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Abstract : Bi-Frobenius algebras ( A, ¢, t, ¢ ) in the left Yetter-Drinfeld module category

" are considered. The dual algebra of bi-Frobenius algebras in i/ are also bi-Frobe-
nius algebras in ﬁ@&). The module and comodule structure of ¢ e f , L e f , modular
A % A

function a and modular element g are given. The Radford’s antipode ¢* -formula for bi-Fro-
benius algebras in 1/ is also given.
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0 Introduction

Throughout this paper, k denotes a fixed field. Let H be a Hopf algebra over k with a bijective
antipode S, S be the inverse of S. We use Sweedler’s notations in Hopf algebra{ v

By a Frobenius algebra we mean a finite dimensional associative algebra A which has a non-
degenerate linear function. Equivalently, A and its dual A™ are isomorphic as left A -module or
right A -module. There is an interesting connection between Frobenius algebras and Hopf subalge-
bras, solution of the Yang-Baxter Equation, the Jones polynomials, and 2-dimensional topological
quantum field theories 2.

A double Frobenius algebra is a vector space with two Frobenius algebra structure such that
they are coupled in a certain way, as was recently introduced by Koppinen. Double Frobenius al-
gebras are a common generalization of finite-dimensional Hopf algebras, adjacency algebras of

( possibly non-commutative ) association schemes and character-algebras. See [ 3 ] for details.

Recently, Doi and Takeuchi introduced bi-Frobenius algebras in [ 4 ]. Bi-Frobenius algebras
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are some essential subclasses of double Frobenius algebras. Roughly speaking, bi-Frobenius alge-
bras are equivalent to double Frobenius algebras modulo some simplication. A bi-Frobenius alge-
bra( A, b, L, ) is a Frobenius algebra and Frobenius coalgebra with a bijective antipode ¢ , see
[ 4 ]2.2. But a bi-Frobenius algebra need not be a bialgebra and the antipode need not be the in-
verse of id under the convolution product. Finite dimensional Hopf algebras are basic examples of
bi-Frobenius algebras.

In recent years, with the development of braided Hopf algebras, many finite dimensional
Hopf algebras are studied in braided tensor categories. Doi studied the Hopf modules in the left
Yetter-Drinfeld module category in [ 5 ]. If L is a finite dimensional Hopf algebra in /> , he
proved that the dual algebra L™ has a right L -Hopf module structure which is not analogous to the
usual one. Braided bi-Frobenius algebras are also introduced in [ 4 ]. Doi and Takeuchi gave two
expressions of the Nakayama automorphism and proved the Radford’s S* -formula by braided
graphes.

Since bi-Frobenius algebras are the generalization of finite dimensional Hopf algebras and
"y is a braided tensor category, motivated by [ 4 ] and using the technique in[ 1 Jand [ 5 ], we
study bi-Frobenius algebras in /o, In this paper, some results in Hopf algebras in /o are gen-
eralized to bi-Frobenius algebras ( A, ¢, ¢, f ) in ;D and give another way to prove some results
in[ 4 ]. In particular, if (A, ¢, t, ¢ ) is a bi-Frobenius algebra in ;> , we prove that the dual
algebra is also a bi-Frobenius algebra in /. But it does not hold in a k -linear abelian rigid
monoidal category. We give the ¢* -formula which does not involve the double ribbon map as Doi
and Takeuchi’s 16.3 in[ 4 ]. Our method is easier to be understood for those who are not familiar
with braided graphes.

This paper is organized as follows:

In Section 1, we give the definition and examples of bi-Frobenius algebras in h/o.

In Section 2, we prove that the dual algebras (A", ¢, b, Y ) are also bi-Frobenius algebras

in /> with distinet multiplication and comultiplication from usual dual algeboas. We also get the
module and comodule structure of ¢ e J , 1 e f .
e A

In Section 3, we give several automorphisms of bi-Frobenius algebras in /o,
In Section 4, by comparing two expressions of Nakayama automorphism, we get the ¢* -for-

mula.

1 Preliminaries

We denote the left module action as — and the left H -comodule structure map asp: V— H
@V, plv) = 21}71 ® 2.

Definition 1'°' A left Yetter-Drinfeld module category /D is a category whose objects are
both left H -module and left H -comodule and satisfy the compatibility condition:



%5 Bi-Frobenius Algebras in Left Yetter-Drinfeld Module Categories 535

Y ho! @hy =" = Y (hy—v)"h, @(Chy —0v)°, (1)
which is equivalent to
Z(hav)%@(hav)(): Zh,vils(h\g)@hzﬁvo, (2)

forall Vellynv e V, h e H.
By [ 6 ], "4/ has a braiding on objects V, W as follows:

T VRW-WR V;v®w|—>21flﬂw®v°,ve V,we W.
THWRVHSVRW; w®vlk>Y o' ®@S(v) > w

Lemma 1 A is an algebra in /> if and only if A is a left H -module algebra and left H -co-
module algebra, i.e. (3 ) and (4 ) hold :
h—Cab) = > (hy—a)Xh,—b), h—1, = e h)l,. (3)

plab) = Y (ab)" ®@(ab)” = Y a'b"' ®@a’s’, p(1,) =1, 1,. (4)
A'is a coalgebra in | uyp iff A is a left H -module coalgebra and left H -comodule coalgebra, i. e.
(5) and (6) hold:

ACh—a) =Y (h —a)®(hy—a,), eh—a) =€ h)ela) (5)

2 a’' ®(d) ®(d), = z a, e, ®a’ ®a,’, Za_leA( a®) =¢(all, (6)
Proof It is easy to get from [6 ]
Definition 2 Let A be a finite dimensional algebra and coalgebra in j/», t € A and ¢ e
A”". Suppose that
i)e: A—kande(ab) = €,(a)e,(b).
i)u;: k—AandAlu,(1)) = u,(1) @ u,(1).
iii ) (A, ¢ ) is a Frobenius algebra in /o,
iv) (A, t)is a Frobenius coalgebra in | /p.
Define a map ¢y: A — A by
pla) = Y &(1,(1," —>a),”, Va e A, (7)
such that
v ) i is an anti-algebra map in .
vi ) is an anti-coalgebra map in .
We call (A, ¢, t, ) a bi-Frobenius algebra in |4/ , i the antipode of A.
Remark 1) That ¢ is an anti-algebra map and anti-coalgebra map in ;4 means that:
w(ab)zzzﬁ(a'lﬂb)iﬁ(ao):z(a_1H¢<b))¢(ao). (8)
Ayl a) = 21//( a,” —a,) Q@yla) = 2((11_1 —yla,)) Qyla’) (9)
2) From [ 4 ] ¢ is bijective, soy( 1) =1, eo iy = e. We can show ¢ e Lr* , 1 e Lr. In-

deed, by the definition of ¢ ,
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L=y(1) = Y l1,(1,7 —>1))," =
N e t,” )" = Y e, = t—o,
and hence ¢( 1, )t, = 1 , i.e. b e L
da)=eogla) = Sl 1,(5," a))e1,') =
Y (el t,)a) = ¢(1a) = (p=—t )N a),

soVaeA, ¢(ta) = ela)p(t) = el a), and hence ¢ Lr.

3)dim£* = landdier = 1by[4}or[6:|.

Example 1 Finite dimensional Hopf algebras are bi-Frobenius algebras, so all finite dimen-
sional Hopf algebras in /% are bi-Frobenius algebras in | /p.

Example 2 A Hopf algebra H is a left Yetter-Drinfeld module by considering H as a left H -
module via the left adjoint action and as a left H -comodule via A. Let H be a finite dimensional
commutative Hopf algebra in j; /> and A be a bi-Frobenius algebra in ;> , then A ® H is a bi-
Frobenius algebra with multiplication (@ ® k X b ® I) = (ab ® ki) and comultiplication A( @ ®

k) = z“(a1 Rk )R(a, ®k,)fora, b € A, k, I € H. If we define the module by h —( a

®I1) = Z(hl—>a)®(h2—>l)and comodule by p( @ @ 1) = Zafllfl ®Ra @1, then( A
QH, ¢, by, t, ®t,, y @ S)is a bi-Frobenius algebra in | yms.

2 The dual algebras
In[ 4 ], Doi and Takeuchi has pointed that if A is an object in a k -linear abelian rigid monoi-
dal category, the dual A" has no structure as an object in the category. But, if A is a bi-Frobenius
algebra in iyy» , we prove that A* is also a bi-Frobenius algebra in 1o,
Firstly, A" has the contragredient left H -module structure [7], i.e.
(h—fXa)=(Sh)—>a), VheH, acA,feA". (10)
Since A is a left H -module, A™ has the transposed right H -comodule structure by [ 7 ] and it be-

comes a left H -comodule via S. p:A” HH@A*,p(f) = zfl ®f0 , where

Eflfo(a)=23(a71)ﬂa0), Ya e A (11)
Lemma 2>’ For any left H -comodule V , define §*: A° ® A (A ® A)" by
0 (fRiNxQy) = YAy ) >a)(y), VfjeA  x,y e A
Then 6%’ is bijective.
Theorem 1  If( A, ¢, ¢, ¢ ) is a bi-Frobenius algebra in > , then(A™, ¢, ¢, * )is

(2)

also a bi-Frobenius algebra in jj¢/» , with multiplicationm,. = (A, )" 6>’ , unit1,. =€, , co-

multiplication A,. = (6> )"'(m, )" , counite,.: fl>f 1, ) and antipode ¢ *. Explicitly, Vf,
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g € A", %, y € Amultiplication is given by
(fg Xx) = Zﬂg_l —x,)g%(x,) = Zf(g(xz‘l ) —x, )g( x,°) (12)
comultiplication A,.(f) = Y f; ® f, is given by
f(xy)=Zfl(fz'lﬁx)fzo(y)=Zﬁ(S(y'l)Hx)fz(yO). (13)
Proof In[ 4 |, Doi and Takeuchi pointed out that if (A, ¢, ¢, i ) is a bi-Frobenius alge-
bra, then the dual algebra( A, ¢, ¢, " ) is also a bi-Frobenius algebra. Here we only need to

prove that A* e y» and A* is an algebra and a coalgebra in .
1) Since

S hif'Chy—f Xa) =Y hf'f(SChy)—a)by(10)
= Y hS((SChy)—a) N (SChy) —a))by(11)
= > hS(SChy )a™ S Chy ) ) S(hy ) —a®) by (2)
= 3 by SChy)SCa™ Db SChy ) —a®)
= Y SCa™ A SChy ) —a”)
= Y SCa" h(hy —fX a”) by (10)
= Y Chy—>f) " hy(hy —f)°Ca) by (11).
So (2) holds, i.e. A* e lym.

2) A" is a left H-module algebra, i.e. (3 ) holds. In fact, we have
(h—(fg)Xx) =(fgXSCh)—x)by(10)
= Y Ag > (S(h)—x) )g"((S(h)—wx),) by (12)

= > Mg SChy) —x, )g"(SCh ) —x,).
and
S (Chy—fXhy—g)Xx)
= Y (hy—fXChy—g)" —x N hy—g)(x,) by (12)
= 3 A SCh g SChy ) =, X by — g° X x,) by (2),(10)
= Y Kg'SChy) —x, )g"(S(hy )=, ).

(h—1,.Xa) =1,.(Sh)—>a) =eS(h)—>a)=€eh)la)=eh)l,.(Ca)
3)A% is a left H -comodule algebra, i. e. (4) holds. Indeed,

SN g = T ™) e g by (12)
= S A ) o ) g )8, ) by (11)
= TS ) OS82, ) by (11)
= A ) o gl )8, )
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= Y (fg X« )S(x™) by (6),(12)

= Y (fg)(x )X fg)" by (11)
andp(1,.) =ple,) =1,R¢, =1,1,..
4)A” is a left H -module coalgebra, i.e. (5) holds.
(678, (h—>)Na®b) =76 ) " (m) (h—>f)Xa®b)
=(h—fXab)
= Y ACSChy) —a)X SChy)—b)) by (10),(3)

= Y ACSCSChy b7 S*Chy ))SChy ) — a)f,( SChy ) — b ) by (12)
= Y ACSChOSCH™ ) — a)fy( SChy ) —b").
= Y (hy—>fi X S(b™)—a) hy—fNb")
=07 (hy>f)®@Ch,—>f,)Na®b)

ande,.(h—f) =(h—f)1)=e h)1).
5)A* is a left H -comodule coalgebra, i.e. (6 ) holds, since

SLHTATEA L @ y)
= Y A ATANCSCy ) >Ry
= Y S8y ) —x)™)SCy™ ACCSCy™?) —x)" (5" ) by (11)
= Y SCSCy™ )y ™)SCy™ )ACSCy™) -2 )f(y° ) by (11)
= Y STy RSy ) > )AY)
= Y SCay ™ A% ) by (13)
= 3 £ Cxy) by (11)
= Y ST ) = a ) u(5")
= Y0 () Nx®y)
and Y fe,.(f) = €,.(f)1, = 1)1, Hence A" is a bi-Frobenius algebra in jn.
Proposition 1 1( A, ¢, , ) s a bi-Frobenius algebra in ., 1 [, ¢ e [, there

exists B € Alg( H, k) and a group-like element n € H such that Ya e A , h ¢ H

o h—a)=ph)a) (14)
npla) = Y SCa )l a’) (15)

h—t=pBh)t (16)
Yi' @t =85(n)®t (17)

Proof FotheH,d)eJ;*,
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(h—¢)f =D hy > (P S(hy) >f)) = D hy >(p(SChy) >f)N1)) =
Noh > (dfS(hy)>1)) =(h—¢)1),
soh b e L This implies h— = B SCh) ) for B € Alg( H, k) and then ¢ h—a ) =B h)
¢( a). The others can be likewise deduced.
By §1,¢¢ L b e L Let] = kt then diml = 1. For any A e "4 , we have that Hom( I

R A, I®A)—Hom( A,A ) which assigns id ® fto fis bijective. It can be applied to the isomor-
phism7e 7: IQA—>AQRI—1Q®A , and so there exists a natural automorphism £2: A — A such
that

_Q(a):ZS(n)ﬁaOIB(a_l). (18)
Each £ induces a functor 2: s Hﬁrymm. That is fo 2, = £, ffor any f € Hom( A,B),
A, B ejuyp. Let
0N(a)=8n)—>a and Q(a) = Zﬁ( a™ )a.
So {2 = (), - £),. By Proposition 1, we have ,(t) = Q,(¢) = g(S(n) )t
Proposition 2 (2 is an algebra and coalgebra map in .
Proof Sincet e A satisfies (1), by( 16 ) and (17 ), we have
hSCn)BChy ) = BChy )S(n)h,. (%)
We prove that £2is a left H -module and left H -comodule map. In fact, Vh € H, a € A,
Xh—a)=8n)>(h—>a)B(h—>a)")

Y, SCn)h, —a’BChy )BCa™ )BCSChy ) by(2)
S BCSChy ) )BChy Wby SCn) — a’Bla™ ) by( * )
ZhS(n)—HzO,B(a_l) =h—>Xa)

and

YXKa)' @Xa) =Y (S(n)—aBla))! ®(S(n)—dpla"))
Y. S(n)a'n®S(n)—a'pla?)by(2)

Y a?®S(n)—>a"Bla) byl %)

Ya' @)

It is easy to prove that £2is an algebra and coalgebra map. So the assertion follows.

Letfpbe the inverse of ¢ , then Ya, b € A4,
J/(ab)=Z@(bo)(g(bfl)atjf(a)) (19)
Alyla)) = D gla,") ®@(SCa,™ ) >yl a,)) (20)

Dual basis plays an important role in Frobenius algebras. In the following, we will consider

the dual basis of bi-Frobenius algebras in f/o.
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Proposition 3 ( Y ,(y{1,°)), SC1,7" ) —1, ) is the dual basis of bi-Frobenius algebra
(A, ¢, t, ) in jyp.
Proof Bya = o yla) = Y ¢(1,(1,7 —a) (1, ), we have
2, (a)= YA SCa))
= Y, )BCSCt, ™ ) t,( 8, —a)) by(7)
= Y, )p((S(1,7 ) >ty Ja).
Soa = Y 0P ,°)P(S(1,™ ) — 1, )a). By 2(a) = Y pla™)a’, we also have
CY ("), B, )S(1,7% ) — 1, ) is the dual basis of (A, ¢, ¢, ) in .
Take t¢p € Hom( A, A) , then Qo (tdp) = (tdp)o 2. By Proposition 3, we have
Si@pa ) =t ®@0a) =
N i (a0 1,"))) @ (1, ) > ¢, =
N C)Cayl 1, ) @ S(1,7 ) —> 1, =
Nt ®@pCS(n) )l ay(1,” ))S(1, ™) — ;. (21)
We recall the definition of antipode : y(a) = Y ¢(1,(t,” — a))t,". It follows that

Zd)( 1, —a))t,’ = Zd)(t)e( a, W a,) = 2(1)( ta, W a, ) fort e Lr, b e Lr*, Va

e A. We can replace t with a e A.

Proposition 4 1f( A, ¢, ¢, ) is a bi-Frobenius algebra in jjy» , then
Y dlaCa,” —b))a = Y dlab, W b,), ¥ a,beA (22)
Proof b =qog(b) = > ¢(1,(1t,” — b)) 1,") , so
Ab)= Y b ®b,
= Y 0, (1,7 = b)) (1,°),") @ S((1,°),™ ) -y (1,°), ) by (20)
= Y (0,(t, 71 b)) 1°) @ Sty ) (1, ) by (6).

We only need to show that ¥ 3 a’ )l ( a’ ), (( a’ ), ) b ) ) ( a’ ), ) = pYY: a! )b
(a’b, (b, ). In fact, we have

Sy Bla e Ca® ) (((a”),)" —b) XN (a),)

= Y BOSCn ) ) ap 1" )P (SCey™ ) — 1, X SCey 7 e, 'ty — b))
S, ) >, by (21),(2)

= Y B0SCn ) )l ayd 5° ) )BCSCe, ™ ) 1,1, 1,77 —5))S(1,7) —> 1,

= Y BS(n) ) ab,” )BCSCb, ™ )yl b, )

= Y BS(n)SCb, ™" ) )l ab,” Wyl b,)
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= Y BCab,'S(b, ) ) a’b,” Wyl b, ) by (15)
= Y BCa™ )l a’b, (b, ).

3 Nakayama automorphisms
In this section, we give the module and comodule structures of the modular element g and the

modular function e of A. We also give several automorphisms of bi-Frobenius algebras in /.

Ift e J; , at € L for Ya € A. Sincef is one dimensional , it follows that at = o a )i for

A
some o € Alg( A,k ). Thatisd( at) = ol @) , sot—¢p = a. Dually, there exists a group-like el-
ement g € A satisfying fx¢p = L g)pfor Vfe A" (fxp)Xt) =f£1,)p(1,) = Lg)p(t),
so g = ¢—t. We call @ the modular function of A, g the modular element of A , see [2].

Fora, b € A, define the Nakayama automorphism N: A — A of the bi-Frobenius algebra( A,
b, t, ) in jyn by
d)(aN(b))ZZqﬁ((a_l—»b)uo). (23)
Fort € A , define the coNakayama automorphism ‘N:A — A of the bi-Frobenius algebra( A, b, t,
) in YD by
oo, ®NMi,) = >, -1, @0 (24)
Proposition 5 If( 4, b, L, ) is a bi-Frobenius algebra in ﬁfygs, N and °N are the Nakaya-
ma automorphism and coNakayama automorphism respectively, then
1) N and °N are automorphisms in D,
2)N: A" 5 Ais an algebra map in jym.
3)°N: A“7” - A s a coalgebra map in “n.
Proof 1) Va,b e A, we have
Halh—>Nb)))= Y ¢phy—>[(SCh)—>a)Nb)])

= > Bl )p((SChy ) —a)NCb)) by (14)

= S BhOHL(SCh)—>a)" —>bTS(h)—al)by(23)
= Y B ) (SChyda by —b X SChy)—>a®)) by (2)

= Y & (h,SChy)a™hy —b X hsS(h, ) —a’)) by (14)

= Y ¢(Cahy —>b)X hySChy)—a’))

= > ¢(a'h—b)a")
= ¢l aNCh—b)).
So N is a left H -module map.
Next we show N is a left H -comodule map. Firstly, it is easy to check A” ® A A" : f®
a b>f<—a is a left H -comodule map. Since A* = ¢p<—A , there exists ab e A such thatf = $p<—b.
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We have
Y (N a))"L(Na))) =Y SeS((Ma))" N(Na)))
= Y S(fF(NCa)) = Y S(Ch=b)" N p=b)(Na))
= Y S(p'b P (b°NCa)) = D SCb)S(n)p( (b~ —a)b’) by (15),(23)
= Y Sb2 N —a)b” )b —a)b” ) ) by (15)
= Y S(b7 )b a7 S(b2 )b G (b7 —a’ )b ) by (2)
= > a ' ¢((b" —a" ") = Y a'p(bN a’))
= Y af(Ma)).
So N is a left H -comodule map. Hence N is an automorphism in />, Next we show that ‘N is also
a map in hyyn. We have
Not, ®h—>Nty) = Y hy—>[SCh)—>t, @Mt,) ]
= Y hy—(SChy )t hy —1, ® SChy ) —1,° ) by (24)
= Y hSChy )t " hy —t, @ hySChy ) —t,°
=>4 Th—>,®4° = Y1, N h—t,)
and
SONCOT N ) = Y ST CNCe)) = S Ni)) =7l N
So N is an automorphism in hm.
2) We only need to check that » (SCe™)— N b6°) X SCe)S(67)S* (™) —> M "))
= N(be)for Va, b, c e Aand N(1) = 1.
> dlal SCe™) >N )N S(e?)S(b™)S (e ) >N "))
= Y HLCal SCe™) > Nb")))'S(e?)S(b7)S (e ) — " ]
LalSCe™)— N )) ") by (23)
= Y P (aSCe™ )b e™S(e™)S(b7)S (™) > )a’(S(e™ ) —Nb")))
by (5) and (2)
= Y p((a' - (S )—>Nb)))
= Y Hl(a? ") a5 (S(c")—>b) a?—c")a")by(23)and(5)
= Y p((a™c'S(a?)a™'S(c?)—b)(a™ —c")a") by (2)
= Y ¢ (a?—>b)Na' —>c)d”) = Y ¢((a” —(be))a") by(3)
= 3 (aNCbe)) by (23).
ByA® = <A, Y (S(c?) >N )N S(e?)S(b7) S (e ) >N ")) = Nbe). It is
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casy to see that N( 1) = 1. Hence N: A"”” — A is an algebra map in T/,
3 ) Dualizing the proof of 2 ).
Proposition 6 Let o be the modular function, g be the modular element of A , then
h—g =€ h)g
e ®eg =1Qg
odh—a)=h—>oda)=eh)la)
Y a'alad’) = ol a)l,,
Proof 1) We have
Y Chy—g)BChy) = Y Chy —1,¢(1,))pChy)
= Y Chy =1, )BCh )Pl 1,) = Y Chy — 1, )l hy —1,) by (14)
= Y (h—ot)((h—1),) = Y pCh)d(t,) by (16)

= B(h)g.
So
h—g = Chy—g)BCh, )BSChy)) = Y BCh g SChy)) =
> BCh IBSCh,))g = plelh))g = el h)g.
2 ) In fact, we have
Ye'Sn)®g" = D (d—=1)"'S(n)@(p—>1)
=Y n) @6 °pl1,) = D7, @1, ¢(1," ) by (15)
=217 p((1"),) = D S(n) @l t,) by (17)
=5n)Q® g
Since S( n ) is the inverse of n, > g7 ® g’ =1 ® g

3 ) We have
ala)S(n) =(t—=p N a)S(n) =¢(at)S(n) =

Y pla'?)at = Y pa’t)a'S(n) =
S ol a®)a'S(n).
Soad a)l, = Y a'al a”).
4 ) Indeed,
dh—a)k=Ch—a) =3 h —CalSChy)—1))
= Y h —(aB(S(h,))t) = Y hy —tal a)B(SChy)))
= 3 Bk OBSChy )l @i by(16)

=elh)la)d =(h—ala)h
Proposition 7 Let N be the Nakayama automorphism, (2be the natural automorphism and i
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be the antipode of the bi-Frobenius algebra ( A, ¢, ¢, ¢ ) in /> , then
Nz=g?e Qo(<a)=00¢o(~a)
Proof VYa e A, we have
Na)=totpo Ma)

> e, (t, ™ > NCa)) (1, ) by (7)
N (e, a1, ) by (23)
N (e —a) ), Wy (°),) by (6)
Y ot —a) (" —a), > (" —>a),”) by (22)
Y o (S(n)—a)((S(n)—a)” —)W((S(n)—>a)’)by(17)
= Y ¢((S(n)—a )BS(n)a,”" S(n) W (S(n)—a,)
Y oA S(n)—>a W (S(n)—>aBla,™))
Y ol a, W (Ka,))
Y (gPe 2o (—a)a)
Since i is a map in ;UD ,  commutes with Q. So N = Y ¢’ o Qo («—a) = 0o’ o (—a).

Proposition 8 If "NV is the coNakayama automorphism, then ‘N = ¢ o Qo (g +).

Denote « as the inverse of a, g as the inverse of g.

Corollary 1 <q:4 — A is an algebra automorphism in U and o = ao if = ao if. ais
an algebra map in .

Proof Since « is an algebra map, <« is an algebra automorphism in i/% by Proposition 7
and « is an algebra map in jUD. So ais invertible in A under the * — multiplication. Since a is
a group-like element in A" , o =y (a) = o panda =y (a) = ao .

Corollary 2 g +: A— A, al—>gais a coalgebra automorphism in fm.

By Corollary 1 and Corollary 2, we have the following two corollaries.

Corollary 3 The actions <«, <—a,a—, a— are algebra automorphisms in j;/». Dually,
g, g, g, * g are coalgebra automorphisms in | yn.

Corollary 4 Actions g * g: a bogag, a—~( )<—a: a F>a— a<—a are both algebra and

coalgebra automorphisms in j». g+ g, a—( )<—a and y commute with each other.

4 The ¢*-formula

Let ( 'y ) be the opposite category of hyn , their objects are the same, and the braiding
of ()™ ist ™' If(A, ¢, t, ) is a bi-Frobenius algebra in s , it is easy to see that( A,
¢, t, ) is also a bi-Frobenius algebra in ( jy» )™. Let N’ be the Nakayama automorphism of bi-
Frobenius algebra (A, ¢, ¢, ¢ ) in( o> )™, N’ is defined by ¢( aN'( b)) = z SO (SCh™)
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—a))forVa, b e A
Proposition 9  Let N be the Nakayama automorphism of the bi-Frobenius algebra( A, b, t,
@) in jyn, N’ be the Nakayama automorphism of the bi-Frobenius algebra (A, ¢, ¢, ) in
(4yn)” , then N = N'o 2 = 2o N
Proof for Va, b e A, ¢{aM b)) = qu((afl —>b)a0)by(23 ). We have
N e X a))= D HtN(S(n)—a)pla))
Y H(S(n)—a® XS(S(n)a'S(n))—1t)pla”))
> H((SCn)—a® gl SCa™))pla™))
Y H((S(n)—al)
Yot —al’)

¢ tNCa ).
Notice that N’ is a left H -module and left H -comodule map, so N = N'o 2 = 2o N'.
Let N be the Nakayama automorphism of bi-Frobenius algebra (A, ¢, ¢, ¢ ) in s , we

have N = Qo o ( <a ) by Proposition 7. By Proposition 9, we get N’ = o ( — a ). Let N”
be the Nakayama automorphism of bi-Frobenius algebra ( A”, g—d, t, ¢ ) in (> )™. From
(g~ N agN'(b)g) = ¢plagN' (b)) = ¥ ¢(b°(S(b™")—>(ag))
= Y (S(b")—a)g) = Y (g Xb(S(b")—>a))
= (g—=¢p N aN"(b))

foranya, b € A, we get N' = gN'g = g(f* o ( <~ ) )g. On the other hand, the antipode of
(A, g—b, t,(z )in( Z(y@ )P is ajb , modular function isa’ = o, <—a’ = a— , and the natural
automorphism (2’ is £2”'. Applying Proposition 7 to N” , we have N = 07" o ¢)° o (a—) = g( ¢’
o ( «<—a ) )g. From the above argument, we get the following theorem as [ 9 |:

Theorem 2 If( A, ¢, t, ) is a bi-Frobenius algebra in 4>, « and g are the modular
function and the modular element of A respectively, then

' =06 gla( )—alg = gla( )—alg- .
Remark By Corollary 4 and (2 commutes with ¢4 , we get that
g = e (" )—a" )g" = g"( "= )—a" )g" o "

VY m e N. Since g and « are group-like elements of A and A™ respectively and distinct group-like
elements are k -independent, their orders are finite' ®’. So the order of i is finite if and only if the
order of 2 is finite.

Dually, using the coNakayama automorphism, we can also get the ¢* -formula of bi-Frobe-
nius algebra ( A, b, L, ) in ﬁ(ym.
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