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Abstract

In this paper, the model of stochastic fuzzy Hopfield neural networks with
time-varying delays and impulses (ISFVDHNNs) is established as a modified
Takagi-Sugeno (TS) fuzzy model in which the consequent parts are composed
of a set of stochastic Hopfield neural networks with time-varying delays and
impulses. Then, the global exponential stability in the mean square for IS-
FVDHNNs is studied by establishing an impulse fuzzy delay differential in-
equality. The sufficient condition, which is easily checked in practice by simple
algebra methods, has a wider adaptive range and it also extends and improves
some results in earlier publications.
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1 Introduction

Hopfield neural networks were first introduced by Hopfield [1]. For a few decades,
Hopfield neural networks have been extensively investigated. Many applications
have been found in different fields such as combinatorial optimization, signal pro-
cessing and pattern recognition. These applications are built upon the stability
analysis of the equilibrium of neural networks. Thus, the stability analysis is a nec-
essary step for the design and applications of neural networks. Sometimes, neural
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networks have to be designed such that there is only equilibrium and this equilib-
rium is globally stable. As is well known, the exponential stable enjoys such nice
properties.

In biological and artificial neural networks, the interactions between neurons
are generally asynchronous which inevitably result in time delays. In electronic
implementation of analog neural networks, nevertheless, the delays are usually time-
varying due to the finite switching speed of amplifiers. It is known that time delays
are often a source of instability of neural networks [2].

Besides delay effect, impulsive effect likewise exists in a wide variety of evolu-
tionary processes in which states are changed abruptly at certain moments of time.
The impulsive differential equations are adequate apparatus for mathematical sim-
ulation of many processes and phenomena in nature which are characterized by the
fact that the system parameters are subject to short-term perturbations in time.
Their study is assuming a greater importance [3]. In [4], [5], some results on this
topic have been reported.

When performing the computation, there are many stochastic perturbations that
affect the stability of neural networks. It was pointed out [6], [7] that a neural
networks could be stabilized or destabilized by certain stochastic inputs. It implies
that the stability analysis of stochastic neural networks also has primary significance
in the research of neural networks. Recently, although the stability analysis of neural
networks has received much attention, the stability of stochastic neural networks
has not been widely studied. In [6], [8], some results related to this issue have been
reported.

Fuzzy logic theory has shown to be an appealing and efficient approach to deal-
ing with the analysis and synthesis problems for complex nonlinear systems. In
[9], Takagi and Sugeno proposed an effective way to transform a nonlinear dynamic
system to a set of linear sub-models via some fuzzy models by defining a linear
input/output relationship as its consequence of individual plant rule. In [10], the
standard TS fuzzy model was extended to one with time delays, and some stability
conditions were presented in terms of linear matrix inequalities (LMIs). In [11],
the TS fuzzy model with time delays was further extended to stochastic fuzzy Hop-
field neural networks with time-varying delays (SFVDHNNs), and an exponential
stability condition is given by constructing some appropriate Lyapunov-Krasovskii
functionals and using the LMIs method.

In this paper, first, we further extend SFVDHNNs to describe the stochastic
fuzzy Hopfield neural networks with time-varying delays and impulses (ISFVDHNNs).
The system dynamics is captured by a set of fuzzy implications which characterize
local relations in the state space. The local dynamics of each fuzzy rule is expressed
by a stochastic Hopfield neural network with time-varying delays and impulses. The
overall fuzzy model can be achieved by fuzzy “blending” of these nonlinear neural
networks. Then, the stability of ISFVDHNNs is discussed by establishing an impulse
fuzzy delay differential inequality. One criterion is given to guarantee the global ex-
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ponential stability in the mean square for ISFVDHNNs. The sufficient condition,
which is easily checked in practice by simple algebra methods, has a wider adaptive
range and it also extends and improves some results in earlier publications.

2 Preliminaries

For A, B ∈ Rm×n or A, B ∈ Rn, A ≥ B (A > B) means that each pair of
corresponding elements of A and B satisfies the inequality “ ≥ (>)”. Especially, A
is called a nonnegative matrix if A ≥ 0, and z is called a positive vector if z > 0.

PC[I, Rn] �{ϕ : I → Rn |ϕ(t+) = ϕ(t) for t ∈ I, ϕ(t−) exists for t ∈ I,
ϕ(t−) = ϕ(t) for all but points tk ∈ I}, where I ⊂ R is an interval, ϕ(t+) and ϕ(t−)
denote the left limit and right limit of scalar function ϕ(t), respectively. Especially,
let PC = PC([−τ, 0], Rn).

For x ∈ Rn, A ∈ Rn×n, we define [x]+ = (|x1|, · · · , |xn|)T , [A]+ = (|aij|)n×n and
introduce the corresponding norm as ||x|| = max

1≤i≤n
{|xi|}, ||A|| = max

1≤i≤n

∑n
j=1 |aij |.

Let (Ω,F , {Ft}t≥t0 , P ) be a complete probability space with a filtration {Ft}t≥t0

satisfying the usual conditions ( i.e. it is right continuous and F0 contains all P -
null sets). ω(t) = (ω1(t), · · · , ωn(t))T is an n-dimensional Brownian motion defined
on (Ω,F , {Ft}t≥t0 , P ). Let C[[−τ, 0], Rn] denote the family of all continuous Rn-
valued functions φ on [−τ, 0] with the norm ||φ|| = sup−τ≤t≤0 |φ(t)|, where | · |
is Euclidean norm of Rn and [φ(t)]τ = ([φ1(t)]τ , · · · , [φn(t)]τ )

T , where [φi(t)]τ =
sup−τ≤s≤0{φi(t + s)}. Denote by Cb

F0
([−τ, 0], Rn) the family of all bounded F0-

measurable, C([−τ, 0], Rn)-valued random variables φ satisfying ||φ||2L2
= sup

−τ≤t≤0
E|φ(t)|2

< ∞, where E denotes the expectation of stochastic process.
In this paper, a general class of ISFVDHNNs is discussed. As in [9] and [11], the

model of ISFVDHNNs is composed of r plant rules that can be described as follows:
Plant Rule l:
IF θ1(t) is ηl

1 and · · · and θp(t) is ηl
p,

THEN
⎧⎨
⎩

dx(t) = [−Alx(t) + Blf(x(t − τ(t)))]dt + σl(x(t), x(t − τ(t)), t)dω(t), t �= tk,
x(t) = H(t−, x(t−)), t = tk, k = 1, 2, · · · ,
x(t) = φ(t), t ∈ [t0 − τ, t0],

(1)

where x(t) = (x1(t), · · · , xn(t))T is the state vector associated with the neurons,
l = 1, · · · , r, ηl

s(s = 1, · · · , p) are the fuzzy sets, θ(t) = (θ1(t), · · · , θn(t))T is the
premise variable vector, r is the number of fuzzy IF-THEN rules, Al = diag{al

i}
with al

i > 0 (i = 1, · · · , n, l = 1, · · · , r), Bl = (bl
ij)n×n is the interconnection matrix,

σl =: Rn×Rn×R+ → Rn×n, that is σl(x, y, t) = (σl
ij(x, y, t))n×n, f = (f1, · · · , fn)T :

Rn → Rn is the neuron activation function, H = (H1, · · · , Hn)T : R+ ×Rn → Rn is
the impulse function, 0 ≤ τ(t) ≤ τ , where τ is a positive constant, tk(k = 1, 2, · · · , )
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is the monotonically increasing sequence, which satisfies that lim
k→∞

tk = ∞. The

initial condition φ ∈ Cb
F0

([−τ, 0], Rn).
In this paper, we always assume that f, σl (l = 1, · · · , r) are continuous, and

system (1) has a solution on the entire t ≥ t0 − τ , which is denoted by x(t) and all
solutions of system (1) are continuous on the right and limitable on the left.

The defuzzified output of system (1) is represented as follows:

⎧⎪⎪⎨
⎪⎪⎩

dx(t) =
r∑

l=1

hl(θ(t)) × [(−Alx(t) + Blf(x(t − τ(t))))dt

+σl(x(t), x(t − τ(t)), t)dω(t)], t �= tk,
x(t) = H(t−, x(t−)), t = tk, k = 1, 2, · · · ,

(2)

where hl(θ(t)) = νl(θ(t))
r�

l=1

νl(θ(t))
, νl(θ(t)) =

p∏
s=1

ηl
s(θs(t)). According to the theory of fuzzy

sets, it is obvious that νl(θ(t)) ≥ 0, l = 1, · · · , r,
r∑

l=1

νl(θ(t)) > 0 for all t. Therefore,

it implies

hl(θ(t)) ≥ 0, l = 1, · · · , r,
r∑

l=1

hl(θ(t)) = 1, for all t. (3)

Definition 1 For ISFVDHNN (2) and every φ ∈ Cb
F0

([−τ, 0], Rn), the trivial solu-
tion is globally exponentially stable in the mean square if there exist a positive scalar
λ > 0 and a positive vector z > 0 such that

Ex2(t) ≤ ze−λ(t−t0), t ≥ t0, (4)

where Ex2(t) = (Ex2
1(t), · · · , Ex2

n(t))T . The positive scalar λ is called to be the
exponential convergent rate.

3 Stability Criterion for ISFVDHNNs

In this section, we first establish an impulse fuzzy delay differential inequality
and then give some criteria about the exponential stability of system (1).

Lemma 1 Let u(t) = (u1(t), · · · , un(t))T ∈ C[[t0,∞], Rn] be a solution of the
following fuzzy delay differential inequality with the initial condition u(s) ∈ PC,
−τ ≤ s ≤ t0,

D+u(t) ≤
r∑

l=1

hl(θ(t)) × [Plu(t) + Ql[u(t)]τ ], t ≥ t0, (5)
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where Pl = (pl
ij)n×n with pl

ij ≥ 0 for i �= j, l = 1, · · · , r, Ql = (ql
ij)n×n ≥ 0 for

l = 1, · · · , r, and hl(θ(t)), l = 1, · · · , r, satisfy (3) . If there exists a positive vector
z = (z1, · · · , zn)n such that

(Pl + Ql)z < 0, l = 1, · · · , r, (6)

then we have

u(t) ≤ ze−λ(t−t0), t ≥ t0, (7)

where the positive constant λ is determined by the following inequality

[λE + (Pl + Qle
λτ )]z < 0, l = 1, · · · , r, (8)

for the given z.

Proof Since (Pl + Ql)z < 0 holds for l = 1, · · · , r, by continuity, there exists
at least a constant λ > 0 such that (8) holds, i.e.,

λzi +
n∑

j=1

(pl
ij + ql

ije
λτ )zj < 0, i = 1, · · · , n, l = 1, · · · , r. (9)

For the initial condition u(s) ∈ PC, −τ ≤ s ≤ t0, by (6), we always can choose
a z such that

u(t) ≤ ze−λ(t−t0), −τ ≤ t ≤ t0. (10)

In order to prove (7), we first prove that for any ε > 0

ui(t) < (1 + ε)zie
−λ(t−t0) � vi(t), t ≥ t0. (11)

If (11) is not true, using the continuity of u(t), there must exist a t∗ > t0 and some
integer m such that

um(t∗) = vm(t∗), D+um(t∗) ≥ v′m(t∗), (12)

ui(t) ≤ vi(t), t0 − τ ≤ t ≤ t∗, i = 1, · · · , n. (13)

Then we have

D+um(t∗) ≤
r∑

l=1

hl(θ(t
∗))

n∑
j=1

(pl
mjuj(t

∗) + ql
mjuj(t

∗ − τ))

≤
r∑

l=1

hl(θ(t
∗))

n∑
j=1

(pl
mj + ql

mje
λτ )(1 + ε)zje

−λ(t∗−t0)

< −
r∑

l=1

hl(θ(t
∗))λzm(1 + ε)e−λ(t∗−t0)

= −λzm(1 + ε)e−λ(t∗−t0)

= v′m(t∗), (14)
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the first inequality is because (5); the second inequality is because (13) and pl
ij ≥ 0

for i �= j, ql
ij ≥ 0, i, j = 1, · · · , n, l = 1, · · · , r; the third inequality is because (3)

and (9).
The contradiction between (14) and the inequality of (12) shows that (11) holds

for any t ≥ t0. Letting ε → 0, we obtain that (7) holds for any t ≥ t0. The proof is
completed.

Remark 1 By the property of M-matrix ([12]), condition (6) can be replaced
by Dl = −(Pl + Ql) ( l = 1, · · · , r) are nonsingular M-matrices and

⋂r
l=1 ΩM (Dl) is

nonempty, where ΩM (D) = {z| Dz > 0, z > 0}.
Theorem 1 Assume that

(H1) For any x ∈ Rn, there exists a nonnegative diagonal matrix L = diag{L1, · · · , Ln}
such that

[f(x)]+ ≤ L[x]+. (15)

(H2) For any xj , yj ∈ R, there exist nonnegative matrices Cl = (cl
ij)n×n, Dl =

(dl
ij)n×n, l = 1, · · · , r, such that

|σl
ij(xj , yj, t)| ≤ cl

ij|xj | + dl
ij |yj|, i, j = 1, · · · , n, t ≥ t0. (16)

(H3) There exists a positive vector z = (z1, · · · , zn)T such that

(Pl + Ql)z < 0, l = 1, · · · , r, (17)

where Pl = (pl
ij)n×n with pl

ii = −2al
i +

n∑
j=1

|bl
ij|Lj + 2r(cl

ii)
2, pl

ij = 2r(cl
ij)

2, i �= j,

Ql = (ql
ij)n×n with ql

ij = |bl
ij|Lj + 2r(dl

ij)
2, i, j = 1, · · · , n.

(H4)There exist nonnegative matrices Rk = (Rk
ij)n×n, k = 1, 2, · · · , such that

[H(t−k , x(t−k ))]+ ≤ Rk[x(t−k )]+, k = 1, 2, · · · . (18)

(H5)Let

γk = max{1, ||Rk||2}, k = 1, 2, · · · , (19)

and there exists a constant η such that

ln γk

tk − tk−1
≤ η < λ, k = 1, 2, · · · , (20)

where the positive constant λ is determined by the following inequality

(λE + Pl + Qle
λ τ )z < 0, l = 1, · · · , r, (21)

for the given z.
Then the trivial solution of ISFVDHNNs (2) is globally exponentially stable in

the mean square and exponential convergent rate equals λ − η.
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Proof By Condition (H3) and continuity, one can know there at least exists a
positive constant λ such that (21) holds.

Calculating the derivative of x2
i (t), t ∈ [tk−1, tk), k = 1, 2, · · · , we have

dx2
i (t) = 2xi(t)dxi(t) + (dxi(t))

2

=

r∑
l=1

hl(θ(t))[−2al
ix

2
i (t) + 2

n∑
j=1

bl
ijxi(t)fj(xj(t − τ(t)))]dt

+
r∑

l=1

hl(θ(t))
n∑

j=1

2xi(t)σ
l
ij(xj(t), xj(t − τ(t)), t)dωj(t)

+

r∑
l=1

h2
l (θ(t))

n∑
j=1

(σl
ij(xj(t), xj(t − τ(t)), t))2dt

+2
r∑

1≤l1<l2≤r

hl1(θ(t))hl2(θ(t))

n∑
j=1

σl1
ij(xj(t), xj(t − τ(t)), t)σl2

ij (xj(t), xj(t − τ(t)), t)dt. (22)

The first equality is because Itô formula, the second equality is because (dt)2 =
dt · dωj(t) = 0, (dωj(t))

2 = 1, dωi(t) · dωj(t) = 0 (i �= j).
Integrating both sides of (22) from tk−1 to t, t ∈ [tk−1, tk), k = 1, 2, · · · , and then

taking expectations, yields

Ex2
i (t) = Ex2

i (tk−1) +

∫ t

tk−1

r∑
l=1

hl(θ(ξ))[−2al
iEx2

i (ξ)

+2
n∑

j=1

bl
ijE(xi(ξ)fj(xj(ξ − τ(ξ))))]dξ

+

∫ t

tk−1

r∑
l=1

h2
l (θ(ξ))

n∑
j=1

E(σl
ij(xj(ξ), xj(t − τ(ξ)), ξ))2dξ

+

∫ t

tk−1

2
r∑

1≤l1<l2≤r

hl1(θ(ξ))hl2(θ(ξ))

n∑
j=1

E(σl1
ij(xj(ξ), xj(ξ − τ(ξ)), t)σl2

ij (xj(ξ), xj(ξ − τ(ξ)), ξ))dξ.(23)

By the property of Dini derivative, we obtain that

D+Ex2
i (t) =

r∑
l=1

hl(θ(t))[−2al
iEx2

i (t) + 2
n∑

j=1

bl
ijE(xi(t)fj(xj(t − τ(t))))]
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+E
r∑

l=1

h2
l (θ(t))

n∑
j=1

(σl
ij(xj(t), xj(t − τ(t)), t))2

+E

r∑
1≤l1<l2≤r

2hl1(θ(t))hl2(θ(t))

n∑
j=1

(σl1
ij (xj(t), xj(t − τ(t)), t)σl2

ij (xj(t), xj(t − τ(t)), t))

≤
r∑

l=1

hl(θ(t))[−2al
iEx2

i (t) + 2
n∑

j=1

bl
ijE(xi(t)fj(xj(t − τ(t))))]

+E

r∑
l=1

h2
l (θ(t))

n∑
j=1

(σl
ij(xj(t), xj(t − τ(t)), t))2

+E(r − 1)
r∑

l=1

h2
l (θ(t))

n∑
j=1

(σl
ij(xj(t), xj(t − τ(t)), t))2

=

r∑
l=1

hl(θ(t))[−2al
iEx2

i (t) + 2

n∑
j=1

bl
ijE(xi(t)fj(xj(t − τ(t))))]

+rE
r∑

l=1

h2
l (θ(t))

n∑
j=1

(σl
ij(xj(t), xj(t − τ(t)), t))2, t ∈ [tk−1, tk). (24)

Since 0 ≤ hl(θ(t)) ≤ 1, l = 1, · · · , r, so
r∑

l=1

h2
l (θ(t)) ≤

r∑
l=1

hl(θ(t)), then by (24), for

t ∈ [tk−1, tk), k = 1, 2, · · · , we have

D+Ex2
i (t) ≤

r∑
l=1

hl(θ(t))[−2al
iEx2

i (t) + 2

n∑
j=1

bl
ijE(xi(t)fj(xj(t − τ(t))))

+r
n∑

j=1

E(σl
ij(xj(t), xj(t − τ(t)), t))2]. (25)

From Conditions (H1), (H2) and (25), for t ∈ [tk−1, tk), k = 1, 2, · · · , we can derive
that

D+Ex2
i (t) ≤

r∑
l=1

hl(θ(t))[−2al
iEx2

i (t) + 2
n∑

j=1

|bl
ij |E(|xi(t)|Lj|xj(t − τ(t)))|)

+r

n∑
j=1

E(cl
ij |xj(t)| + dl

ij|xj(t − τ(t))|)2]

≤
r∑

l=1

hl(θ(t))[−2al
iEx2

i (t) +
n∑

j=1

|bl
ij|LjE(|xi(t)|2 + |xj(t − τ(t)))|2)
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+2r
n∑

j=1

E((cl
ij)

2|xj(t)|2 + (dl
ij)

2|xj(t − τ(t))|2)]

=

r∑
l=1

hl(θ(t))[(−2al
i +

n∑
j=1

|bl
ij |Lj)Ex2

i (t)

+
n∑

j=1

2r(cl
ij)

2Ex2
j (t) +

n∑
j=1

(|bl
ij |Lj + 2r(dl

ij)
2)Ex2

j (t − τ(t))]. (26)

Let V (t) = (V1(t), · · · , Vn(t))T , Vi(t) = x2
i (t), i = 1, · · · , n, from the definition of

Pl, Ql and (26), we obtain that

D+EV (t) ≤
r∑

l=1

hl(θ(t))[PlEV (t) + Ql[EV (t)]τ ], t ∈ [tk−1, tk), k = 1, 2, · · · , (27)

where EV (t) = (EV1(t), · · · , EVn(t))T .
Using the discrete part of (1), we obtain that

x2
i (tk) = (Hi(t

−
k , x(t−k )))2 ≤ (

n∑
j=1

Rk
ijxj(t

−
k ))2 ≤

n∑
j=1

Rk
ij

n∑
j=1

Rk
ijx

2
j (t

−
k )

≤ ||Rk||
n∑

j=1

Rk
ijx

2
j (t

−
k ), k = 1, 2, · · · , (28)

the first inequality is because Condition (H4), the second inequality is because Hölder
inequality, the third inequality is because the definition of norm || · ||.

Then taking expectations from both sides of (28), we have

Ex2
i (tk) ≤ ||Rk||

n∑
j=1

Rk
ijEx2

j (t
−
k ), k = 1, 2, · · · , (29)

that is

EV (tk) ≤ ||Rk||RkEV (t−k ), k = 1, 2, · · · . (30)

For the initial condition φ ∈ PC, by (17), we always can choose a z such that

u(t) = φ(t) ≤ ze−λ(t−t0), −τ ≤ t ≤ t0. (31)

From (17) and (27), we know that all the assumptions of Lemma 1 are true. So,
by Lemma 1, we derive that

EV (t) ≤ ze−λ(t−t0), t0 ≤ t < t1. (32)
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By (30), we have

EV (t1) ≤ ||R1||R1EV (t−1 ) ≤ ||R1||R1ze
−λ(t1−t0) ≤ ||R1||2ze−λ(t1−t0)

≤ γ1ze
−λ(t1−t0), (33)

the second inequality is because (32), the third inequality is because R1z ≤ ||R1||z,
the last inequality is because (19).

So in term of (32), (33) and (19), we derive that

EV (t) ≤ γ1ze
−λ(t−t0), t0 ≤ t ≤ t1. (34)

By Condition (H3), we have

(Pl + Ql)γ1z < 0. (35)

So by (27), (35) and using Lemma 1 again, we obtain that

EV (t) ≤ γ1ze
−λ(t−t0), t1 ≤ t < t2. (36)

Then by (30), we derive that

EV (t) ≤ γ1γ2ze
−λ(t−t0), t1 ≤ t ≤ t2. (37)

Therefore, by simple mathematical induction, we conclude that

EV (t) ≤ γ1 · · ·γk−1ze
−λ(t−t0), tk−1 ≤ t < tk, k = 1, 2, · · · . (38)

From (20), we have γk ≤ eη(tk−tk−1), k = 1, 2, · · · , then, for tk−1 ≤ t < tk

γ1 · · · γk ≤ eη(t1−t0) · · · eη(tk−1−tk−2) ≤ eη(tk−1−t0) ≤ eη(t−t0). (39)

Combining (38) and (39), we can conclude that

EV (t) ≤ ze−(λ−η)(t−t0 ), tk−1 ≤ t < tk, k = 1, 2, · · · , (40)

which implies that all the conclusions of Theorem 1 hold. The proof is completed.
Remark 2 When H(t, x) = x, that is, there is no impulses in system (2),

ISFVDHNN (2) degenerates into the following stochastic fuzzy Hopfield neural net-
works with time-varying delays (SFVDHNN) [11].

dx(t) =

r∑
l=1

hl(θ(t)) × [(−Alx(t) + Blf(x(t − τ(t))))dt + σl(x(t), x(t − τ(t)), t)dω(t)].(41)

By Theorem 1, we can easily obtain the following result.

Theorem 2 Suppose that Conditions (H1), (H2) and (H3) hold, then the trivial
solution of SFVDHNN (41) is globally exponentially stable in the mean square.
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When r = 1 and H(t, x) = x, (2) degenerates into the following stochastic
Hopfield neural networks with time-varying delay.

dx(t) = −Ax(t) + Bf(x(t − τ(t))))dt + σ(x(t), x(t − τ(t)), t)dω(t). (42)

If using the Lyapunov-Krasovskii functional method, such as in [6], [13], [14], to
discuss the stability of (42), one can not drop the assumption on the differentiabil-
ity of time-varying delay τ(t), but by the method in this paper, we need not the
assumption on the differentiability of time-varying delay τ(t). And we can obtain a
similar theorem (only let r = 1 in Condition (H3))with Theorem 2.

4 An Illustrative Example

In this section, we will give an example to illustrate the global exponential sta-
bility in the mean square for (2) further.

Example Let r = 2. Consider the following plant rules of a ISFVDHNN:
IF θ1(t) is ηl

1 and · · · and θp(t) is ηl
p,

THEN

⎧⎪⎨
⎪⎩

dx(t) = [−Alx(t) + Blf(x(t − τ(t)))]dt

+σl(x(t), x(t − τ(t)), t)dω(t), t �= tk, l = 1, 2,

x(t) = H(t−, x(t−)), t = tk, k = 1, 2, · · · ,

(43)

where t1 = 0.1, tk = tk−1 + 0.5k, for k = 2, 3, · · · .ηl
s(s = 1, · · · , p) are the fuzzy

sets, θ(t) = (θ1(t), · · · , θn(t))T is the premise variable vector, ω(t) is a 2×1 Brownian
motion and fi(xi(t)) = tanh(xi(t)), i = 1, 2, τ(t) = | cos(t)|,

A1 =

(
10 0
0 8

)
, A2 =

(
8 0
0 6

)
, B1 =

(−0.6 0.24
0.5 −0.46

)
, B2 =

(
1 1

0.2 0.16

)
,

σ1 =

(
0.2x1(t) − 0.3x1(t − τ(t)) 0.5x2(t)

0.4x1(t − τ(t)) −0.1x2(t) + 0.2x2(t − τ(t))

)
,

σ2 =

(
0.5x1(t) + 0.4x1(t − τ(t)) −0.3x2(t − τ(t))

0.2x1(t) 0.4x2(t)

)
.

Obviously, τ = 1, assumptions (H1) and (H2) are satisfied with L = diag{1, 1} and

C1 =

(
0.2 0.5
0 0.1

)
, C2 =

(
0.5 0
0.2 0.4

)
, D1 =

(
0.3 0
0.4 0.2

)
, D2 =

(
0.4 0.3
0 0

)
,
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respectively. So, by the definition of Pl, Ql, l = 1, 2, we obtain that

P1 =

(−19 1
0 −15

)
, P2 =

(−13 0
0.16 −11

)
, Q1 =

(
0.96 0.24
1.14 0.62

)
, Q2 =

(
1.64 1.36
0.2 0.16

)
,

therefore,

P1 + Q1 =

(−18.04 1.24
1.14 −14.38

)
, P2 + Q2 =

(−11.36 1.36
0.36 −10.84

)
,

thus assumption (H3) is satisfied with z = (1, 1)T . So if H(t, x) = x then sys-
tem (43) becomes SFVDHNN. By Theorem 2 system (43) has exactly one globally
exponentially stable trivial solution (0, 0)T in the mean square.

Remark 3 Clearly, the delays τ(t) do not satisfy the assumption on differen-
tiability, so the stability criterion in [11] can not apply to this example.

Next we consider the case where

H(tk, x(tk)) = e0.15k

(
0.3x1(tk) −0.7x2(tk)
−0.4x1(tk) 0.3x2(tk)

)
, k = 1, 2, · · · . (44)

We can verify that point (0, 0)T is also the trivial solution for (43), and the parameter
of assumption (H4) is as follows:

Rk = e0.15k

(
0.3 0.7
0.4 0.3

)
, k = 1, 2, · · · . (45)

and ||Rk||2 = (e0.15k)2 = e0.3k, k = 1, 2, · · · . So γk = max{1, e0.3k} = e0.3k, k =
1, 2, · · · . For z = (1, 1)T , there exists a positive constant λ = 0.8 such that

(λE + P1 + Q1e
λτ )z = (−14.5294,−10.2830)T < (0, 0)T , (46)

and

(λE + P2 + Q2e
λτ )z = (−5.5234,−9.2388)T < (0, 0)T . (47)

So for k = 1, 2, · · · , we have

ln γk

tk − tk−1
=

ln e0.3k

0.5k
= 0.6 < λ. (48)

Clearly, all assumptions of Theorem 1 are satisfied, so the trivial solution (0, 0)T of
system (43) is globally exponentially stable in the mean square and the exponentially
convergent rate is equal to 0.2.
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5 Conclusion

In this paper, we first establish the model of stochastic fuzzy Hopfield neural
networks with time-varying delays and impulses (ISFVDHNNs), and then by estab-
lishing an impulsive fuzzy delay differential inequality, some simple criterions have
been derived for the global exponential stability in the square mean of ISFVDHNNs.
The simple criterions are also demonstrated by an example. We can see that Theo-
rem 1 and Theorem 2 not only extend and improve some previous results, but also
give some new criteria expressed in terms of system parameters.
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