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Abstract

We obtain all solutions which depend only on r for a class of
iterated elliptic or ultrahyperbolic partial differential equations of
even order with singular coefficient. Here, the essential operators
include Laplace, wave, EPD (Euler-Poisson-Darboux) and GASPT
(Generalized Axially Symmetric Potential Theory) operators.
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1 Introduction

In this paper, we consider a class of singular partial differential equations
of the form

(
p∏
j=1

L
qj
j

)
u = (Lq11 . . . Lqpp )u = 0 (1)

where p and q1, . . . , qp are positive integers and

Lj =
n∑
i=1

(
a2
i

∂2

∂x2
i

+
α

(j)
i

xi − x0
i

∂

∂xi

)
±

s∑
i=1

(
b2i
∂2

∂y2
i

+
β

(j)
i

yi − y0
i

∂

∂yi

)
+
γj
r2
. (2)
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The iterated operators L
qj
j are defined by the relations

Lkj (u) = Lj
[
Lk−1
j (u)

]
, k = 1, . . . , qj.

In (2), ai �= 0 (i = 1, . . . , n), x0
i (i = 1, . . . , n), bi �= 0 (i = 1, . . . , s), y0

i

(i = 1, . . . , s) are real constants and α
(j)
i (i = 1, . . . , n), β

(j)
i (i = 1, . . . , s), γj

are real parameters and r is defined by

r2 =

n∑
i=1

(xi − x0
i

ai

)2

±
s∑
i=1

(yi − y0
i

bi

)2

. (3)

The domain of each of the operator Lj is the set of all real valued functions
u (x, y) of class C2 (Ω) where x = (x1, . . . , xn) and y = (y1, . . . , ys) denote
points in R

n and R
s, respectively, and Ω is the regularity domain of u in R

n+s.
The operators Lj are elliptic or ultrahyperbolic with the sign positive or neg-
ative, respectively. Equation (1) includes iterated forms of some well known
classical equations such as Laplace equation, wave equation, Euler-Poisson-
Darboux (EPD) equation and Generalized Axially Symmetric Potential The-
ory (GASPT) equation as special cases.

Recently, rm type solutions for various types of partial differential equations
are studied by several authors [2-5]. We remark that Altın [1] obtained rm type
solutions for a class of partial differential equations which is a special case of
(1) when ai = 1 (i = 1, . . . , n), bi = 1 (i = 1, . . . , s), x0

i = 0 (i = 1, . . . , n),
y0
i = 0 (i = 1, . . . , s). The main object of this work is to extend the results

derived by Altın [1] to solutions of the more general iterated equation (1).

2 rm Type Solutions

Firstly, we will give the following lemmas.

Lemma 2.1 For any real or complex parameter m,

Lj (rm) = Fj (m) rm−2 (4)

where

2ψj = n+ s− 2 +

n∑
i=1

α
(j)
i

a2
i

+

s∑
i=1

β
(j)
i

b2i
(5)

and

Fj (m) = m(m+ 2ψj) + γj. (6)
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Proof. The proof of this lemma can be done easily by applying the operator
Lj to rm.

Lemma 2.2 For any real or complex parameter m,

Lqj (rm) =

{
q−1∏
k=0

Fj (m− 2k)

}
rm−2q (7)

where the positive integer q is the iteration number.

Proof. We give the proof by induction on q. It is clear by (4) that the
equality (7) is true for q = 1. Now, let us assume that the equality is valid for
q − 1, that is,

Lq−1
j (rm) =

{
q−2∏
k=0

Fj (m− 2k)

}
rm−2(q−1).

By applying the operator Lj to both sides of the above equality, we obtain

Lqj (rm) =

{
q−2∏
k=0

Fj (m− 2k)

}
Lj
(
rm−2(q−1)

)
.

Hence, by replacing m by m− 2 (q − 1) in (4), we get

Lqj (rm) =

{
q−2∏
k=0

Fj (m− 2k)

}
Fj
(
m− 2 (q − 1)

)
rm−2q

=

{
q−1∏
k=0

Fj (m− 2k)

}
rm−2q

which completes the proof.

Lemma 2.3 For any positive integers p, q1, . . . , qp(
p∏
j=1

L
qj
j

)
(rm) =

{
p∏
j=1

qj−1∏
k=0

Fj
(
m− 2[Q (p) −Q (j)] − 2k

)}
rm−2Q(p) (8)

where Q (j) = q1 + · · · + qj, j = 1, . . . , p.

Proof. We give the proof induction on p. For any positive integer qj , from
(7) we have

L
qj
j (rm) =

{
qj−1∏
k=0

Fj (m− 2k)

}
rm−2qj . (9)
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For p = 1, (8) is reduced to

Lq11 (rm) =

{
q1−1∏
k=0

F1 (m− 2k)

}
rm−2q1

which gives (9) for j = 1. Now assume that (8) holds for p− 1, that is,(
p−1∏
j=1

L
qj
j

)
(rm)=

{
p−1∏
j=1

qj−1∏
k=0

Fj
(
m−2[Q(p−1)−Q(j)]−2k

)}
rm−2Q(p−1). (10)

On the other hand, from (9) for j = p we have

Lqpp (rm) =

{
qp−1∏
k=0

Fp (m− 2k)

}
rm−2qp.

Thus,(
p∏
j=1

L
qj
j

)
(rm)=

(
p−1∏
j=1

L
qj
j

)(
Lqpp (rm)

)

=

(
p−1∏
j=1

L
qj
j

)({
qp−1∏
k=0

Fp (m− 2k)

}
rm−2qp

)

=

{
qp−1∏
k=0

Fp (m− 2k)

}(
p−1∏
j=1

L
qj
j

)(
rm−2qp

)
.

Hence, by replacing m by m− 2qp in (10), we obtain

(
p∏
j=1

L
qj
j

)
(rm) =

{
qp−1∏
k=0

Fp (m− 2k)

}

×
{
p−1∏
j=1

qj−1∏
k=0

Fj
(
m−2qp −2[Q(p−1) −Q(j)] −2k

)}
rm−2qp−2Q(p−1)

=

{
p∏
j=1

qj−1∏
k=0

Fj
(
m− 2[Q (p) −Q (j)] − 2k

)}
rm−2Q(p)

where Q(p−1) + qp = Q(p) .Thus, the proof is complete.

Now using Lemma 2.3, we can prove the following theorem.
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Theorem 2.4 The function defined by

u =
∑
j∈I1

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk r

√
ψ2

j−γj + c
(2)
jk r

−
√
ψ2

j−γj

]

+
∑
j∈I2

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk cos

(√
γj − ψ2

j ln r
)

+ c
(2)
jk sin

(√
γj − ψ2

j ln r
)]

+
∑
j∈I3

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk + c

(2)
jk ln r

]
(11)

is rm type solution of the iterated equation (1). Here, c
(1)
jk and c

(2)
jk are arbitrary

constants, ψj is as given in (5) and we divide the index set I = {j = 1, . . . , p}
into three parts:

I1 =
{
j ∈ I, ψ2

j − γj > 0
}
,

I2 =
{
j ∈ I, ψ2

j − γj < 0
}
,

I3 =
{
j ∈ I, ψ2

j − γj = 0
}
.

Proof. Let m − 2 [Q (p) −Q (j)] − 2k = M . Then, since the roots of the
quadratic equation

Fj
(
m− 2 [Q (p) −Q (j)] − 2k

)
= M (M + 2ψj) + γj = 0 (12)

are ⎧⎨
⎩

m
(1)
jk = 2 [Q (p) −Q (j)] + 2k − ψj +

√
ψ2
j − γj

m
(2)
jk = 2 [Q (p) −Q (j)] + 2k − ψj −

√
ψ2
j − γj

(13)

we can rewrite (8) as(
p∏
j=1

L
qj
j

)
(rm) =

{
p∏
j=1

qj−1∏
k=0

(
m−m

(1)
jk

)(
m−m

(2)
jk

)}
rm−2Q(p). (14)

From (14), we conclude that for j = 1, . . . , p and k = 0, 1, . . . , qj − 1, the

functions rm
(1)
jk and rm

(2)
jk are solutions of equation (1). Thus, since equation

(1) is linear, by the superposition principle, the function

p∑
j=1

qj−1∑
k=0

[
c
(1)
jk r

m
(1)
jk + c

(2)
jk r

m
(2)
jk

]
(15)
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also satisfies equation (1).
We have three cases for the roots:

Case 1. If j ∈ I1, then m
(1)
jk and m

(2)
jk are two different real roots. In this

case, from (15), the function

∑
j∈I1

qj−1∑
k=0

[
c
(1)
jk r

m
(1)
jk + c

(2)
jk r

m
(2)
jk

]

=
∑
j∈I1

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk r

√
ψ2

j−γj + c
(2)
jk r

−
√
ψ2

j−γj

]

satisfies (1).

Case 2. If j ∈ I2, then m
(1)
jk and m

(2)
jk are both complex and conjugate as

m
(1)
jk , m

(2)
jk = 2 [Q (p) −Q (j)] + 2k − ψj ± i

√
γj − ψ2

j .

In this case, from (15), the function

∑
j∈I2

qj−1∑
k=0

[
a

(1)
jk r

m
(1)
jk + a

(2)
jk r

m
(2)
jk

]

=
∑
j∈I2

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk cos

(√
γj − ψ2

j ln r
)

+ c
(2)
jk sin

(√
γj − ψ2

j ln r
)]

satisfies (1). Here, we use Euler formula

r±i
√
γj−ψ2

j = e±i
√
γj−ψ2

j ln r = cos
(√
γj − ψ2

j ln r
)
± i sin

(√
γj − ψ2

j ln r
)

and a
(1)
jk + a

(2)
jk = c

(1)
jk , i

(
a

(1)
jk − a

(2)
jk

)
= c

(2)
jk , i =

√−1 as usual.

Case 3. Finally, if j ∈ I3, then m
(1)
jk = m

(2)
jk is a multiple root, that is,

m
(1)
jk = m

(2)
jk = 2 [Q (p) −Q (j)] + 2k − ψj = m

(0)
jk .

In this case, (14) can be written as(
p∏
j=1

L
qj
j

)
(rm) = G2

1 (m)G2 (m) rm−2Q(p) (16)
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where

∏
j∈I3

qj−1∏
k=0

(
m−m

(0)
jk

)
= G1 (m)

and

∏
j∈I\I3

qj−1∏
k=0

(
m−m

(1)
jk

)(
m−m

(2)
jk

)
= G2 (m) .

Now, by taking the derivative with respect to m both sides of (16), we obtain

(
p∏
j=1

L
qj
j

)
(rmln r)=G1(m)

{
2G

′
1(m)G2(m)rm−2Q(p)+G1(m)

∂

∂m

[
G2(m)rm−2Q(p)

]}
.

(17)

Since G1

(
m

(0)
jk

)
= 0 for j ∈ I3 and k = 0, . . . , qj − 1, taking m = m

(0)
jk in (16)

and (17), we get(
p∏
j=1

L
qj
j

)(
rm

(0)
jk

)
= 0 and

(
p∏
j=1

L
qj
j

)(
rm

(0)
jk ln r

)
= 0.

Hence, for j ∈ I3 and k = 0, . . . , qj−1, each of the functions rm
(0)
jk and rm

(0)
jk ln r

and their superposition

∑
j∈I3

qj−1∑
k=0

r2[Q(p)−Q(j)]+2k−ψj

[
c
(1)
jk + c

(2)
jk ln r

]

satisfy (1).
Summing up the above three cases with the superposition principle we get

(11), which proves the theorem.

Remark 2.5 In the special case γj = 0 for any j ∈ I, the quadratic equation
(12) has the root m − 2 [Q (p) −Q (j)] − 2k = M = 0. In this case, since the
values

mjk = 2 [Q (p) −Q (j)] + 2k

are nonnegative integers for k = 0, 1, . . . , qj − 1, the functions r2[Q(p)−Q(j)]+2k

are polynomial solutions of equation (1).
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Remark 2.6 For any j ∈ I and k = 0, 1, . . . , qj − 1, if −ψj +
√
ψ2
j − γj

are even integers and

m
(1)
jk = 2 [Q (p) −Q (j)] + 2k − ψj +

√
ψ2
j − γj ≥ 0

then rm
(1)
jk are polynomial solutions of equation (1).

Remark 2.7 For any j ∈ I and k = 0, 1, . . . , qj − 1, if −ψj −
√
ψ2
j − γj

are even integers and

m
(2)
jk = 2 [Q (p) −Q (j)] + 2k − ψj −

√
ψ2
j − γj ≥ 0

then rm
(2)
jk are polynomial solutions of equation (1).

3 Solutions of Type u = u (r)

In this section, we will show that all solutions which depend on only r for the
equation (1) can be expressed by formula (11).

Lemma 3.1 For the function u = u (r),

Lju = e−2t
(
D2 + 2ψjD + γj

)
u = e−2tFj (D)u (18)

where ψj, Fj are given by (5), (6), respectively, and D = d
dt

, r = et.

Proof. Taking into consideration Lj and r given by (2) and (3), respec-
tively, if we apply the operator Lj to the function u = u (r), we obtain

Lju = r−2

{
r2 d

2

dr2
+ (1 + 2ψj) r

d

dr
+ γj

}
u

where the operator in the bracket is an Euler type operator. If we let r = et,
then we can write as

Lju = e−2t
(
D2 + 2ψjD + γj

)
u = e−2tFj (D)u

where D = d
dt

. Thus, the proof is complete.

Lemma 3.2 For any positive integer q

Lqju = e−2qt

{
q−1∏
k=0

Fj (D − 2k)

}
u. (19)
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Proof. We give the proof by induction on q. It is clear by (18) that the
equality (19) is true for q = 1. Now, let us assume that the equality is valid
for q − 1, that is,

Lq−1
j u = e−2(q−1)t

{
q−2∏
k=0

Fj (D − 2k)

}
u. (20)

Applying the operator Lj on both sides of (20) and using the relation Lj =
e−2tFj (D) in (18), we obtain

Lqju = Lj

[
e−2(q−1)t

{
q−2∏
k=0

Fj (D − 2k)

}
u

]

= e−2tFj (D)

[
e−2(q−1)t

{
q−2∏
k=0

Fj (D − 2k)

}
u

]
.

From ordinary differential equations, we know that, for any polynomials of the
operator D with constant coefficients G and H and for any constant α, the
following relation is valid

G (D)
{
e−αtH (D)u

}
= e−αtG (D − α)H (D)u.

Considering this property, we get

Lqju=e−2te−2(q−1)tFj
(
D−2(q−1)

){q−2∏
k=0

Fj (D−2k)

}
u=e−2qt

{
q−1∏
k=0

Fj (D−2k)

}
u

which gives the desired result.

Lemma 3.3 For any positive integers p, q1, . . . , qp(
p∏
j=1

L
qj
j

)
u = e−2Q(p)t

{
p∏
j=1

qj−1∏
k=0

Fj (D − 2 [Q (p) −Q (j)] − 2k)

}
u (21)

where Q (j) = q1 + · · · + qj, j = 1, . . . , p.

Proof. By using induction argument on p, this is easily proved in a manner
similar to the proof of Lemma 3.2.

Theorem 3.4 All solutions of type u = u (r) for the equation (1) can be
expressed by the formula (11).
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Proof. Equating (21) expression to zero, we obtain an ordinary differential
equation with constant coefficients and of order 2Q (p) = 2 (q1 + · · · + qp){

p∏
j=1

qj−1∏
k=0

Fj (D − 2 [Q (p) −Q (j)] − 2k)

}
u = 0. (22)

The indicial equation for this equation

p∏
j=1

qj−1∏
k=0

Fj (m− 2 [Q (p) −Q (j)] − 2k) = 0

p∏
j=1

qj−1∏
k=0

(
m−m

(1)
jk

)(
m−m

(2)
jk

)
= 0

where m
(1)
jk and m

(2)
jk are as defined by (13). Thus the solution of (22) is given

by

u =
∑
j∈I1

qj−1∑
k=0

[
c
(1)
jk e

(2[Q(p)−Q(j)]+2k−ψj+
√
ψ2

j −γj)t+c
(2)
jk e

(2[Q(p)−Q(j)]+2k−ψj−
√
ψ2

j −γj)t
]

+
∑
j∈I2

qj−1∑
k=0

e(2[Q(p)−Q(j)]+2k−ψj)t
[
c
(1)
jk cos

(√
γj − ψ2

j t
)

+ c
(2)
jk sin

(√
γj − ψ2

j t
)]

+
∑
j∈I3

qj−1∑
k=0

e(2[Q(p)−Q(j)]+2k−ψj)t
[
c
(1)
jk + c

(2)
jk t
]
.

If we set t = ln r, the corresponding solution for (1) is given by (11). Thus,
the proof is complete.

Remark 3.5 Note that, substituting u = rm in (21) and considering r = et,
we obtain(

p∏
j=1

L
qj
j

)
(rm) = e−2Q(p)t

{
p∏
j=1

qj−1∏
k=0

Fj (D − 2 [Q (p) −Q (j)] − 2k)

}
emt

= e

(
m−2Q(p)

)
t

{
p∏
j=1

qj−1∏
k=0

Fj (m− 2 [Q (p) −Q (j)] − 2k)

}

= rm−2Q(p)

{
p∏
j=1

qj−1∏
k=0

Fj (m− 2 [Q (p) −Q (j)] − 2k)

}

which was given previously by (8). That is, (21) reduces to (8). Similarly, we
can see that (18) and (19) reduces to (4) and (7), respectively.
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