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Abstract

Diffuse Element Kansa Method (DEKM) is a new method for nu-
merical solution of PDEs that is more exact than Kansa’s method. In
this method, a radial base function, a weight function and two group of
nodes, one category for building our approximation space in the artifi-
cial domain and the other category for finding the coefficient functions
in the domain is needed. The coefficient functions are found by moving
least square (MLS) method.
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1 Introduction

In the last fourteen years ago, meshless methods were a relatively new numer-
ical approach that absorbed many researchers, specially finite element people.
These methods approximate PDEs using scattered data particles, and also have
ability of simulating unsteady problems with shocks. Two main advantages of
meshless methods are: computational efficiency by avoiding mesh generation
or remeshing, and high smoothing degree of approximation. These methods
inherit some of the finite element properties such as locality and reduce compu-
tational effort for problems with complex domain and moving fronts. But these
methods have two important disadvantages: the high computational volume
of finding an inverse of a matrix, and the lack of the interpolation property
which enters difficulties in enforcing essential boundary conditions.

In 1968, Shepard [10] presented a meshless interpolation for irregularly-
spaced data points. After introducing the MLS method by Lancaster and
Salkauskas in 1981 [8], Nayroles et. al. [9], employed a local form of this
approximation for numerical solution of some PDE’s using nonsingular weight
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functions with compact support. In spite of disadvantage of having to find
complete derivatives of their basis functions, they obtained acceptable results
and named their method diffuse element method (DEM). The DEM has the
following properties: (1) locality of the finite element method; (2) increases
degree of smoothing in the approximation; (3) avoids using time-consuming
mesh generation process; (4) the basis function derivatives are not complete;
(5) essential boundary conditions cannot be satisfied exactly and need another
methods; (6) approximation is based on an irregular distribution of nodes; (7)
smoothing degree of the approximation is directly depend on the smoothing
degree of the weights.

In 1994, Belytschko et. al., [1] generalized the DEM and introduced element-
free Galerkin (EFG) method. Some of properties of the EFG method are: (1)
high accuracy; (2) use of complete derivatives; and (3) relative to the DEM,
the EFG method is computationally more expensive.

Approximation of scattered data based on radial base functions (RBFs), is
another meshless method. These type of approximations similar to the others,
can be applied for approximating PDEs. In these methods, a radial function is
core for approximation space and this space is made by translating a standard
radial function with zero as its center (core), to all of the space particles. Here,
we present an interesting approximation space using the nodes that most of
them are selected out of real domain and the others, are selected in the domain.

One of the best advantages of meshless methods based on RBFs is decrease
of computational volume that arises from changing multidimensions to one
dimension. Kansa, [7] is the first person that applied an approximation by
RBFs (pseudo interpolation) to the PDEs.

In this paper, we introduce a generalized Kansa method based on both the
MLS method and incomplete derivatives that used in the DEM by Nayroles et.
al. [9]. This method is very simple and need not any high previous knowledge
of meshless methods, it has a short algorithm and the result of this method
is a direct approximation of the related model problem. This means that
enforcement of boundary conditions is done in the body of our new method.
This task is very important, because all of the meshless methods don’t have
interpolation property, therefore they need to a slack method for enforcing
their boundary conditions and completing these methods.

The rest of our paper is structured as follows: Section 1, introduces the
MLS method and in Section 2 the DEM is reviewed. In Section 3, we explains
the RBFs and Kansa’s method. Section 4, introduces our new method i.e.,
Diffuse Element Kansa method (DEKM). In Section 5, we present two 2–
D steady numerical examples of Laplace and Poisson’s equation on the unit
square. Section 6, presents our concluding remarks.
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2 Moving Least Square Method (MLS)

Let u : Ω −→ IR, where Ω ⊂ IRd, d = 1, 2, 3 be an unknown continuous
function that we try to approximate it by having some data point of it. Given
xj ∈ Ω, j = 1, 2, . . . , n, an irregular distribution of nodes in the domain and
uj = u(xj). Let P(x) be a given m dimensional vector, for example in 1–D
case, let PT (x) = {1, x, . . . , xm−1}. Define the following local approximation

ũy(x) = PT (x) a(y), (1)

where y ∈ Ω is an arbitrary fixed point and its coefficient vector a(y) =
[a1(y), a2(y), . . . , am(y)]T should be found. Let wj(x), j = 1, 2, . . . , n be
the weights are made by a standard form and translated on the points. By
minimizing the following weighted discrete square of local error functional

J(a(y)) = ‖u(·) − ũy(·)‖2
w, (2)

=
n∑

j=1

w(y − xj) (uj − ũy(xj))
2,

=

n∑
j=1

w(y − xj) (uj −PT (xj) a(y))2,

with respect to the coefficient vector a(y), we will have the following system:

A(y) a(y) = F(y)u, (3)

where

A(y) = BW(y)BT ,

F(y) = BW(y),

B = {xi−1
j }, i = 1, 2, . . . , m, j = 1, 2, . . . , n,

W(y) = diag(w(y − x1), w(y − x2), . . . , w(y − xn)),

u = [u(x1), u(x2), . . . , u(xn)]T .

Then the local approximation (1) becomes

ũy(x) = ΦT
y (x)u, (4)

and its related global approximation will be

ũ(x) = ΦT (x)u =
n∑

j=1

φj(x) uj, (5)

where in it the vector base function in the global form with components
{φj(x)}n

j=1 is

ΦT (x) = PT (x)A−1(x)F(x). (6)
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3 Diffuse Element Method (DEM)

All of the meshless fittings such as the MLS method can be applied to the
numerical solution of PDEs. Lancaster & Salkauskas [8] developed the MLS
method as the generalization of the Taylor series method. Nayroles et. al.,
[9] introduced diffuse element approximation (DEA) as a smart change of the
polynomials with constant coefficients that are defined on the elements in the
finite element literature to the polynomials with variable coefficients defined
on overlapped neighborhoods centered on some finite number of points named
particle. The elements such as the triangles are changed to the neighborhoods
that have supports for the weights. The size of these supports can be constant
or variable and the bases built by the MLS method are completely meshless.
Nayroles et. al., [9] used the following local and incomplete derivatives

∂ΦT

∂xi

(x) =
∂PT

∂xi

(x)A−1(x) F(x), i = 1, 2, . . . , d, (7)

which are local xi th derivatives of the base functions that are in the approx-
imation (1). For large number of particles the DEM, gives relatively satis-
factory approximations. The smoothing degree of the DEM approximation is
directly depend on the weights. In the Element Free Galerkin method (EFG),
Belytschko et. al., [1, 2], used the complete derivatives of the MLS bases or
differentiation of the global form of the approximation (5) in the following
form,

∂Φ

∂xi
(x) =

∂PT

∂xi
(x)A−1(x)F(x) + PT (x)A−1(x) (

∂F

∂xi
(x) −

∂A

∂xi
(x)A−1(x)F(x)), i = 1, 2, . . . , d. (8)

The use of the complete derivatives in numerical solution of PDEs gives an
increasing accuracy, specially for problems that have high active subregion such
as crack and shock and also raises the computational volume and complexity
of the systems. One can employ and mix both the DEM and the EFGM
for approximating a problem, this will have an intermediate computational
volume.

4 Approximation based on the radial base func-

tions and the Kansa’s method

The radial base functions (RBFs) are used to approximate scattered data and
construct another powerful meshless approximation. In 1971, Hardy [6] for
the first time employed a typical RBF named multi-quadric RBF (MQ-RBF)
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for approximating scattered data. These type of approximations, similar to
another, can be applied for approximating PDEs. In these methods, approxi-
mation space is constructed by translating one standard radial function that
its center is zero, to all of the other particles.

The approximation by RBFs is as follows:
Let {xj , uj}n

j=1 be a set of given disjoint scattered points and their values
distributed in a domain. Then a RBF must be selected experimentally suitable
for the model problem. The most famous RBFs are:

• Polyharmonic Spline: φ(r) = r2k−1.

• Direct Multiquadric: φ(r) = (c2 + r2)1/2.

• Reciprocal Multiquadric: φ(r) = (c2 + r2)−1/2.

• Gaussian: φ(r) = exp(−(c r)2).

• Thin Plate Spline: φ(r) = r2k ln(r).

• Wendland: φ(r) = (1 − r)m
+ p(r). The cut-off function (·)+ ensures the

compact support of these functions. In fact, these type of RBFs are
piecewise polynomials.

All of these RBFs, are globally supported, except the Wendland RBF, which
has local compact support. In these functions, r =‖ x ‖ /ρ, c > 0 which is a
smoothing parameter and its suitable amount is an open problem, ρ is radius
of a circular support, k, m ∈ IN and p(r) is a polynomial of r. For example,
Wendland C2(Ω) locally compact support RBF is φ(r) = (1 − r)4

+ (1 + 4 r).
All of the RBFs have the following properties:

1. Univariate and insensitive to space dimension.

2. They are meshless.

3. The RBFs are usually symmetric.

4. φ : [0,∞) −→ IR.

5. The Kronecker delta property doesn’t satisfy or φ(rij) �= δi,j.

The approximation space based on the RBFs is {φ(rj)}n
j=1 in which rj =‖

x − xj ‖ /ρ. Given the data {xj , uj}n
j=1 and by using this information, the

RBF approximation will be in the following form,

ũ(x) =
n∑

j=1

φ(rj) uj. (9)
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One of the best advantages of meshless methods based on the RBFs with
respect to another, is high decrease of computations from multidimensions to
one dimension. The use of the globally supported RBFs, reaches to the large
linear systems, poorly condition number, full and diagonally dominant matrix
that means uniqueness of the solution.

Kansa, [7] was the first, who applied the RBFs for approximating PDE’s.
By substituting the approximation equation (9), into a model problem and col-
locating the residual on the particles, one can approximate the model problem
by this method. It is important to know that choosing and finding the RBFs
proportional to a problem, increases accuracy of the method. By appending a
space such as {pi(x)}m

i=1, to the approximation space {φ(rj)}n
j=1, an improved

form of this method based on an enrichment space is found. Therefore, the new
approximation space will be {φ(rj)}n

j=1

⋃ {pi(x)}m
i=1. Usually, enrichment part

of this space is constructed by polynomials, i. e. pi(x) = xα, i = 1, 2, . . . , m,
and α is a multi-index, but this space can be extended to singular functions
and functions containing PDE activities. Based on the enriched space the new
and generalized approximation will be in the following form,

ũ(x) =

n∑
j=1

cj φ(rj) +

m∑
|α|=1

dα xα−1 (10)

In 1–D cases, the number of unknowns are n + m + 1. By collocating the
approximation (10) on the particles, a system with n + 1 equations will be
found (see [3, 4]).

5 Diffuse Element Kansa Method (DEKM)

Let Ω be an open domain of a model problem, Γ be its boundary, Ω̂ be an
artificial domain greater than real domain Ω and, {xj}n

j=1 be given or selected
points that are chosen out of the real domain and are in the artificial domain.

Define the following local approximation

ũy(x) =
n∑

j=1

cj(y)φ(rj), (11)

where y ∈ Ω̄ = Ω
⋃

Γ is an arbitrary fixed point and rj =‖ x − xj ‖, j =
1, 2, . . . , n. We consider the following model problem

L u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ. (12)
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By applying the differential operator L of the model problem (12) to the local
approximation (11), we will have

Lũy(x) =
n∑

j=1

cj(y) Lφ(rj), (13)

where the operator L are affected on the variable x. After substituting the
approximation (11) in the model problem (12), the following two residuals can
be defined and constructed

R1(x,y) = L ũy(x) − f(x),

=

n∑
j=1

cj(y) Lφ(rj) − f(x), x ∈ Ω, (14)

R2(x,y) = ũy(x) − g(x),

=
n∑

j=1

cj(y) φ(rj) − g(x), x ∈ Γ. (15)

As it can be seen, the residual R1 is related to interior of the problem domain
and the residual R2 belong to its boundary. By selecting two category of
points {ξk}nI

k=1 ⊂ Ω and {ηk}nB

k=1 ⊂ Γ, where nI , nB � n, we can use of the
MLS method for finding the coefficient functions cj(x), j = 1, 2, . . . , n.
Therefore, we must select a suitable weight function, such as cubic spline weight
function

w(r) =

⎧⎨
⎩

2/3 − 4r2 + 4r3 r ≤ 1/2,
4/3 − 4r + 4r2 − 4/3r3 1/2 < r ≤ 1,
0 r > 1.

(16)

Now, we can define the following residual functional

J(c1(y), c2(y), . . . , cn(y)) = ‖R1(·,y)‖2
w,Ω + ‖R2(·,y)‖2

w,Γ, (17)

= ‖Lũy(·) − f(·)‖2
w,Ω + ‖ũ(·) − g(·)‖2

w,Γ,

=

nI∑
k=1

w(y − ξk) (Lũy(ξk) − f(ξk))
2

+

nB∑
k=1

w(y − ηk) (ũy(ηk) − g(ηk))
2.

By minimizing the above functional with respect to the coefficient functions
cj(y), j = 1, 2, . . . , n, the following system will be found

(A1(x) + A2(x)) c(x) = F1(x) f + F2(x) g, (18)
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where

A1(x) = B1 W1(x)BT
1 ,

A2(x) = B2 W2(x)BT
2 ,

F1(x) = B1 W1(x),

F2(x) = B2 W2(x),

B1 = {φ(rij)}, i = 1, 2, . . . , n, j = 1, 2, . . . , nI , rij = ‖xi − ξj‖,
B2 = {φ(rij)}, i = 1, 2, . . . , n, j = 1, 2, . . . , nB, rij = ‖xi − ηj‖,

W1(x) = diag(w(x− ξ1), w(x − ξ2), . . . , w(x− ξnI
)),

W2(x) = diag(w(x− η1), w(x− η2), . . . , w(x− ηnB
)),

f = [f(ξ1), f(ξ2), . . . , f(ξnI
)]T ,

g = [g(η1), g(η2), . . . , g(ηnB
)]T .

Because of selecting a suitable weight, the coefficient matrix will be di-
agonally dominant, and so the final system (18) will have a unique solution.
Finally, the numerical solution of the model problem (12) can be shown in the
following global form

ũ(x) =

n∑
j=1

cj(x)φ(rj). (19)

The smoothing degree of this new approximation depends on the weight w
and its selected RBF. This means that if w ∈ C�1(IRd) and φ ∈ C�2(IRd), then
ũ ∈ Cmin{�1,�2}(IRd).

We called our new method Diffuse Element Kansa Method (DEKM). This
method uses of advantages of both the Kansa’s method and the DEM. It also
uses of the MLS method and the artificial boundary for improving accuracy
of the Kansa’s method [7]. Here, we didn’t use of the Element Free Galerkin
(EFG) method [1, 2] and complete or global derivatives in constructing the
DEKM, because high prices of computations can degenerate our new method.

6 Numerical Examples

Let Ω = [0, 1] × [0, 1] be closure of the real domain and Ω̂ be closure of the
artificial domain which is greater than unit square domain. In this section, we
approximate a Laplace problem and a Poisson problem, and we use of a real
and artificial rectangular domain.

Example 6.1 We consider the following Laplace 2–D model problem:

Δ u(x, y) = 0, (x, y) ∈ Ω,

u(0, y) = u(1, y) = u(x, 1) = 0,
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u(x, 0) = sin(πx), x ∈ [ 0, 1],

(20)

Exact solution of this problem is u(x, y) = sin(πx) (cosh(π y) − coth(π)

sinh(π y)), where (x, y) ∈ Ω. The artificial domain is Ω̂ = [−1, 2] × [−1, 2],
and the MLS weight function is the inverse square singular weight function
w(x, y, ξ, η) = 1/((x−ξ)2+(y−η)2) which have global support and is decreasing
radially from its center (ξ, η). The RBF that in this example we used is the
reciprocal multiquadric (RMQ) φ(r) = 1/

√
r2 + c2 c = 0.9 as its smoother

parameter. We selected 11 number of points that distributed uniformly on each
line of the rectangular artificial boundary and therefore, the number of base
functions that we used as the approximation space is 40 number. The number
of points that we used on the real boundary for minimizing the discrete moving
least square or MLS functional (17) is 80 number, that is 21 number of points
on each line of the unit square domain. Figure 1 shows approximation of the
Laplace problem (20) by the DEKM and Figure 2 accuracy of the two linear
errors ũ(x, 0.1) − u(x, 0.1) ũ(x, 0.5) − u(x, 0.5) for x ∈ [ 0, 1].

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

Figure 1: Approximation of the Laplace equation under Dirichlet boundary
conditions of example 1, by the DEKM.

Example 6.2 we consider the following Poisson model problem

Δ u(x, y) = −2 π2 cos(πx) sin(πy), (x, y) ∈ Ω,

u(x, 0) = u(x, 1) = 0, x ∈ [ 0, 1],

ux(0, y) = ux(1, y) = 0, y ∈ [ 0, 1].

(21)

The analytical solution of this problem is u(x, y) = cos(πx) sin(πy). In this

example, we used an artificial boundary Ω̂ = [−0.5, 1.5] × [−0.5, 1.5], and the
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Figure 2: Linear error of the DEKM approximation at x = 0.1 and x = 0.5.

weight function w(x, y, ξ, η) = 1/((x−ξ)2 +(y−η)2). There are 11 uniformly
spaced points on each line of the rectangular boundary and the total number
of points that were used on the artificial boundary are 40 and is equal to the
approximation space dimension. The total number uniformly spaced points
used on the real boundary for using in the MLS method are 140. The RBF
of this example is the Thin Plate Spline (TPS) φ(r) = r2 ln(r). This RBF
have not any parameter. Figure 3 shows an approximation of this example and
Figure 4 shows its linear error for the two constant y = 0.2 and y = 0.5.
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Figure 3: Approximation of the Poisson equation of Example 2 by the DEKM.

7 Concluding Remarks

• Computational task of the DEKM is more than the Kansa’s method. Be-
cause, the inverse of a n×n matrix in the system (18) must be calculated
for each evaluation point.

• The DEKM require neither domain nor boundary discretization, so, it
is a meshless method. The weight function or RBF or both, may have
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Figure 4: Linear error of the approximation at y = 0.2, y = 0.5 under condi-
tions of Example 2.

local support. This localization reflexes into the approximation and the
size of the supports must be selected carefully.

• Radial form of the DEKM is intensive to dimensionality of the problem
and thus is very attractive to high dimensional problems.

• The DEKM need not to any numerical quadrature. In most of the mesh-
less methods, integration of the inner products need a numerical quadra-
ture rule and consequently this numerical quadrature need quadrature
points or discretization.

• Relation between a real domain and its artificial domain and type of the
artificial boundary have not a strict definition and it is experimental.

• In this paper, we applied this method to the static problems and can be
extended to the time dependent problems.

• Computational cost of the DEKM is relatively inexpensive with respect
to domain or mesh methods.

• The solution can be extended outside of its real domain and be defined
in its artificial domain. This is similar to the space that is needed for a
tent and its useable space.

• During minimizing the functional (17), one can select two type of the
weights, one for minimizing L2-norm of the domain residual (14) and the
other for minimizing L2-norm of the boundary residual (15).

ACKNOWLEDGEMENTS. The author would like to thank of referees
of the journal and his dear students.



594 M. Ghorbani

References

[1] T. Belytschko, Y. Y. Lu and L. Gu, Element-Free Galerkin methods,
International Journal for Numerical Methods in Engineering, 37 (1994),
229 - 256.

[2] C. A. Duarte, A Review of Some Meshless Methods to Solve Partial Dif-
ferential Equations, TICAM Report, (1995), 95 - 06.

[3] G. F. Fasshauer, Solving differential equations with radial basis functions:
multilevel methods and smoothing, Advances in Computer and Mathemat-
ics, 11 (1999), 139 - 159.

[4] C. Franke and R. Schaback, Solving Partial Differential Equations by Col-
location using Radial Basis Functions, Applied Mathematics and Compu-
tation, 93 (1998), 73 - 82.

[5] M. Ghorbany and A. R. Soheili, Moving Element Free Petrov Galerkin
Viscous Method, Special Issue on Meshless Methods, Journal of Chinese
Institute for Engineers, 27 (2004), 473 - 479.

[6] R. L. Hardy, Multiquadric equations of topography and other irregular
surfaces, Journal of Geophysical Research, 76(8) (1971), 1905 - 1915.

[7] E. J. Kansa, Multiquadric- A scattered data approximation scheme with
applications to computational fluid dynamics: II. Solutions to parabolic,
hyperbolic, and elliptic partial differential equations, Computers & Math-
ematics with Applications, 19(6-8) (1990), 147 - 161.

[8] P. Lancaster and K. Salkauskas, Surfaces Generated by Moving Least
Squares Methods, Mathematics of Computation, 37 (1981), 141 - 158.

[9] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element
method: Diffuse approximation and diffuse elements, Computational Me-
chanics, 10 (1992), 307 - 318.

[10] D. Shepard, A two-dimensional interpolation function for irregularly-
spaced data, Proceeding of the 23rd Association for Computing Machinery
National Conference, Princeton, NJ: Brandon/Systems Press, (1968),
517 - 524.

[11] R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,
John Wiley and Son’s Ltd., 1986.

Received: October, 2009


