defined as follows: v ≤ v′ if and
only if:
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• either v = v′,

• or v, v′ ∈ U and vRv′,

• or v = u± for some u ∈ U , v′ ∈ U , and uRv′;

• or v ∈ U , v′ = u± for some u ∈ U , and vRu;

• or v = u± and v′ = (u′)± for some u ∈ U and u′ ∈ U for which uRu′ and
u �= u′.

One can easily check that it is indeed a (partial) order.
To every element u ∈ U for which uRu, we now put into correspondence

the set f(u) = {u}. To every other element u ∈ U , we put into correspondence
the set f(u) = {u−, u+}.

Let us prove that uRu′ if and only if f(u) ≤∃∀ f(u′).
Let us first assume that uRu′, and let us show that in this case, there exists

v ∈ f(u) for which for every v′ ∈ f(u′), we have v ≤ v′. We will consider two
possible cases:

• u = u′, and

• u �= u′.

When u = u′, the condition uRu means that f(u) = {u}. Thus, v ∈ f(u)
implies that v = u, and similarly v′ ∈ f(u) implies that v′ = u. In this case,
we have v = u ≤ u = v′, so indeed v ≤ v′.

When u �= u′, then, according to our definition of ≤, we also have v ≤ v′

for all v ∈ f(u) and for all v′ ∈ f(u′). The first implication is proven.
To complete the proof, we need to show that if for some u and u′, we have

v ≤ v′ for some v ∈ f(u) and for every v′ ∈ f(u′), then uRu′. Indeed, let us
assume that we have two values u, u′ ∈ U for which v ≤ v′ for some v ∈ f(u)
and for every v′ ∈ f(u′). We will also consider two possible cases:

• u = u′, and

• u �= u′.

When u = u′ and ¬uRu, then f(u) = {u−, u+}. In this case, u+ �≤ u− and
u− �≤ u+. Thus, no matter which value v1 ∈ f(u) we take, we will not have
v ≤ v′ for all ′ ∈ f(u). This contradicts to our assumption that for some
v ∈ f(u), we have v ≤ v′ for all v′ ∈ f(u). Thus, in this case, we cannot have
¬uRu – thus, we have uRu.

When u �= u′, then for any v ∈ f(u) and v′ ∈ f(u′), from v ≤ v′ and our
definition of the relation ≤, we have uRu′.

The statement is proven.



412 K. Villaverde and O. Kosheleva

7 Relation ∃v2 ∈ S2 ∀v1 ∈ S1 (v1 ≤ v2)

Similar results hold for the following relation ≤′
∃∀:

S1 ≤′
∃∀ S2 ⇔ ∃v2 ∈ S2 ∀v1 ∈ S1 (v1 ≤ v2). (12)

This relation is transitive, not always antisymmetric, and not always reflexive.
Vice versa, every transitive relation can be thus represented. The proof

comes from the fact that the relation ≤′
∃∀ is equivalent to relation ≤∃∀ for the

dual order a ≤′ b
def
= b ≤ a.

8 Relation ∀v1 ∈ S1 ∃v2 ∈ S2 (v1 ≤ v2)

New relation. We can also defined a relation ≤∀∃ as follows:

S1 ≤∀∃ S2 ⇔ ∀v1 ∈ S1 ∃v2 ∈ S2 (v1 ≤ v2). (13)

This relation is transitive. One can easily check that the relation ≤∀∃ is
transitive. Let us assume that S1 ≤∀∃ S2 and S2 ≤∀∃ S3. Let us prove that
S1 ≤∀∃ S3. Indeed:

• The condition S1 ≤∀∃ S2 means that for every v1 ∈ S1, there exists
v2(v1) ∈ S2 for which v1 ≤ v2.

• Similarly, the condition S2 ≤∀∃ S3 means that for every v2 ∈ S2, there
exists v3(v2) ∈ S3 for which v2 ≤ v3.

• Thus, for every v1 ∈ S1, for v3 = v3(v2(v1)) ∈ S3, we have v1 ≤ v2(v1)
and v2(v1) ≤ v3 and therefore, v1 ≤ v3.

• So, for every v1 ∈ S1, there exists v3 ∈ S3 for which v1 ≤ v3. In other
words, we have S1 ≤∀∃ S3.

Transitivity is proven.

This relation is reflexive. Indeed, for every v ∈ S, there exists a value
v′ ∈ S for which v ≤ v′: namely, the value v′ = v. Thus, S ≤∀∃ S for every
set S.

Example: this relation is not always antisymmetric. Let us give an
example when S1 ≤∀∃ S2 and S2 ≤∀∃ S1 but S1 �= S2.

Indeed, we can take V = [0, 1], S1 = {1}, and S2 = [0, 1]. In this case,
S1 �= S2. Here:
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• For v1 = 1 ∈ {1} we have v1 ≤ v2 for v2 = 1 ∈ [0, 1]. Thus, S1 ≤∀∃ S2.

• For every v2 ∈ [0, 1], there exists v1 ∈ {1} for which v2 ≤ v1: namely,
v1 = 1. Thus, S2 ≤∀∃ S1.

Theorem 8.1 For every transitive reflexive relation uRu′ on a set U , there
exists an ordered set V and a mapping f : U → 2V −{∅} that maps each element
of U into a non-empty set f(u) ⊆ V in such a way that

uRu′ ⇔ ∀v ∈ f(u) ∃v′ ∈ f(u′) (v ≤ v′). (14)

Comment. In other words, uRu′ if and only if f(u) ≤∀∃ f(u′).

Proof. Since R is transitive and reflexive, the relation

a ∼ b
def
= aRb& bRa (15)

is an equivalence relation. This equivalence relation divides the set U into
disjoint equivalence classes. Let U/ ∼ be the set of all these equivalence
classes. For every u ∈ U , let π(u) denote an equivalence class containing u.

As the desired set V , let us take V = U ∪ (U/ ∼). For each u ∈ U , we take
f(u) = {u, π(u)}.

The ordering relation v ≤ v′ on this set V is defined as follows:

• for every u, we have u ≤ π(u);

• if uRu′ and u �∼ u′, then u ≤ u′, u ≤ π(u′), π(u) ≤ u′, and π(u) ≤ π(u′);

• if u ∼ u′, then u ≤ π(u′), u′ ≤ π(u), and π(u) ≤ π(u′);

• for every u, we have u ≤ u and π(u) ≤ π(u).

One can easily check that it is indeed a (partial) order.
Let us prove that uRu′ if and only if f(u) ≤∀∃ f(u′).
Let us first assume that uRu′, and let us show that in this case, for every

v ∈ f(u), there exists a v′ ∈ f(u′) for which v ≤ v′. Indeed, as v′, we can
take π(u′); then, for both elements of f(v) = {u, π(u)}, we have u ≤ π(u′) and
π(u) ≤ π(u′).

To complete the proof, we need to show that if for some u and u′, for every
v ∈ f(u) there exists a v′ ∈ f(u′) with v ≤ v′, then uRu′. Indeed, let us assume
that we have two values u, u′ ∈ U for for every v ∈ f(u), there exists v′ ∈ f(u′)
for which v ≤ v′. In particular, for π(u) ∈ f(u), we have either π(u) ≤ u′ or
π(u) ≤ π(u′). Since u′ ≤ π(u′), we thus have π(u) ≤ π(u′). According to our
definition of the ordering relation, this indeed means that uRu′.

The statement is proven.
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9 Relation ∀v2 ∈ S2 ∃v1 ∈ S1 (v1 ≤ v2)

Similar results hold for the following relation ≤′
∀∃:

S1 ≤′
∀∃ S2 ⇔ ∀v2 ∈ S2 ∃v1 ∈ S1 (v1 ≤ v2). (16)

This relation is transitive and reflexive, but not always antisymmetric.

Every transitive reflexive relation can be thus represented. The proof comes
from the fact that the relation ≤′

∀∃ is equivalent to relation ≤∀∃ for the dual

order a ≤′ b
def
= b ≤ a.

10 Open Problems

Open problems: general formulation. In the previous sections, we con-
sidered representation theorems for single “ordering” relations. What if we
have several such relations, e.g., what if we have all six different relations ♦ ≤,
� ≤, ≤∃∀, ≤′

∃∀, ≤∀∃, and ≤′
∀∃?

Natural questions appear:

• What are the connections between these relations?

• What are the conditions under which six relation on a set can be obtained
from an ordering ≤ as the corresponding relations?

Most of these questions are open. Let us describe what is known.

Connections between six relations. One connection immediately follows
from the definitions:

• if S � ≤ S2, then S1 ≤∃∀ S2 and S1 ≤′
∃∀ S2;

• if S1 ≤∃∀ S2, then S1 ≤′
∀∃ S2;

• if S1 ≤′
∃∀ S2, then S1 ≤∀∃ S2;

• if S1 ≤∀∃ S2 or S1 ≤′
∀∃ S2, then S1 ♦ ≤ S2.

In other words,

(� ≤) ⊆≤∃∀⊆≤′
∀∃⊆ (♦ ≤); (17)

(� ≤) ⊆≤′
∃∀⊆≤∀∃⊆ (♦ ≤). (18)
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Transitivity between “possible” and “necessary” relations. One can
prove that there is “transitivity” between “possibly larger” and “necessarily
larger” relations, e.g.,

(S1 ♦ ≤ S2) & (S2 � ≤ S3) → (S1 ≤∃∀ S3). (19)

Indeed:

• The condition S1 ♦ ≤ S2 means that v1 ≤ v2 for some v1 ∈ S1 and
v2 ∈ S2.

• Similarly, the condition S2 � ≤ S3 means that v2 ≤ v3 for all v2 ∈ S2

and v3 ∈ S3.

• Thus, for the original v1 ∈ S1 and v2 ∈ S2, and for all v3 ∈ V3, we have
v1 ≤ v2 and v2 ≤ v3 and thus, by transitivity, v1 ≤ v3.

• So, indeed, there exist v1 ∈ S1 for which, for all v3 ∈ S3, we have v1 ≤ v3.
By definition, this means that S1 ≤∃∀ S3.

Similarly, we can prove that

(S1 � ≤ S2) & (S2 ♦ ≤ S3) → (S1 ≤′
∃∀ S3). (20)

Indeed:

• The condition S2 ♦ ≤ S3 means that v2 ≤ v3 for some v2 ∈ S1 and
v3 ∈ S2.

• Similarly, the condition S1 � ≤ S2 means that v1 ≤ v2 for all v1 ∈ S1

and v2 ∈ S2.

• Thus, for the original v2 ∈ S2 and v3 ∈ S3, and for all v1 ∈ V1, we have
v1 ≤ v2 and v2 ≤ v3 and thus, by transitivity, v1 ≤ v3.

• So, indeed, there exist v3 ∈ S3 for which, for all v1 ∈ S1, we have v1 ≤ v3.
By definition, this means that S1 ≤′

∃∀ S3.
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