Applied Mathematical Sciences, Vol. 4, 2010, no. 10, 477-487

Some Solutions for a Class of Singular Equations of Even Order

Ayşegül Çetinkaya

Ahi Evran University, Faculty of Arts and Sciences
Department of Mathematics, 40100 Kirsehir, Turkey
acetinkaya@ahievran.edu.tr

Abstract

We obtain all solutions which depend only on r for a class of iterated elliptic or ultrahyperbolic partial differential equations of even order with singular coefficient. Here, the essential operators include Laplace, wave, EPD (Euler-Poisson-Darboux) and GASPT (Generalized Axially Symmetric Potential Theory) operators.

Mathematics Subject Classification: 35A08, 35G05
Keywords: Iterated equation, singular equation, r^{m} type solution

1 Introduction

In this paper, we consider a class of singular partial differential equations of the form

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right) u=\left(L_{1}^{q_{1}} \ldots L_{p}^{q_{p}}\right) u=0 \tag{1}
\end{equation*}
$$

where p and q_{1}, \ldots, q_{p} are positive integers and

$$
\begin{equation*}
L_{j}=\sum_{i=1}^{n}\left(a_{i}^{2} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\alpha_{i}^{(j)}}{x_{i}-x_{i}^{0}} \frac{\partial}{\partial x_{i}}\right) \pm \sum_{i=1}^{s}\left(b_{i}^{2} \frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\beta_{i}^{(j)}}{y_{i}-y_{i}^{0}} \frac{\partial}{\partial y_{i}}\right)+\frac{\gamma_{j}}{r^{2}} \tag{2}
\end{equation*}
$$

The iterated operators $L_{j}^{q_{j}}$ are defined by the relations

$$
L_{j}^{k}(u)=L_{j}\left[L_{j}^{k-1}(u)\right], \quad k=1, \ldots, q_{j} .
$$

In (2), $a_{i} \neq 0(i=1, \ldots, n), x_{i}^{0}(i=1, \ldots, n), b_{i} \neq 0(i=1, \ldots, s), y_{i}^{0}$ $(i=1, \ldots, s)$ are real constants and $\alpha_{i}^{(j)}(i=1, \ldots, n), \beta_{i}^{(j)}(i=1, \ldots, s), \gamma_{j}$ are real parameters and r is defined by

$$
\begin{equation*}
r^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{a_{i}}\right)^{2} \pm \sum_{i=1}^{s}\left(\frac{y_{i}-y_{i}^{0}}{b_{i}}\right)^{2} . \tag{3}
\end{equation*}
$$

The domain of each of the operator L_{j} is the set of all real valued functions $u(x, y)$ of class $C^{2}(\Omega)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{s}\right)$ denote points in \mathbb{R}^{n} and \mathbb{R}^{s}, respectively, and Ω is the regularity domain of u in \mathbb{R}^{n+s}. The operators L_{j} are elliptic or ultrahyperbolic with the sign positive or negative, respectively. Equation (1) includes iterated forms of some well known classical equations such as Laplace equation, wave equation, Euler-PoissonDarboux (EPD) equation and Generalized Axially Symmetric Potential Theory (GASPT) equation as special cases.

Recently, r^{m} type solutions for various types of partial differential equations are studied by several authors [2-5]. We remark that Altm [1] obtained r^{m} type solutions for a class of partial differential equations which is a special case of (1) when $a_{i}=1(i=1, \ldots, n), b_{i}=1(i=1, \ldots, s), x_{i}^{0}=0(i=1, \ldots, n)$, $y_{i}^{0}=0(i=1, \ldots, s)$. The main object of this work is to extend the results derived by Altin [1] to solutions of the more general iterated equation (1).

$2 r^{m}$ Type Solutions

Firstly, we will give the following lemmas.
Lemma 2.1 For any real or complex parameter m,

$$
\begin{equation*}
L_{j}\left(r^{m}\right)=F_{j}(m) r^{m-2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \psi_{j}=n+s-2+\sum_{i=1}^{n} \frac{\alpha_{i}^{(j)}}{a_{i}^{2}}+\sum_{i=1}^{s} \frac{\beta_{i}^{(j)}}{b_{i}^{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{j}(m)=m\left(m+2 \psi_{j}\right)+\gamma_{j} . \tag{6}
\end{equation*}
$$

Proof. The proof of this lemma can be done easily by applying the operator L_{j} to r^{m}.

Lemma 2.2 For any real or complex parameter m,

$$
\begin{equation*}
L_{j}^{q}\left(r^{m}\right)=\left\{\prod_{k=0}^{q-1} F_{j}(m-2 k)\right\} r^{m-2 q} \tag{7}
\end{equation*}
$$

where the positive integer q is the iteration number.
Proof. We give the proof by induction on q. It is clear by (4) that the equality (7) is true for $q=1$. Now, let us assume that the equality is valid for $q-1$, that is,

$$
L_{j}^{q-1}\left(r^{m}\right)=\left\{\prod_{k=0}^{q-2} F_{j}(m-2 k)\right\} r^{m-2(q-1)} .
$$

By applying the operator L_{j} to both sides of the above equality, we obtain

$$
L_{j}^{q}\left(r^{m}\right)=\left\{\prod_{k=0}^{q-2} F_{j}(m-2 k)\right\} L_{j}\left(r^{m-2(q-1)}\right)
$$

Hence, by replacing m by $m-2(q-1)$ in (4), we get

$$
\begin{aligned}
L_{j}^{q}\left(r^{m}\right) & =\left\{\prod_{k=0}^{q-2} F_{j}(m-2 k)\right\} F_{j}(m-2(q-1)) r^{m-2 q} \\
& =\left\{\prod_{k=0}^{q-1} F_{j}(m-2 k)\right\} r^{m-2 q}
\end{aligned}
$$

which completes the proof.
Lemma 2.3 For any positive integers p, q_{1}, \ldots, q_{p}

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right)=\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p)-Q(j)]-2 k)\right\} r^{m-2 Q(p)} \tag{8}
\end{equation*}
$$

where $Q(j)=q_{1}+\cdots+q_{j}, j=1, \ldots, p$.
Proof. We give the proof induction on p. For any positive integer q_{j}, from (7) we have

$$
\begin{equation*}
L_{j}^{q_{j}}\left(r^{m}\right)=\left\{\prod_{k=0}^{q_{j}-1} F_{j}(m-2 k)\right\} r^{m-2 q_{j}} \tag{9}
\end{equation*}
$$

For $p=1,(8)$ is reduced to

$$
L_{1}^{q_{1}}\left(r^{m}\right)=\left\{\prod_{k=0}^{q_{1}-1} F_{1}(m-2 k)\right\} r^{m-2 q_{1}}
$$

which gives (9) for $j=1$. Now assume that (8) holds for $p-1$, that is,

$$
\begin{equation*}
\left(\prod_{j=1}^{p-1} L_{j}^{q_{j}}\right)\left(r^{m}\right)=\left\{\prod_{j=1}^{p-1} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p-1)-Q(j)]-2 k)\right\} r^{m-2 Q(p-1)} . \tag{10}
\end{equation*}
$$

On the other hand, from (9) for $j=p$ we have

$$
L_{p}^{q_{p}}\left(r^{m}\right)=\left\{\prod_{k=0}^{q_{p}-1} F_{p}(m-2 k)\right\} r^{m-2 q_{p}} .
$$

Thus,

$$
\begin{aligned}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right) & =\left(\prod_{j=1}^{p-1} L_{j}^{q_{j}}\right)\left(L_{p}^{q_{p}}\left(r^{m}\right)\right) \\
& =\left(\prod_{j=1}^{p-1} L_{j}^{q_{j}}\right)\left(\left\{\prod_{k=0}^{q_{p}-1} F_{p}(m-2 k)\right\} r^{m-2 q_{p}}\right) \\
& =\left\{\prod_{k=0}^{q_{p}-1} F_{p}(m-2 k)\right\}\left(\prod_{j=1}^{p-1} L_{j}^{q_{j}}\right)\left(r^{m-2 q_{p}}\right) .
\end{aligned}
$$

Hence, by replacing m by $m-2 q_{p}$ in (10), we obtain

$$
\begin{aligned}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right) & =\left\{\prod_{k=0}^{q_{p}-1} F_{p}(m-2 k)\right\} \\
& \times\left\{\prod_{j=1}^{p-1} \prod_{k=0}^{q_{j}-1} F_{j}\left(m-2 q_{p}-2[Q(p-1)-Q(j)]-2 k\right)\right\} r^{m-2 q_{p}-2 Q(p-1)} \\
& =\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p)-Q(j)]-2 k)\right\} r^{m-2 Q(p)}
\end{aligned}
$$

where $Q(p-1)+q_{p}=Q(p)$.Thus, the proof is complete.
Now using Lemma 2.3, we can prove the following theorem.

Theorem 2.4 The function defined by

$$
\begin{align*}
u & =\sum_{j \in I_{1}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)} r^{\sqrt{\psi_{j}^{2}-\gamma_{j}}}+c_{j k}^{(2)} r^{-\sqrt{\psi_{j}^{2}-\gamma_{j}}}\right] \\
& +\sum_{j \in I_{2}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)} \cos \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right)+c_{j k}^{(2)} \sin \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right)\right] \\
& +\sum_{j \in I_{3}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)}+c_{j k}^{(2)} \ln r\right] \tag{11}
\end{align*}
$$

is r^{m} type solution of the iterated equation (1). Here, $c_{j k}^{(1)}$ and $c_{j k}^{(2)}$ are arbitrary constants, ψ_{j} is as given in (5) and we divide the index set $I=\{j=1, \ldots, p\}$ into three parts:

$$
\begin{aligned}
I_{1} & =\left\{j \in I, \psi_{j}^{2}-\gamma_{j}>0\right\}, \\
I_{2} & =\left\{j \in I, \psi_{j}^{2}-\gamma_{j}<0\right\}, \\
I_{3} & =\left\{j \in I, \psi_{j}^{2}-\gamma_{j}=0\right\} .
\end{aligned}
$$

Proof. Let $m-2[Q(p)-Q(j)]-2 k=M$. Then, since the roots of the quadratic equation

$$
\begin{equation*}
F_{j}(m-2[Q(p)-Q(j)]-2 k)=M\left(M+2 \psi_{j}\right)+\gamma_{j}=0 \tag{12}
\end{equation*}
$$

are

$$
\left\{\begin{array}{l}
m_{j k}^{(1)}=2[Q(p)-Q(j)]+2 k-\psi_{j}+\sqrt{\psi_{j}^{2}-\gamma_{j}} \tag{13}\\
m_{j k}^{(2)}=2[Q(p)-Q(j)]+2 k-\psi_{j}-\sqrt{\psi_{j}^{2}-\gamma_{j}}
\end{array}\right.
$$

we can rewrite (8) as

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right)=\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1}\left(m-m_{j k}^{(1)}\right)\left(m-m_{j k}^{(2)}\right)\right\} r^{m-2 Q(p)} . \tag{14}
\end{equation*}
$$

From (14), we conclude that for $j=1, \ldots, p$ and $k=0,1, \ldots, q_{j}-1$, the functions $r^{m_{j k}^{(1)}}$ and $r^{m_{j k}^{(2)}}$ are solutions of equation (1). Thus, since equation (1) is linear, by the superposition principle, the function

$$
\begin{equation*}
\sum_{j=1}^{p} \sum_{k=0}^{q_{j}-1}\left[c_{j k}^{(1)} r^{m_{j k}^{(1)}}+c_{j k}^{(2)} r^{m_{j k}^{(2)}}\right] \tag{15}
\end{equation*}
$$

also satisfies equation (1).
We have three cases for the roots:
Case 1. If $j \in I_{1}$, then $m_{j k}^{(1)}$ and $m_{j k}^{(2)}$ are two different real roots. In this case, from (15), the function

$$
\begin{aligned}
& \sum_{j \in I_{1}} \sum_{k=0}^{q_{j}-1}\left[c_{j k}^{(1)} r^{m_{j k}^{(1)}}+c_{j k}^{(2)} r^{m_{j k}^{(2)}}\right] \\
= & \sum_{j \in I_{1}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)} r^{\sqrt{\psi_{j}^{2}-\gamma_{j}}}+c_{j k}^{(2)} r^{-\sqrt{\psi_{j}^{2}-\gamma_{j}}}\right]
\end{aligned}
$$

satisfies (1).
Case 2. If $j \in I_{2}$, then $m_{j k}^{(1)}$ and $m_{j k}^{(2)}$ are both complex and conjugate as

$$
m_{j k}^{(1)}, m_{j k}^{(2)}=2[Q(p)-Q(j)]+2 k-\psi_{j} \pm i \sqrt{\gamma_{j}-\psi_{j}^{2}}
$$

In this case, from (15), the function

$$
\begin{aligned}
& \sum_{j \in I_{2}} \sum_{k=0}^{q_{j}-1}\left[a_{j k}^{(1)} r^{m_{j k}^{(1)}}+a_{j k}^{(2)} r^{m_{j k}^{(2)}}\right] \\
= & \sum_{j \in I_{2}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)} \cos \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right)+c_{j k}^{(2)} \sin \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right)\right]
\end{aligned}
$$

satisfies (1). Here, we use Euler formula

$$
r^{ \pm i \sqrt{\gamma_{j}-\psi_{j}^{2}}}=e^{ \pm i \sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r}=\cos \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right) \pm i \sin \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} \ln r\right)
$$

and $a_{j k}^{(1)}+a_{j k}^{(2)}=c_{j k}^{(1)}, i\left(a_{j k}^{(1)}-a_{j k}^{(2)}\right)=c_{j k}^{(2)}, i=\sqrt{-1}$ as usual.
Case 3. Finally, if $j \in I_{3}$, then $m_{j k}^{(1)}=m_{j k}^{(2)}$ is a multiple root, that is,

$$
m_{j k}^{(1)}=m_{j k}^{(2)}=2[Q(p)-Q(j)]+2 k-\psi_{j}=m_{j k}^{(0)} .
$$

In this case, (14) can be written as

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right)=G_{1}^{2}(m) G_{2}(m) r^{m-2 Q(p)} \tag{16}
\end{equation*}
$$

where

$$
\prod_{j \in I_{3}} \prod_{k=0}^{q_{j}-1}\left(m-m_{j k}^{(0)}\right)=G_{1}(m)
$$

and

$$
\prod_{j \in I \backslash I_{3}} \prod_{k=0}^{q_{j}-1}\left(m-m_{j k}^{(1)}\right)\left(m-m_{j k}^{(2)}\right)=G_{2}(m)
$$

Now, by taking the derivative with respect to m both sides of (16), we obtain

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m} \ln r\right)=G_{1}(m)\left\{2 G_{1}^{\prime}(m) G_{2}(m) r^{m-2 Q(p)}+G_{1}(m) \frac{\partial}{\partial m}\left[G_{2}(m) r^{m-2 Q(p)}\right]\right\} \tag{17}
\end{equation*}
$$

Since $G_{1}\left(m_{j k}^{(0)}\right)=0$ for $j \in I_{3}$ and $k=0, \ldots, q_{j}-1$, taking $m=m_{j k}^{(0)}$ in (16) and (17), we get

$$
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m_{j k}^{(0)}}\right)=0 \text { and }\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m_{j k}^{(0)}} \ln r\right)=0 .
$$

Hence, for $j \in I_{3}$ and $k=0, \ldots, q_{j}-1$, each of the functions $r^{m_{j k}^{(0)}}$ and $r^{m_{j k}^{(0)}} \ln r$ and their superposition

$$
\sum_{j \in I_{3}} \sum_{k=0}^{q_{j}-1} r^{2[Q(p)-Q(j)]+2 k-\psi_{j}}\left[c_{j k}^{(1)}+c_{j k}^{(2)} \ln r\right]
$$

satisfy (1).
Summing up the above three cases with the superposition principle we get (11), which proves the theorem.

Remark 2.5 In the special case $\gamma_{j}=0$ for any $j \in I$, the quadratic equation (12) has the root $m-2[Q(p)-Q(j)]-2 k=M=0$. In this case, since the values

$$
m_{j k}=2[Q(p)-Q(j)]+2 k
$$

are nonnegative integers for $k=0,1, \ldots, q_{j}-1$, the functions $r^{2[Q(p)-Q(j)]+2 k}$ are polynomial solutions of equation (1).

Remark 2.6 For any $j \in I$ and $k=0,1, \ldots, q_{j}-1$, if $-\psi_{j}+\sqrt{\psi_{j}^{2}-\gamma_{j}}$ are even integers and

$$
m_{j k}^{(1)}=2[Q(p)-Q(j)]+2 k-\psi_{j}+\sqrt{\psi_{j}^{2}-\gamma_{j}} \geq 0
$$

then $r^{m_{j k}^{(1)}}$ are polynomial solutions of equation (1).
Remark 2.7 For any $j \in I$ and $k=0,1, \ldots, q_{j}-1$, if $-\psi_{j}-\sqrt{\psi_{j}^{2}-\gamma_{j}}$ are even integers and

$$
m_{j k}^{(2)}=2[Q(p)-Q(j)]+2 k-\psi_{j}-\sqrt{\psi_{j}^{2}-\gamma_{j}} \geq 0
$$

then $r^{m_{j k}^{(2)}}$ are polynomial solutions of equation (1).

3 Solutions of Type $u=u(r)$

In this section, we will show that all solutions which depend on only r for the equation (1) can be expressed by formula (11).

Lemma 3.1 For the function $u=u(r)$,

$$
\begin{equation*}
L_{j} u=e^{-2 t}\left(D^{2}+2 \psi_{j} D+\gamma_{j}\right) u=e^{-2 t} F_{j}(D) u \tag{18}
\end{equation*}
$$

where ψ_{j}, F_{j} are given by (5), (6), respectively, and $D=\frac{d}{d t}, r=e^{t}$.
Proof. Taking into consideration L_{j} and r given by (2) and (3), respectively, if we apply the operator L_{j} to the function $u=u(r)$, we obtain

$$
L_{j} u=r^{-2}\left\{r^{2} \frac{d^{2}}{d r^{2}}+\left(1+2 \psi_{j}\right) r \frac{d}{d r}+\gamma_{j}\right\} u
$$

where the operator in the bracket is an Euler type operator. If we let $r=e^{t}$, then we can write as

$$
L_{j} u=e^{-2 t}\left(D^{2}+2 \psi_{j} D+\gamma_{j}\right) u=e^{-2 t} F_{j}(D) u
$$

where $D=\frac{d}{d t}$. Thus, the proof is complete.
Lemma 3.2 For any positive integer q

$$
\begin{equation*}
L_{j}^{q} u=e^{-2 q t}\left\{\prod_{k=0}^{q-1} F_{j}(D-2 k)\right\} u \tag{19}
\end{equation*}
$$

Proof. We give the proof by induction on q. It is clear by (18) that the equality (19) is true for $q=1$. Now, let us assume that the equality is valid for $q-1$, that is,

$$
\begin{equation*}
L_{j}^{q-1} u=e^{-2(q-1) t}\left\{\prod_{k=0}^{q-2} F_{j}(D-2 k)\right\} u . \tag{20}
\end{equation*}
$$

Applying the operator L_{j} on both sides of (20) and using the relation $L_{j}=$ $e^{-2 t} F_{j}(D)$ in (18), we obtain

$$
\begin{aligned}
L_{j}^{q} u & =L_{j}\left[e^{-2(q-1) t}\left\{\prod_{k=0}^{q-2} F_{j}(D-2 k)\right\} u\right] \\
& =e^{-2 t} F_{j}(D)\left[e^{-2(q-1) t}\left\{\prod_{k=0}^{q-2} F_{j}(D-2 k)\right\} u\right] .
\end{aligned}
$$

From ordinary differential equations, we know that, for any polynomials of the operator D with constant coefficients G and H and for any constant α, the following relation is valid

$$
G(D)\left\{e^{-\alpha t} H(D) u\right\}=e^{-\alpha t} G(D-\alpha) H(D) u
$$

Considering this property, we get

$$
L_{j}^{q} u=e^{-2 t} e^{-2(q-1) t} F_{j}(D-2(q-1))\left\{\prod_{k=0}^{q-2} F_{j}(D-2 k)\right\} u=e^{-2 q t}\left\{\prod_{k=0}^{q-1} F_{j}(D-2 k)\right\} u
$$

which gives the desired result.
Lemma 3.3 For any positive integers p, q_{1}, \ldots, q_{p}

$$
\begin{equation*}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right) u=e^{-2 Q(p) t}\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(D-2[Q(p)-Q(j)]-2 k)\right\} u \tag{21}
\end{equation*}
$$

where $Q(j)=q_{1}+\cdots+q_{j}, j=1, \ldots, p$.
Proof. By using induction argument on p, this is easily proved in a manner similar to the proof of Lemma 3.2.

Theorem 3.4 All solutions of type $u=u(r)$ for the equation (1) can be expressed by the formula (11).

Proof. Equating (21) expression to zero, we obtain an ordinary differential equation with constant coefficients and of order $2 Q(p)=2\left(q_{1}+\cdots+q_{p}\right)$

$$
\begin{equation*}
\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(D-2[Q(p)-Q(j)]-2 k)\right\} u=0 \tag{22}
\end{equation*}
$$

The indicial equation for this equation

$$
\begin{aligned}
\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p)-Q(j)]-2 k) & =0 \\
\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1}\left(m-m_{j k}^{(1)}\right)\left(m-m_{j k}^{(2)}\right) & =0
\end{aligned}
$$

where $m_{j k}^{(1)}$ and $m_{j k}^{(2)}$ are as defined by (13). Thus the solution of (22) is given by

$$
\begin{aligned}
u & =\sum_{j \in I_{1}} \sum_{k=0}^{q_{j}-1}\left[c_{j k}^{(1)} e^{\left(2[Q(p)-Q(j)]+2 k-\psi_{j}+\sqrt{\psi_{j}^{2}-\gamma_{j}}\right) t}+c_{j k}^{(2)} e^{\left(2[Q(p)-Q(j)]+2 k-\psi_{j}-\sqrt{\psi_{j}^{2}-\gamma_{j}}\right) t}\right] \\
& +\sum_{j \in I_{2}} \sum_{k=0}^{q_{j}-1} e^{\left(2[Q(p)-Q(j)]+2 k-\psi_{j}\right) t}\left[c_{j k}^{(1)} \cos \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} t\right)+c_{j k}^{(2)} \sin \left(\sqrt{\gamma_{j}-\psi_{j}^{2}} t\right)\right] \\
& +\sum_{j \in I_{3}} \sum_{k=0}^{q_{j}-1} e^{\left(2[Q(p)-Q(j)]+2 k-\psi_{j}\right) t}\left[c_{j k}^{(1)}+c_{j k}^{(2)} t\right] .
\end{aligned}
$$

If we set $t=\ln r$, the corresponding solution for (1) is given by (11). Thus, the proof is complete.

Remark 3.5 Note that, substituting $u=r^{m}$ in (21) and considering $r=e^{t}$, we obtain

$$
\begin{aligned}
\left(\prod_{j=1}^{p} L_{j}^{q_{j}}\right)\left(r^{m}\right) & =e^{-2 Q(p) t}\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(D-2[Q(p)-Q(j)]-2 k)\right\} e^{m t} \\
& =e^{(m-2 Q(p)) t}\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p)-Q(j)]-2 k)\right\} \\
& =r^{m-2 Q(p)}\left\{\prod_{j=1}^{p} \prod_{k=0}^{q_{j}-1} F_{j}(m-2[Q(p)-Q(j)]-2 k)\right\}
\end{aligned}
$$

which was given previously by (8). That is, (21) reduces to (8). Similarly, we can see that (18) and (19) reduces to (4) and (7), respectively.

References

[1] A. Altın, Solutions of type r^{m} for a class of singular equations, Internat. J. Math. Math. Sci., 5 (1982), 613-619.
[2] A. Altın, Radial type solutions for a class of third order equations and their iterates, Math. Slovaca, 49 (1999), 183-187.
[3] A. Çetinkaya and N. Özalp, Solutions for a class of iterated singular equations, Proc. Indian Acad. Sci. Math. Sci., 117 (2007), 259-265.
[4] A. Çetinkaya and N. Özalp, Radial-type complete solutions for a class of partial differential equations, Cent. Eur. J. Math., 3 (2005), 508-515.
[5] N. Özalp, r^{m}-type solutions for a class of partial differential equations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 49 (2000), 95-100.

Received: May, 2009

