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Abstract

Traditionally, fuzzy logic used non-standard notations like

m1/x1 + . . . + mn/xn

for a function that attains the value m1 at x1, . . . , and the value mn

at xn. In this paper, we provide an algebraic explanation for these
notations.
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Formulation of the problem. In fuzzy logic, traditionally, researchers and
practitioners used non-standard notations to describe functions; see, e.g., [1].
In these notations, an expression of the type

m1/x1 + m2/x2 + . . . + mn/xn

indicates a function that is defined on the set {x1, x2, . . . , xn} and that takes:

• the value m1 for x = x1,

• the value m2 for x = x2,

• . . . , and

• the value mn for x = xn.

To a mathematician, these non-standard notations are very confusing.
In this paper, we provide an algebraic justification for these “weird” nota-

tions, justification that will helpfully make them somewhat less confusing.
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Main idea: application of a function to a value as a “multiplication”
operation. In mathematics, the division operation a/b is usually understood
as the inverse to a “multiplication” operation ab. Thus, to provide a reasonable
interpretation for the fuzzy “division” operation, we must find the appropriate
“multiplication” operation.

In the context in which the above notations are used, we have a universal
set U , the set T of possible values, and we have partial functions defined on
this set, i.e., functions from the set U (or from its proper subset) to the set T .
The only operation that we have is the operation of applying a function f to
the value x ∈ U .

It is therefore reasonable to use this application operation as the multipli-
cation operation.

Comment. This usage is in full agreement with the usual notations, in which
the result of applying a function f to the value x is denoted either by f(x), or
simply by fx. This simplified notation is exactly the notation for a multipli-
cation operation.

Resulting division operations: discussion. For this multiplication oper-
ation, what is the resulting division operation? For commutative multiplication
operations, a division operation corresponding to a multiplication operation is
defined as follows: a/b = c if and only if a = bc. For non-commutative multipli-
cation operations (and the operation fx is clearly non-commutative, since xf
does not even make sense), we can distinguish between left and right divisions:

• in the left division, a/b = c if and only if a = bc; and

• in the right division, a/b = c if and only if a = cb.

In our case, when a = bc, then b is a function, c is an element of the
universal set U , and a is the element of the set T . Thus, the corresponding
left division operation would correspond to dividing an element a ∈ T by a
function. The only case that leads to dividing an element a ∈ T by a value
x ∈ U is the right division.

Since the condition m = fx means that f(x) = m, the right division means
the following: f = m/x if and only if f(x) = m. This interpretation cannot be
taken literally, since there are many different functions for which f(x) = m,
and they cannot be all equal to the same object m/x.

However, in the class of all the functions for which m = fx, there exists
the smallest one (in terms of inclusion): a function which is defined only at
a single point x and whose value is equal to m. It is therefore reasonable to
define this smallest element as the desired “ratio” m/x.
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Comment. This definition is in line with the way fuzzy implication a → b is
sometimes defined (see, e.g., [1]): as the smallest possible degree c for which
c & a = b, where & is the fuzzy “and” operation (t-norm).

Relation to function composition as multiplication. In addition to
applying a function to an object, we can also consider composition of functions.
A composition is also sometimes denoted simply by fg (e.g., log sin(x) is a
usual notation for log(sin(x))), so it is also natural to view it as a multiplication
operation.

This multiplication operation is in line with the above definition of division:
e.g., if f = m/x, and g = n/m, then formally, gf = (n/m)(m/x) = n/x. And
indeed, here:

• f = m/x means that f(x) = m and f is undefined for all other x;

• g = n/m means that g(m) = n;

• hence g(f(x)) = g(m) = n (and g(f(y)) is undefined for all y �= x),
which is exactly what gf = n/x means.

Meaning of the sum. In our interpretation, each expression like mi/xi

means a partial function which are defined at only one point xi and has the
value mi at this point. Since in mathematics, a function f is defined as a set of
(ordered) pairs (x, f(x)), the notation mi/xi means a set consisting of a single
ordered pair: mi/xi = {(xi, mi)}.

A natural “addition” operation for sets is union. It is not a standard
notation for the union, but it is not as non-standard as the notations for fuzzy
sets:

• a few decades ago, union was indeed routinely denoted by +, and

• even now, in many engineering applications, addition is used as a symbol
for set union (and for the corresponding logical “or” operation).

Moreover, while the union is not any more routinely described by the plus sign
+, the minus sign −, a typical sign of an operation which is inverse to +, is
still routinely used to describe the difference between the two sets.

Also, in Boolean algebra, + is often used to describe the “exclusive or”
operation, which, for our one-point functions mi/xi, is equivalent to the union.

Conclusion. So, we will interpret the sum

m1/x1 + . . . + mn/xn
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as the union of the partial functions {(x1, m1)}, . . . , {(xn, mn)}, i.e., as the
set of pairs

{(x1, m1), . . . , (xn, mn)},
which is a function that maps x1 into m1, . . . , and maps xn into mn – exactly
the meaning that we are trying to interpret.

Now, this seemingly weird expression has a reasonable algebraic explana-
tion.
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