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Abstract

In this paper we investigate the solution of a nonlinear reaction-
diffusion equation connected with nonlinear waves by the application of
Sumudu transform. The results presented here are in compact and ele-
gant form expressed in terms of Mittag-Leffler function and generalized
Mittag-Liffler function which are suitable for numerical computation.
On account of the most general character of our derived result, a large
number of solutions obtained earlier by several authors of fractional re-
action, fractional diffusion, anomalous diffusion problem and fractional
telegraph equations is derived as special cases of our result.
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1 Introduction :

Reaction-diffusion models have found numerous applications in pattern forma-
tion in biology, chemistry, and physics, see Smoller (1983), Grindrod (1991),
Gilding and Kersner (2004), and Wilhelmsson and Lazzaro (2001). These
systems show that diffusion can produce the spontaneous formation spatio-
temporal patterns. For details, refer to the work of Nicolis and Pri-gogine
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(1977), and Haken (2004). A general model for reaction diffusion systems
is discussed by Henry and Wearne (2000, 2002), and Henry, Langlands, and
Wearne (2005). A piecewise linear approach in connection with the diffusive
processes has been developed by Strier, Zanette, and Wio (1995) which leads
to analytic results in reaction-diffusion systems.

A similar approach was recently used by Manne, Hurd, and Kenkre
(2000) to investigate effects on the propagation of nonlinear wave fronts. The
simplest reaction-diffusion models can be described by an equation.

∂N

∂t
= D

∂2N

∂x2
+ γF (N) (1)

where D is the diffusion coefficient and F (N) is a nonlinear function repre-
senting reaction kinetics. For F (N) = γN(1 − N), eq.(l) reduces to Fisher-
Kolmogorov equation and for F (N) = γN(1 − N2), it reduces to the real
Ginsburg-Landau equation.

A generalization of (1) has been considered by Manne, Hurd, and
Kenkre (2000) in the form

∂2N

∂t2
+ a

∂N

∂t
= ν2∂

2N

∂x2
+ ξ2N(x, t) (2)

where ξ indicates the strength of the nonlinearity of the system. Recently
R.K.Saxena,Mathai and Haubold [30] generalize this equation in terms of frac-
tional derivative in the following form

0D
α
t N(x, t) + a0D

β
t N(x, t) = ν2−∞D

γ
t N(x, t) + ξ2N(x, t) + ψ(x, t) (3)

Where ψ(x, t) describes the nonlinearity in the system. ξ indicates the strength
of the nonlinearity of the system.

2 Mathematical prerequisites :

A generalization of the Mittag-Leffler function (Mittag-Leffler 1903, 1905)

Eα(z) =
∞∑

n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0 (4)

was introduced by Wiman (1905) in the general form

Eα,β(z) =
∞∑

n=0

zn

Γ(nα + β)
, α, β ∈ C, Re(α) > 0,Re(β) > 0, (5)

The main results of these functions are available in the handbook of Erdelyi,
Magnus, Oberhettinger, and Tricomi (1955, Section 18.1) and the monographs
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by Dzherbashyan (1966, 1993). Prabhakar (1971) introduced a generalization
of (5) in the form

Eγ
α,β(z) =

∞∑
n=0

(γ)nz
n

Γ(nα + β)!n
, α, β ∈ C, Re(α),Re(β) > 0,Re(γ) > 0, (6)

where (γ)n is Pochhammer’s symbol
The Riemann-Liouville fractional integral of order ν is defined by Miller

and Ross (1993, p.45).

0D
−ν
t f(t) =

1

Γ(ν)

t∫
0

(t− u)ν−1f(u)du, Re(ν) > 0 (7)

Here we define the fractional derivative for Re(α) > 0 in the form

0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

t∫
0

f(u)du

(t− u)α−n+1
;n = [α] + 1 (8)

where [α] means the integral part of the number α. In particular, if 0 < α < 1,

0D
α
t f(t) =

1

Γ(1 − α)

d

dt

t∫
0

f(u)du

(t− u)α
(9)

and if α = n, n ∈ N = {1, 2, ...}, then

0D
n
t f(t) = Dnf(t), D ≡ d

dt

Caputo [4] introduced fractional derivative in the following form

0D
α
t f(t) = 1

Γ(m−α)

t∫
0

fm(τ)
(t−τ)α−m+1 dτ, m− 1 < α ≤ m, Re(α) > 0.

= dmf
dtm

, if α = m.
(10)

we also need the Weyl fractional operator defined by

−∞Dμ
xf(t) =

1

Γ(n− μ)

dn

dtn

t∫
−∞

f(u)

(t− u)μ−n+1
du, (11)

where n = [μ] is an integral part of μ > 0. Its Fourier transform is given by
Metzler and Klafter [19].

F{−∞D
μ
t f(t)} = (i k)μf ∗(k) (12)
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Where f ∗(k) denote the Fourier transform of the function f(x).
Further modification of result (12) is given by Metzler and Klafter [20],

F{−∞Dμ
xf(x)} = −| k|μf ∗(k) (13)

Definition :- Sumudu Transform
Over the set of functions

A = {f(t)|∃M, τ1, τ2 > 0, |f(t)| < Me|t|/τj , if t ∈ (−1)j × [0,∞)}

The Sumudu transform is defined by

G(u) = S[f(t)] =

∞∫
0

f(ut) e−tdt, u ∈ (−τ1, τ2). (14)

For further detail and properties of this transform (see [1], [2] and [3]).
We will establish the following results which are directly applicable in

the analysis of reaction-diffusion systems.
(i)

S−1[uγ−1(1 − ωuβ)−δ] = tγ−1Eδ
β,γ(ωt

β) (15)

where S−1(.) denote the inverse Sumudu transform.
We can prove this result in another way

S[tγ−1Eδ
β,γ(ωt

β)] =

∞∫
0

e−t(ut)γ−1Eδ
β,γ(ω(ut)β) dt (16)

By using eq. (6)

uγ−1
∞∑

n=0

(δ)n(ωuβ)n

n !
=uγ−1(1 − ωuβ)−δ (17)

By applying inverse Summudu transform, we get our required result.
(ii)

S−1

[
1

u(u−α + au−β + b)

]
=

∞∑
r=0

(−b)r
tα(r+1)−1Er+1

α−β,α(r+1)

[
−atα−β

]
(18)

To find inverse Sumudu transform of this function we will use result (15)

1
u(u−α+au−β+b)

= 1

u(u−α + au−β)[1 + b
(u−α+au−β)

]
=

∞∑
r=0

(−b)
r

u(u−α+au−β)r+1

=
∞∑

r=0

uα(r+1)−1(−b)r(1 + auα−β)−(r+1) (19)
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then by using result (15)

S−1

[
1

u(u−α + au−β + b

]
=

∞∑
r=0

(−b)r
tα(r+1)−1Er+1

α−β,α(r+1)(−atα−β) (20)

(iii)

S−1

[
u−α + au−β

u−α + au−β + b

]
=

∞∑
r=0

(−b)r
tαrEr

α−β,αr+1(−atα−β) (21)

(iv)

S−1

[
u−2α + au−α

u−2α + au−α + b

]
=

1√
a2 − 4b

[(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)] (22)

Re(α) > 0,⇁ Re(β) > 0

where a2 − 4b > 0 and Eα(z) is Mittag-Leffler function defined in equation
(4)and λ and μ are the real and distinct roots of the quadratic equation x2 +
ax+ b = 0,
Proof : We have

u−2α + au−α

u−2α + au−α + b
=

1

λ− μ

[
(λ+ a)u−α

u−α − λ
− (μ+ a)u−α

u−α − μ

]
(23)

Taking the inverse Sumudu transform on both side and using result (14),
we have

S−1
[

u−2α+au−α

u−2α+au−α+b

]
= 1√

a2−4b
[(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)]

(24)

Similerly we can prove that (v)

S−1
[

1
u(u−2α+au−α+b

)
]

= 1√
a2−4b

[tα−1Eα,α(λtα) − Eα,α(μtα)]
(25)

To solve fractional reaction diffusion equation the following Lemma of
Sumudu transform are required.
Lemma 1. The Sumudu transform of the fractional derivative is given by

S [0D
α
t f(t)] = S

⎡
⎣ 1

Γ(n− α)

dn

dtn

t∫
0

f(u)du

(t− u)α−n+1

⎤
⎦ (26)

by using equation (8)

S [0D
α
t f(t)] = u−αF (u) −

n−1∑
k=0

0D
n−k
α (0)

uα−k
(27)
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by using the properties of Sumudu transform (see [3], Theorem 4.1 and 4.2
) in particular if 0 < α < 1 we have

0D
α
t f(t) =

1

Γ(1 − α)

d

dt

t∫
0

f(u)du

(t− u)α
(28)

S [0D
α
t f(t)] = S

⎡
⎣ 1

Γ(1 − α)

d

dt

t∫
0

f(u)du

(t− u)α

⎤
⎦ = u−αF (u) (29)

Where F (u) = S[f(t)].
Lemma 2. Now we derive Sumudu transform of the fractional derivative
introduced by Caputo [4].

S [Dα
t f(t)] = S

⎡
⎣ 1

Γ(m− α)

t∫
0

fm(τ)dτ

(t− τ)α−m+1

⎤
⎦ (30)

By using convolution theorem of Sumudu transform ( see [3] ).

=
u

Γ(m− α)
S [fm(t)]S

[
t−α+m−1

]
(31)

By using Sumudu transform of multiple differentiation. We obtain

S [Dα
t f(t)] = um−α

[
G(u)

um
−

m−1∑
k=0

fk(0)

um−k

]

=

[
G(u)

uα
−

m−1∑
k=0

fk(0)

uα−k

]
(32)

Where G(u) = S [f(t)].
In the next section we derive solution of a nonlinear reaction diffusion

equation connected with nonlinear waves by application of Sumudu transform.

3 Solution of fractional reaction-diffusion equa-

tion

Consider the fractional reaction diffusion equation

0D
α
t N(x, t) + a0D

β
t N(x, t) = υ2

−∞D
γ
xN(x, t) + ξ2N(x, t) + ψ(x, t)

0 ≤ α ≤ 1, 0 ≤ β ≤ 1 (33)
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With initial conditions

N(x, 0) = f(x), for x ∈ R (34)

Where ν is a diffusion coefficient, ψ is constant which describes the nonlinearity
in the system, and is a nonlinear function for reaction kinetics then there holds
the following formula for the solution of (21).

N(x, t) =
∞∑

r=0

(−b)r√
2π

∞∫
−∞

tαrf ∗(k) exp(−ikx)

×Er
α−β,1+αr(−atα−β)dk +

∞∑
r=0

(−b)r√
2π

t∫
0
τα(r+1)−1

∞∫
−∞

ψ∗(k, t− τ) exp(−ikx)
×Er+1

α−β,α(r+1)(−aτα−β)dkdτ

(35)
Where α > β and Eδ

β,γ(z) is the generalized Mittag-Leffler function, defined in
(6) and b = υ2 |k|γ − ξ2.
Proof : Applying the Sumudu transform with respect to the time variable t
and using the boundary condition in eq. (32) , we find,

u−αN(x, u) − u−αf(x) + au−βN(x, u) − au−βf(x)
= υ2

−∞D
γ
xN(x, u) + ξ2N(x, u) + ψ(x, u)

(36)

Taking the Fourier transform of above equation

u−αN
∗
(k, u) − u−αf ∗(k) + au−βN

∗
(k, u) − au−βf ∗(k)

= −υ2 |k|γ N∗
(k, u) + ξ2N

∗
(k, u) + ψ∗(k, u)

(37)

Solving for N∗(k, u),

N
∗
(k, u) =

(u−α + au−β)f ∗(k)
(u−α + au−β + b)

+
uψ∗(k, u)

u(u−α + au−β + b)
(38)

Where b = υ2 |k |γ − ξ2, Inverting the Sumudu transform with the help of
equation (18) and (21).

N∗(k, t) =
∞∑

r=0
(−b)rtαrEr

α−β,1+αr(−atα−β)f ∗(k) +
∞∑

r=0
(−b)r

t∫
0
ψ∗(k, t− τ)τα(r+1)−1

×Er+1
α−β,α(r+1)(−aτα−β)dτ

(39)
Using the convolution theorem of Sumudu transform (see [3]). Now by apply-
ing inverse Fourier transform we get the required result of reaction diffusion
equation in terms of generalized Mittag-Leffler function.

N(x, t) =
∞∑

r=0

(−b)r√
2π

∞∫
−∞

tαrf ∗(k) exp(−ikx) × Er
α−β,1+αr(−atα−β)dk

+
∞∑

r=0

(−b)r√
2π

t∫
0
τα(r+1)−1

∞∫
−∞

ψ∗(k, t− τ) exp(−ikx)
×Er+1

α−β,α(r+1)+1(−aτα−β)dkdτ

(40)
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4. Special cases
When f(x) = δ(x), where δ(x) is Dirac delta function. The Theorem reduces
to the following.
Corollary (i). Consider the fractional reaction-diffusion system

0D
α
t N(x, t) + a0D

β
t N(x, t) = υ2

−∞D
γ
xN(x, t) + ξ2N(x, t) + ψ(x, t) (41)

Subject to the initial condition N(x, 0) = δ(x) for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1.
Where δ(x) is the dirac delta function. Here ξ is a constant that describes the
nonlinearity of the system, and ψ(x, t) is a nonlinear function which belongs to
the reaction kinetics. Then there exists the following equation for the solution
of (32) subject to the initial condition (33).

N(x, t) =
∞∑

r=0

(−b)r√
2π

∞∫
−∞

tαr exp(−ikx) ×Er
α−β,1+αr(−atα−β)dk

+
∞∑

r=0

(−b)r√
2π

t∫
0
τα(r+1)−1

∞∫
−∞

ψ∗(k, t− τ) exp(−ikx) ×Er+1
α−β,α(r+1)(−aτα−β)dkdτ

(42)
where b = υ2 |k|γ − ξ2.

Now if we set f(x) = δ(x), γ = 2, α is replaced by 2 α, and β by α in
eq.(33). The following results obtained
Corollary (ii). Consider the following reaction diffusion system

∂2αN(x, t)

∂t2α
+ α

∂αN(x, t)

∂tα
= υ2∂

2N(x, t)

∂x2
+ ξ2N(x, t) + ψ(x, t) (43)

With initial conditions

N(x, 0) = δ(x), Nt(x, 0) = 0, 0 ≤ α ≤ 1, (44)

where ψ(x, t) is a nonlinear function belonging to the reaction kinetics.
Then for the solution of (43) subject to the initial condition (44) there hold the
formula.

N(x, t) = 1√
2π
√

(a2−4b)
[
∞∫

−∞
exp(−ikx) × {(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)}dk

+ 1√
2π

t∫
0
τα−1

∞∫
−∞

exp(−ikx)ψ∗(k, t− τ)

× [Eα,α(λτα) − Eα,α(μτα)]dkdτ
(45)

where λ and μ are the real and distinct roots of the quadratic equation x2 +
ax+b = 0 which are given by λ = 1

2
(−a+

√
a2 − 4b) and μ = 1

2
(−a−√

a2 − 4b)
where b = υ2 |k|γ − ξ2.
Proof : In order to solve (43), equation (24) reduces

N
∗
(k, u) =

u−2α + au−α + ψ
∗
(k, u)

u−2α + au−α + b
(46)
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Taking the inverse Sumudu transform by using equation (15) and (18) for
special case replace α by 2α and β by α.

N∗(k, t) = 1√
(a2−4b)

[(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)]

+
t∫
0
ψ∗(k, t− τ)τα−1 [Eα,α(λτα) − Eα,α(μτα)]dτ

;λ �= μ (47)

Where λ and μ are given by eq. (45). Now taking inverse Fourier transform
of equation (47), we get the required result (43). Next, if we set ψ(x, t) =
0, γ = 2, replace α by 2α and β by α in equation (33) we obtain the following
result which include many known result on the fractional telegraph equation
including the one recently given by Orsingher and Beghin (2004)([26]).
Corollary (iii). Consider the following reaction diffusion system

∂2αN(x, t)

∂t2α
+ α

∂αN(x, t)

∂tα
= υ2∂

2N(x, t)

∂x2
+ ξ2N(x, t) (48)

With initial condition

N(x, 0) = δ(x), Nt(x, 0) = 0, 0 ≤ α ≤ 1, (49)

Then for the solution of (47) subject to initial condition (48), there hold the
formula

N(x, t) = 1√
2π
√

(a2−4b)
×

∞∫
−∞

exp(−ikx) [(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)] dk

(50)
Where λ and μ are defined in (45),b = υ2k2 − ξ2 and Eα(t)is the Mittag

Leffler function defined by (3).
If we set ξ2 = 0 in Corollary (iii) reduces to the result, which states that

the reaction diffusion system

∂2αN(x, t)

∂t2α
+ α

∂αN(x, t)

∂tα
= υ2∂

2N(x, t)

∂x2
(51)

with initial conditions,

N(x, 0) = δ(x), Nt(x, 0) = 0, 0 ≤ α ≤ 1,

has the solution , given by

N(x, t) = 1√
2π
√

(a2−4b)
×

∞∫
−∞

exp(ikx) [(λ+ a)Eα(λtα) − (μ+ a)Eα(μtα)]dk

(52)
Where λ and μ are defined in (45),b = υ2k2−ξ2 and Eα(t)is the Mittag Leffler
function defined by (3). Equation (49) can be rewritten in the form.

N(x, t) =
1

2
√

2π
×

∞∫
−∞

exp(ikx)
[
(1 +

a√
a2 − 4υ2k2

)Eα(λtα) + (1 − a√
a2 − 4υ2k2

)Eα(μtα)
]
dk

(53)
Above equation (53) represent the solution of the time fractional telegraph

equation (48).
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