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Abstract

By using the definition of the ”Pareto minimum solution” of an
inconsistent system, we will find in the paper a connection between this
notion and the so-called ”infrasolution” of a such kind of system. The
results can be used in the optimisation theory, with possible applications
in economy and engineering.
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1 Introduction

In 1973 ([2]), I. A. Marusciac defined a class of extremal approximate solution

of a linear inconsistent system that contains as particular cases the least square

solution and the Tschebychev’s best approximation solution of the system, the

two main methods used to obtain an approximate solution of an inconsistent

system. The least squares method was applied by M. Fekete and J.M Walsh in

1951 ([1]) in order to obtain an approximate solution of an inconsistent system,

whereas the Tschebychev’s best approximation method was used for the same

reason by R.L. Remez in 1969 ([3]). In this paper we obtain a connection

between the ”Pareto minimum solutions” of an inconsistent system and the

”infrasolutions” of this system. First of all we will start with some definitions

and known results.
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2 Preliminaries

Let consider the following system of m equations and n unknowns:

fk(z) =
n∑

j=1

akjz − bj = 0, k ∈ M = {1, 2, . . . , m} (1)

or, equivalently,

Az − b = 0

where the notations are obvious:

A = (ak)k=1,2,...,m := (ak1, ak2 . . . , akn)k=1,2,...,m ∈ Mm,n(C), b = (b1, b2, . . . bm) ∈
Mm,1(C) and z = (z1, z2, . . . , zn) ∈ Mn,1(C) (here ak := (ak1, ak2, . . . , akn))

Definition 2.1 z ∈ Cn is an infrasolution of the system (1) if there is no

u ∈ Cn so that:

• Au �= Az

• If, for k ∈ M , fk(z) = 0, then fk(u) = 0

• If, for k ∈ M , fk(z) �= 0, then |fk(u)| < |fk(z)|

Let denote the set of all infrasolutions of (1) by IS(A, b)

Directly from the Definition 2.1 we have:

Lemma 2.1 The system (1) is consistent if and only if every solution z of

the system is also an infrasolution, i.e. IS(A, b) coincides with the set of all

solutions of (1).

Definition 2.2 ([2]) z ∈ C
n is a Pareto minimum solution or Pareto mini-

mum point of the system (1) if there is no u ∈ Cn such that:

• |fk(u)| ≤ |fk(z)| for all k ∈ M .

• There is a k0 ∈ M so that |fk0(u)| < |fk0(z)|

Definition 2.3 ([2]) z ∈ Cn is called a weak Pareto minimum solution of the

system (1) if there is no u ∈ Cn such that |fk(u)| < |fk(z)| for all k ∈ M .

We denote by PA(A, b), and, respectively by PA∗(A, b) the sets of all Pareto

minimum solutions, respectively of all weak Pareto minimum solutions of the

system (1).
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Definition 2.4 An approximate solution z0 ∈ Cn of the system (1) is called

Tschebychev uniform best approximation solution of (1), or a Tschebychev’s

point for the system (1) if

max
k∈M

{|fk(z0)|} = inf
z∈�n

max
k∈M

{|fk(z)|} (2)

Definition 2.5 Let now (λk)
n be a system of weights, so that λk > 0,

∑n
k=1 λk =

1 and let also p > 0. An approximate solution z∗ ∈ C
n of the system (1) is

called solution of the least deviaton from 0 in weighted mean of order p of (1),

if (
n∑

k=1

λk|fk(z
∗)|p
)1/p

= inf
z∈�n

(
n∑

k=1

λk|fk(z)|p
)1/p

(3)

In the particular case p = 2 and λk = 1/n for all k ∈ M , the solution of the

least deviation from 0 of the system (1) is called the least squares solution of

the system (1).

Definition 2.6 A matrix A ∈ Mm,n(C), m ≥ n is said to have the ”H-

property” (Haar property) if all quadratic submatrices of A of order n have the

rank exactly n.

Lemma 2.2 If z0 ∈ Cn and A ∈ Mm,n, m ≥ n and A has the H-property and

if there exist l ≥ n and k1, k2, . . . , kl ∈ M so that

fkj
(z0) = 0 for j = 1, 2, . . . , l

then z0 ∈ PA(A, b)

Proof. If z0 satisfies the assertion we can suppose first that z0 /∈ PA(A, b). In

this case we can find v ∈ Cn so that: |fk(v)| ≤ |fk(z0)| for all k ∈ M and there

is a k0 ∈ M so that |fk0(v)| < |fk0(z0)|. Because fkj
= 0 for j = 1, 2, . . . , l, it

follows that: akjv − bkj
= 0 for j = 1, 2, . . . , l and v is considered as a column

vector. Thus, if we put u = z0 − v ∈ Cn, we deduce that akj
(u) = 0 for

j = 1, 2, . . . , l. Because A has the H-property, it follows that the rank of the

matrix t(ak1 , ak2, . . . akl
) is exactly n and hence the last system has only the

trivial solution u = 0. It follows that v = z0, which contradicts the hypotesis.

Definition 2.7 Let denote by IS0(A, b), PA0(A, b) and, respectively PA∗
0(A, b)

the subsets of infrasolutions, Pareto minimum solutions, respectively weak Pareto

minimum solutions z of the system (1), for which fk(z) �= 0 for all k ∈ M .
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Example 1 Let consider the system:⎧⎪⎪⎨
⎪⎪⎩

y − 1 = 0

y + 1 = 0

x = 0

Obviously, here

A =

⎡
⎢⎣ 0 1

0 1

1 0

⎤
⎥⎦

and

b =

⎡
⎢⎣ 1

− 1

0

⎤
⎥⎦

A simple calculation shows that:

• IS(A, b) = {z ∈ R
2 : x ∈ R, y ∈ [−1, 1]}

• PA(A, b) = {z ∈ R2 : x = 0, y ∈ [−1, 1]}
• PA∗(A, b) = {z ∈ R2 : x ∈ R, y ∈ [−1, 1]}⋃{z ∈ R2 : x = 0, y ∈ R}

From the example it follows that IS(A, b) �= PA(A, b) �= PA∗(A, b). Also, for

example, z0 = (1, 0) is a Tschebychev point of the system, whereas it is not

a Pareto minimum point (because u = (0, 0) is a point that satisfies the two

conditions in the Definition 2.2, that should be not satisfied by any point in

Cn)

3 Main results

Theorem 3.1 Between the three classes defined in the previous section, we

have the following inclusions:

PA(A, b) ⊂ IS(A, b) ⊂ PA∗(A, b)

Proof. Let z ∈ PA(A, b) If there is an u ∈ Cn satisfying the conditions in

Definition 2.1, then, from the first two conditions it follows that ak0u �= ak0z

for k ∈ M . That means that fk0(u) < fk0(z). That implies the fact that

for every k ∈ M we have: |fk(u)| ≤ |fk(z)| and it exists a k0 ∈ M so that

|fk0(u)| < |fk0(z)|, which is a contradiction that shows the first inclusion. For
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the second one, we assume that z ∈ IS(A, b) and z /∈ PA∗(A, b). Then, we can

find an u ∈ C
n such that for every k ∈ M we have |fk(u)| < |fk(z)|, which

implies that Au �= Az. Since the other two conditions in Definition 2.1 hold,

it follows that z /∈ IS(A, b), which is a contradiction that shows the second

inclusion.

Remark 3.1 As it was shown in Example 1, the above inclusions are strict.

Definition 3.1 Let X ⊂ Cn and f : X → Rm, g : X → Rp and let Ω = {x ∈
X : g(x) ≤ 0} �= Φ. x0 is called a Pareto minimum point of f on Ω (or Pareto

minimum solution) of the problem:

f(x) → min

under the condition:

g(x) ≤ 0

if there is no x ∈ Ω such that

f(x) ≤ f(x0), f(x) �= f(x0)

(Here, the inequalities mean inequalities between the similar real components

of f , respectively g)

Let now consider the following minimization problem:

(∗) (u1, u2, . . . , um) → min

under the conditions:

|fk(z)| ≤ uk, k ∈ M, z ∈ C
n, u ∈ R

m
+

Using this problem, we have the following characterization of the Pareto min-

imum solutions of system (1):

Theorem 3.2 z0 ∈ PA(A, b) if and only if z0, u0) is a Pareto minimum solu-

tion to the problem defined above, where u0 = (|f1(z0)|, |f2(z0)|, . . . , |fm(z0)|) ∈
Rm

+ .

Proof Let z0 ∈ PA(A, b). Assume that (z0, u0) (with u0 defined above) is

not a Pareto minimum solution for the defined problem. Then, there exists
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(z, u) ∈ Cn × Rm
+ so that |fk(z)| ≤ uk for all k ∈ M and u < u0 (i.e. u �= u0).

It follows tat there is a k0 ∈ M such that uk0 < u0k0 and, therefore:

|fk(z)| ≤ uk ≤ u0k = |fk(z0)| for all k ∈ M

|fk0(z)| ≤ uk0 < u0k0

which is a contradiction. Hence (z0, u0) is a Pareto minimum solution of the

problem (∗).
Conversely, assume that (z∗, u∗) ∈ Cn × Rm

+ is a Pareto minimum solution of

the problem (∗). If z0 /∈ PA(A, b), then we can find z0 ∈ Cn such that for all

k ∈ M :

|fk(z0)| ≤ |fk(z
∗)|

and there exists k0 ∈ M so that:

|fk0(z0) < |fk0(z
∗)|

Let now u0 = (|f1(z0)|, f2(z0)|, . . . , fm(z0)|) ∈ Rm
+ Then, we have for all k ∈ M

|fk(z0)| = u0k ≤ u∗
k

and there is a k0 ∈ M so that:

|fk0(z0)| ≤ u0k0 < u∗
k0

Therefore, for all k ∈ M we have |fk(z0)| ≤ u0k and u0 ≤ u∗, u0 �= u∗. The

contradiction shows that z∗ ∈ PA(A, b)

Remark 3.2 It is obvious that in the real case the corresponding problem is

linear. The problem of finding a Pareto minimum solution for the nonlinear

vector-minimization problem (∗) is equivalent, by Theorem 2, with the problem

of finding a Pareto minimum solution of a complex linear inconsistent system.

Theorem 3.3 If the system (1) is consistent, then all its solutions are Pareto

minimum solutions.

Proof Let z0 be a solution of the system (1). That means that Az0 = b and

then, for all k ∈ M , fk(z0) = akz0 − b = 0, and, consequently, |fk(z0)| = 0. It

follows that there is no u ∈ Cn such that for every k ∈ M , |fk(u)| < |fk(z0)| =

0. Thus, z0 ∈ PA(A, b).

Theorem 3.4 If z∗ ∈ Cn is a solution of the least deviation from 0 in weighted

mean of order p of the system (1), then z∗ is a Pareto minimum solution of

(1).
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Proof Let z∗ ∈ Cn be a solution of the least deviation from 0 of the system (1)

and assume that z∗ /∈ PA(A, b). Then, there is an u ∈ C
n satisfying the the

two conditions in Definition 2.2. That means that for every k ∈ M we have

|fk(u)| ≤ |fk(z
∗)| and that there is a k0 ∈ M so that |fk0(u) < |fk0(z

∗)|. But,

in this case, (
m∑

k=1

λk|fk(u)|p
)1/p

<

(
m∑

k=1

λk|fk(z
∗)|p
)1/p

which is a contradiction.

Corolarry 3.1 If z0 ∈ Cn is a least square solution of the system (1), then

z0 ∈ PA(A, b).

Proof The proof follows immediately from Theorem 3.4 and Definition 2.5.

Remark 3.3 In Example 1, the least square solution of the system is z0 =

(0, 0) ∈ PA(A, b).

Theorem 3.5 If z0 ∈ Cn is a Tschebychev point point of the system (1), then

z0 is also an infrasolution of the system (1)

Proof Let z0 ∈ Cn be a Tschebychev point point of the system (1) and assume

that z0 /∈ IS(A, b). Then, we can find an u ∈ Cn satisfying the three conditions

in Definition 2.1:

Au �= Az0

For all k ∈ M fk(z0) = 0 implies that fk(u) = 0

For all k ∈ M fk(z0) �= 0 implies that |fk(u)| < |fk(z0)|
But, in this case, we will have:

max
k∈M

{|fk(u)|} < max
k∈M

{|fk(z0)|}

which is a contradiction. Thus, z0 ∈ IS(A, b).

Remark 3.4 As it was seen in Example 1, a Tschebychev point of a system

is not necessary a Pareto minimum solution.

The last result gives a condition when the three classes defined in the second

paragraph coincide.

Theorem 3.6 If the matrix A ∈ Mmn(C) has the H-property, then:

PA0(A, b) = IS0(A, b) = PA0
∗(A, b)
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Proof From Theorem 3.1 and Definition 2.7 we have:

PA0(A, b) ⊂ IS0(A, b) ⊂ PA0
∗(A, b)

Hence, we have only to prove the inclusion:

PA0
∗(A, b) ⊂ PA0(A, b)

Assume that z0 ∈ PA0
∗(A, b), but z0 /∈ PA0(A, b). Then, we can find an

u ∈ Cn such that for all k ∈ M |aku − bk| ≤ |akz0 − bk and there is a k0 ∈ M

so that |ak0u− bk0 | < |ak0z0 − bk0 . Let v := (u− z0)/2. Hence, from above, we

deduce:

|fk(v)| = |akv − bk| =

∣∣∣∣aku + akz0

2
− bk

∣∣∣∣ =
1

2

∣∣(aku − bk) + (akz0 − bk)
∣∣

≤ 1

2

(|aku − bk| + |akz0 − bk|
) ≤≤ 1

2
2|akz0 − bk| = fk(z0) (4)

and also:

|fk0(v) = |fk0(z0)| (5)

If |fk(u) = |fk(z0)|, by applying (4), we have that |fk(v) = |fk(z0)| and this

means that fk(u) = |fk(z0), or, akv = akz0. Also, from (5) it follows that

v �= z0.

Let now kj ∈ M for which akjv = akjz0 (j = 1, 2, . . . , l, l ∈ N). If the matrix

A has the H-property, then l ≤ n − 1, because, otherwise, the system

akj (v − z0) = 0 j = 1, 2, . . . , l

has only the trivial solution v − z0 = 0, which is a contradiction. Therefore:

fk(v) = fk(z0) if k ∈ L = {k1, k2, . . . , kl} and l ≤ n − 1 (6)

|fk(v)| < |fk(z0)| for all k ∈ M \ L (7)

Let now μ ∈ Cn be a solution of the system

akμ = fk(z0), k ∈ M

akpμ = γ0 > 0, p = l + 1, l + 2, . . . n
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It is obvious that the existence of such a solution is assured by the fact that

A has the H-property and l ≤ n− 1. From this system and from (6) it follows

that for k ∈ M we have:

0 = |fk(v) − akμ| = |akz0 − bk − akμ| = |akz0 − bk − akz0 + bk| < |fk(z0)|
(8)

Let ε ∈ (0, 1] and uε := v − εμ ∈ Cn. From (8), we have (k ∈ M):

|fk(uε)| = |akv − bk − εakμ| = |ε(akv − bk − akμ) + (1 − ε)(akv − bk)| ≤

≤ ε|fk(v) − fk(z0)| + (1 − ε)|fk(v)| < |fk(z0)|
We have thus, for all k ∈ L,

|fk(uε)| < |fk(z0)| (9)

Let denote:

δ = min
k∈M\L

{|fk(z0)| − |fk(v)|} > 0

λ = max
k∈M\L

{|akμ|} ≥ γ > 0

0 < ε0 < min{ δ

λ
, 1}

For k ∈ M \ L we have:

|fk(uε)| = |akv − bk − εakμ| ≤ |akv − bk| + ε0|akμ| <

< |fk(v)| + δ

λ
|akμ| ≤ |fk(v)| + δ

λ
λ ≤ |fk(v)| + δ ≤

≤ |fk(v)| + |fk(z0)| − |fk(v)| = |fk(z0|
Hence, for every k ∈ M \ L, we have:

|fk(uε)| < |fk(z0)|

From this relation and from (9) we conclude that for all k ∈ M the inequality

|fk(uε)| < fk(z0)| is true. This contradicts the fact that z0 ∈ PA∗(A, b) and

the theorem is proved.



466 G. Caristi

References

[1] M. Fekete, J.L. Walsh, On restricted infrapolynomials, Proceedings

of the National Academy of Sciences, U.S.A., 37(1951), 95-103.

[2] I. Marusciac, Infrapolynomials and Pareto optimization, Mathemat-

ica (Cluj), 22(45), (1980), no. 2, 297-307.

[3] E.I. Remez, Basis of the Numerical Methods in Tchebycheff’s Ap-

proximation, Izd. Kiev, 1969.

Received: July, 2009


