Article ID:0253-2778(2003)05-0533-14

Bi-Frobenius Algebras in Left Yetter-Drinfeld Module Categories*

WANG Yan-hua

(Department of Mathematics, USTC, Hefei 230026, China)

Abstract: Bi-Frobenius algebras (A, ϕ , t, ψ) in the left Yetter-Drinfeld module category ${}^{H}_{H}\mathcal{Y}\mathcal{D}$ are considered. The dual algebra of bi-Frobenius algebras in ${}^{H}_{H}\mathcal{Y}\mathcal{D}$ are also bi-Frobenius algebras in ${}^{H}_{H}\mathcal{Y}\mathcal{D}$. The module and comodule structure of $\phi \in \int_{A^*}^{r}$, $t \in \int_{A}^{r}$, modular function α and modular element g are given. The Radford's antipode ψ^4 -formula for bi-Frobenius algebras in ${}^{H}_{H}\mathcal{Y}\mathcal{D}$ is also given.

Key words: Hopf algebra; Frobenius algebra; Yetter-Drinfeld module category

CLC number: 0153.3 Document code: A

AMS Subject Classifications (2000):16W30, 18D10

0 Introduction

Throughout this paper, k denotes a fixed field. Let H be a Hopf algebra over k with a bijective antipode S, \overline{S} be the inverse of S. We use Sweedler's notations in Hopf algebra [1].

By a Frobenius algebra we mean a finite dimensional associative algebra A which has a non-degenerate linear function. Equivalently, A and its dual A^* are isomorphic as left A-module or right A-module. There is an interesting connection between Frobenius algebras and Hopf subalgebras, solution of the Yang-Baxter Equation, the Jones polynomials, and 2-dimensional topological quantum field theories [2].

A double Frobenius algebra is a vector space with two Frobenius algebra structure such that they are coupled in a certain way, as was recently introduced by Koppinen. Double Frobenius algebras are a common generalization of finite-dimensional Hopf algebras, adjacency algebras of (possibly non-commutative) association schemes and character-algebras. See [3] for details.

Recently, Doi and Takeuchi introduced bi-Frobenius algebras in [4]. Bi-Frobenius algebras

^{*} Received date: 2002-11-15

are some essential subclasses of double Frobenius algebras. Roughly speaking, bi-Frobenius algebras are equivalent to double Frobenius algebras modulo some simplication. A bi-Frobenius algebra (A, ϕ , t, ψ) is a Frobenius algebra and Frobenius coalgebra with a bijective antipode ψ , see [4]2.2. But a bi-Frobenius algebra need not be a bialgebra and the antipode need not be the inverse of id under the convolution product. Finite dimensional Hopf algebras are basic examples of bi-Frobenius algebras.

This paper is organized as follows:

In Section 1, we give the definition and examples of bi-Frobenius algebras in ${}_{H}^{H}\mathcal{Y}$ \triangle .

In Section 2, we prove that the dual algebras (A^* , t, ϕ , ψ^*) are also bi-Frobenius algebras in ${}^H_H\mathcal{Y}\!\!\!$ with distinct multiplication and comultiplication from usual dual algebras. We also get the module and comodule structure of $\phi\in\int_{A^*}^r$, $t\in\int_A^r$.

In Section 3, we give several automorphisms of bi-Frobenius algebras in ${}_{H}^{H}\mathcal{Y}_{\Sigma}$.

In Section 4, by comparing two expressions of Nakayama automorphism, we get the ψ^4 -formula.

1 Preliminaries

We denote the left module action as \to and the left H -comodule structure map as $\rho: V \to H$ $\otimes V$, $\rho(v) = \sum v^{-1} \otimes v^{0}$.

Definition 1^[6] A left Yetter-Drinfeld module category ${}^{H}_{H}\mathcal{Y}\mathbb{D}$ is a category whose objects are both left H -module and left H -comodule and satisfy the compatibility condition:

$$\sum h_1 v^{-1} \otimes h_2 \to v^0 = \sum (h_1 \to v)^{-1} h_2 \otimes (h_1 \to v)^0, \tag{1}$$

which is equivalent to

$$\sum (h \to v)^{-1} \otimes (h \to v)^{0} = \sum h_{1} v^{-1} S(h_{3}) \otimes h_{2} \to v^{0}, \qquad (2)$$

By [6], ${}^{\it H}_{\it H}\mathcal{Y}\!\!\!$ has a braiding on objects $\it V$, $\it W$ as follows:

$$\tau \colon V \otimes W \to W \otimes V; \ v \otimes w \longmapsto \sum v^{-1} \to w \otimes v^{0}, \ v \in V, \ w \in W.$$

$$\tau^{-1}: W \otimes V \to V \otimes W; \ w \otimes v \mapsto \sum_{i} v^{0} \otimes \overline{S}(v^{-1}) \to w.$$

Lemma 1 A is an algebra in ${}^H_H\mathcal{Y}\mathfrak{D}$ if and only if A is a left H -module algebra and left H -comodule algebra, i. e. (3) and (4) hold:

$$h \to (ab) = \sum (h_1 \to a)(h_2 \to b), h \to 1_A = \epsilon(h)1_A. \tag{3}$$

$$\rho(ab) = \sum (ab)^{-1} \otimes (ab)^{0} = \sum a^{-1}b^{-1} \otimes a^{0}b^{0}, \rho(1_{A}) = 1_{H} \otimes 1_{A}.$$
 (4)

A is a coalgebra in $_{H}^{H}\mathcal{Y}\mathfrak{D}$ iff A is a left H -module coalgebra and left H -comodule coalgebra, i. e. (5) and (6) hold:

$$\Delta(h \to a) = \sum_{i} (h_{i} \to a_{i}) \otimes (h_{i} \to a_{i}), \ \epsilon(h \to a) = \epsilon_{H}(h) \epsilon_{A}(a). \tag{5}$$

$$\sum a^{-1} \otimes (a^{0})_{1} \otimes (a^{0})_{2} = \sum a_{1}^{-1} a_{2}^{-1} \otimes a_{1}^{0} \otimes a_{2}^{0}, \quad \sum a^{-1} \epsilon_{A}(a^{0}) = \epsilon_{A}(a) 1_{H}. \quad (6)$$

Proof It is easy to get from [6].

Definition 2 Let A be a finite dimensional algebra and coalgebra in ${}_{H}^{H}\mathcal{Y}\mathcal{D}$, $t \in A$ and $\phi \in A^{*}$. Suppose that

- i) $\epsilon_4: A \to k$ and $\epsilon_4(ab) = \epsilon_4(a)\epsilon_4(b)$.
 - ii) $u_A: k \to A$ and $\Delta(u_A(1)) = u_A(1) \otimes u_A(1)$.
 - iii) (A, ϕ) is a Frobenius algebra in ${}_{H}^{H}\mathcal{U}_{\Sigma}$.
 - iv)(A, t) is a Frobenius coalgebra in ${}_{H}^{H}\mathcal{Y}\mathfrak{D}$.

Define a map $\psi: A \to A$ by

$$\psi(a) = \sum_{i} \phi(t_1(t_2^{-1} \to a)) t_2^{0}, \ \forall a \in A, \tag{7}$$

such that

v) ψ is an anti-algebra map in ${}_{H}^{H}\mathcal{Y}$ \triangle .

vi) ψ is an anti-coalgebra map in ${}_{H}^{H}\mathcal{Y}\mathfrak{D}$.

We call (A, ϕ, t, ψ) a bi-Frobenius algebra in ${}_{H}^{H}\mathcal{YD}$, ψ the antipode of A.

Remark 1) That ψ is an anti-algebra map and anti-coalgebra map in ${}^H_H y \cap$ means that:

$$\psi(ab) = \sum \psi(a^{-1} \to b) \psi(a^{0}) = \sum (a^{-1} \to \psi(b)) \psi(a^{0}). \tag{8}$$

$$\Delta \psi(a) = \sum \psi(a_1^{-1} \to a_2) \otimes \psi(a_1^{0}) = \sum (a_1^{-1} \to \psi(a_2)) \otimes \psi(a_1^{0}). \tag{9}$$

2) From $[4]\psi$ is bijective, so $\psi(1) = 1$, $\epsilon \circ \psi = \epsilon$. We can show $\phi \in \int_{A^*}^r$, $t \in \int_A^r$. Indeed, by the definition of ψ ,

$$\begin{array}{lll} 1 &= \psi(\ 1\) \ = \ \sum \phi(\ t_1(\ t_2^{\ -1} \longrightarrow 1\)\)t_2^{\ 0} \ = \\ & \sum \phi(\ t_1 \epsilon(\ t_2^{\ -1}\)\)t_2^{\ 0} \ = \ \sum \phi(\ t_1\)t_2 \ = \ t -\!\!\!\!\!-\phi\,, \end{array}$$

and hence $\phi(t_1)t_2 = 1$, i. e. $\phi \in \int_{A^*}^r$.

$$\boldsymbol{\epsilon}(\ a\) \ = \boldsymbol{\epsilon} \circ \ \psi(\ a\) \ = \ \sum \ \phi(\ t_1(\ t_2^{\ -1} \longrightarrow a\)\) \boldsymbol{\epsilon}(\ t_2^{\ 0}\) \ = \ \\ \sum \ \phi(\ t_1 \boldsymbol{\epsilon}(\ t_2\) a\) \ = \ \phi(\ ta\) \ = \ (\ \phi \longleftarrow t\) (\ a\),$$

so $\forall a \in A$, $\phi(ta) = \epsilon(a)\phi(t) = \epsilon(a)$, and hence $t \in \int_A^r$.

3) dim
$$\int_{4^+}^{r} = 1$$
 and dim $\int_{4}^{r} = 1$ by [4] or [6].

Example 1 Finite dimensional Hopf algebras are bi-Frobenius algebras, so all finite dimensional Hopf algebras in ${}^{H}_{H}\mathcal{Y}$ are bi-Frobenius algebras in ${}^{H}_{H}\mathcal{Y}$.

2 The dual algebras

Firstly, A^* has the contragredient left H-module structure [7], i. e.

$$(h \to f)(a) = f(S(h) \to a), \forall h \in H, a \in A, f \in A^*.$$

$$(10)$$

Since A is a left H-module, A^* has the transposed right H-comodule structure by [7] and it becomes a left H-comodule $via\ \overline{S}$. $\rho:A^*\to H\otimes A^*$, $\rho(f)=\sum f^{-1}\otimes f^0$, where

$$\sum_{a} f^{-1} f^{0}(a) = \sum_{a} \overline{S}(a^{-1}) f(a^{0}), \quad \forall a \in A.$$
 (11)

Lemma 2^[5] For any left H -comodule V, define $\theta^{(2)}$: $A^* \otimes A^* \to (A \otimes A)^*$ by

$$\theta^{(2)}(f \otimes j)(x \otimes y) = \sum f(\bar{S}(y^{-1}) \to x) j(y^{0}), \ \forall f, j \in A^{*}, x, y \in A.$$

Then $\theta^{(2)}$ is bijective.

 $g \in A^*$, x, $y \in A$ multiplication is given by

$$(fg)(x) = \sum f(g^{-1} \to x_1)g^0(x_2) = \sum f(\overline{S}(x_2^{-1}) \to x_1)g(x_2^0)$$
 (12)

comultiplication $\Delta_{A^*}(f) = \sum f_1 \otimes f_2$ is given by

$$f(xy) = \sum f_1(f_2^{-1} \to x) f_2^{0}(y) = \sum f_1(\bar{S}(y^{-1}) \to x) f_2(y^{0}).$$
 (13)

Proof In [4], Doi and Takeuchi pointed out that if (A, ϕ, t, ψ) is a bi-Frobenius algebra, then the dual algebra (A^*, t, ϕ, ψ^*) is also a bi-Frobenius algebra. Here we only need to prove that $A^* \in {}^H_H\mathcal{Y}_{\Sigma}$ and A^* is an algebra and a coalgebra in ${}^H_H\mathcal{Y}_{\Sigma}$.

1) Since

$$\sum h_{1}f^{-1}(h_{2} \to f^{0})(a) = \sum h_{1}f^{-1}f^{0}(S(h_{2}) \to a) \text{ by } (10)$$

$$= \sum h_{1}\overline{S}((S(h_{2}) \to a)^{-1})f((S(h_{2}) \to a)^{0}) \text{ by } (11)$$

$$= \sum h_{1}\overline{S}(S(h_{4})a^{-1}S^{2}(h_{2}))f(S(h_{3}) \to a^{0}) \text{ by } (2)$$

$$= \sum h_{1}S(h_{2})\overline{S}(a^{-1})h_{4}f(S(h_{3}) \to a^{0})$$

$$= \sum \overline{S}(a^{-1})h_{2}f(S(h_{1}) \to a^{0})$$

$$= \sum \overline{S}(a^{-1})h_{2}(h_{1} \to f)(a^{0}) \text{ by } (10)$$

$$= \sum (h_{1} \to f)^{-1}h_{2}(h_{1} \to f)^{0}(a) \text{ by } (11).$$

So (2) holds, i. e. $A^* \in {}_{H}^{H}\mathcal{YD}$.

2) A^* is a left H -module algebra, i.e. (3) holds. In fact, we have

$$(h \to (fg))(x) = (fg)(S(h) \to x) \text{ by } (10)$$

$$= \sum f(g^{-1} \to (S(h) \to x)_1)g^0((S(h) \to x)_2) \text{ by } (12)$$

$$= \sum f(g^{-1}S(h_2) \to x_1)g^0(S(h_1) \to x_2).$$

and

$$\sum ((h_1 \to f)(h_2 \to g))(x)$$

$$= \sum (h_1 \to f)((h_2 \to g)^{-1} \to x_1)(h_2 \to g)^0(x_2) \text{ by } (12)$$

$$= \sum f(S(h_1)h_2g^{-1}S(h_4) \to x_1)(h_3 \to g^0)(x_2) \text{ by } (2), (10)$$

$$= \sum f(g^{-1}S(h_2) \to x_1)g^0(S(h_1) \to x_2).$$

$$(\ h \rightarrow 1_{{\scriptscriptstyle A}^*}\)(\ a\)\ =\ 1_{{\scriptscriptstyle A}^*}(\ S(\ h\) \rightarrow a\)\ =\ \epsilon(\ S(\ h\) \rightarrow a\)\ =\ \epsilon(\ h\)\epsilon(\ a\)\ =\ \epsilon(\ h\)1_{{\scriptscriptstyle A}^*}(\ a\)$$

3) A^* is a left H -comodule algebra, i. e. (4) holds. Indeed,

$$\sum (f^{0}g^{0})(x)f^{-1}g^{-1} = \sum f^{0}(\overline{S}(x_{2}^{-1}) \to x_{1})g^{0}(x_{2}^{0})f^{-1}g^{-1} \text{ by (12)}$$

$$= \sum f^{0}(\overline{S}(x_{2}^{-2}) \to x_{1})f^{-1}g(x_{2}^{0})\overline{S}(x_{2}^{-1}) \text{ by (11)}$$

$$= \sum f(\overline{S}(x_{2}^{-3}) \to x_{1}^{0})\overline{S}(\overline{S}(x_{2}^{-2})x_{1}^{-1}x_{2}^{-4})\overline{S}(x_{2}^{-1})g(x_{2}^{0}) \text{ by (11)}$$

$$= \sum f(\overline{S}(x_{2}^{-1}) \to x_{1}^{0})g(x_{2}^{0})\overline{S}(x_{1}^{-1}x_{2}^{-2})$$

$$= \sum (fg)(x^{0})\overline{S}(x^{-1}) \text{ by (6), (12)}$$
$$= \sum (fg)^{0}(x)(fg)^{-1} \text{ by (11)}$$

and $\rho(1_{A^*}) = \rho(\epsilon_A) = 1_H \otimes \epsilon_A = 1_H \otimes 1_{A^*}$.

4) A^* is a left H-module coalgebra, i. e. (5) holds.

$$(\theta^{(2)}\Delta_{A^*}(h \to f))(a \otimes b) = (\theta^{(2)}(\theta^{(2)})^{-1}(m_A)^*(h \to f))(a \otimes b)$$

$$= (h \to f)(ab)$$

$$= \sum f((S(h_2) \to a)(S(h_1) \to b)) \text{ by } (10), (3)$$

$$= \sum f_1(\overline{S}(S(h_3)b^{-1}S^2(h_1))S(h_4) \to a)f_2(S(h_2) \to b^0) \text{ by } (12)$$

$$= \sum f_1(S(h_1)\overline{S}(b^{-1}) \to a)f_2(S(h_2) \to b^0).$$

$$= \sum (h_1 \to f_1)(\overline{S}(b^{-1}) \to a)(h_2 \to f_2)(b^0)$$

$$= \theta^{(2)}(\sum (h_1 \to f_1) \otimes (h_2 \to f_2)(a \otimes b)$$

and $\epsilon_{A^*}(h \rightarrow f) = (h \rightarrow f)(1) = \epsilon(h)f(1)$.

5) A* is a left H-comodule coalgebra, i. e. (6) holds, since

$$\sum f_{1}^{-1} f_{2}^{-1} \theta^{(2)}(f_{1}^{0} \otimes f_{2}^{0})(x \otimes y)$$

$$= \sum f_{1}^{-1} f_{2}^{-1} f_{1}^{0}(\overline{S}(y^{-1}) \to x) f_{2}^{0}(y^{0})$$

$$= \sum \overline{S}((\overline{S}(y^{-2}) \to x)^{-1}) \overline{S}(y^{-1}) f_{1}((\overline{S}(y^{-2}) \to x)^{0}) f_{2}(y^{0}) \text{ by (11)}$$

$$= \sum \overline{S}(\overline{S}(y^{-2}) x^{-1} y^{-4}) \overline{S}(y^{-1}) f_{1}(\overline{S}(y^{-3}) \to x^{0}) f_{2}(y^{0}) \text{ by (11)}$$

$$= \sum \overline{S}(x^{-1} y^{-2}) f_{1}(\overline{S}(y^{-1}) \to x^{0}) f_{2}(y^{0})$$

$$= \sum \overline{S}(x^{-1} y^{-1}) f(x^{0} y^{0}) \text{ by (13)}$$

$$= \sum f^{-1} f^{0}(xy) \text{ by (11)}$$

$$= \sum f^{-1} f^{0}(xy) \text{ by (11)}$$

$$= \sum f^{-1} f^{0}(y^{0}) f(x^{0} y^{0}) f(y^{0}) f(y^{0})$$

$$= \sum f^{-1} f^{0}(y^{0}) f(y^{0}) f(y^{0}) f(y^{0}) f(y^{0})$$

and $\sum f^{-1} \epsilon_{A^*}(f^0) = \epsilon_{A^*}(f) 1_H = f(1) 1_H$. Hence A^* is a bi-Frobenius algebra in ${}^H_H \mathcal{Y}_{\Sigma}$.

Proposition 1 If (A, ϕ, t, ψ) is a bi-Frobenius algebra in ${}^H_H \mathcal{YD}$, $t \in \int_A^r$, $\phi \in \int_{A^*}^r$, there exists $\beta \in Alg(H, k)$ and a group-like element $n \in H$ such that $\forall a \in A$, $h \in H$

$$\phi(h \to a) = \beta(h)\phi(a) \tag{14}$$

$$n\phi(a) = \sum \overline{S}(a^{-1})\phi(a^{0})$$
 (15)

$$h \to t = \beta(h)t \tag{16}$$

$$\sum_{i} t^{-1} \otimes t^{0} = S(n) \otimes t. \tag{17}$$

Proof For $\forall h \in H$, $\phi \in \int_{A^*}$,

$$(h \to \phi) f = \sum h_1 \to (\phi(S(h_2) \to f)) = \sum h_1 \to (\phi(S(h_2) \to f)(1)) =$$

$$\sum h_1 \to (\phi(S(h_2) \to 1)) = (h \to \phi) f(1),$$

so $h \to \phi \in \int_{A^*}$. This implies $h \to \phi = \beta(S(h))\phi$ for $\beta \in Alg(H, k)$ and then $\phi(h \to a) = \beta(h)$ $\phi(a)$. The others can be likewise deduced.

By § 1, $t \in \int_A^r$, $\phi \in \int_{A^*}^r$. Let I = kt then $\dim I = 1$. For any $A \in {}^H_H \mathcal{Y} \mathcal{D}$, we have that $Hom(I \otimes A, I \otimes A) \to Hom(A, A)$ which assigns $id \otimes f$ to f is bijective. It can be applied to the isomorphism $\tau \circ \tau \colon I \otimes A \to A \otimes I \to I \otimes A$, and so there exists a natural automorphism $\Omega \colon A \to A$ such that

$$\Omega(a) = \sum S(n) \rightarrow a^0 \beta(a^{-1}). \tag{18}$$

Each Ω induces a functor Ω : ${}^H_H\mathcal{Y} \mathcal{D} \longrightarrow_{\mathrm{H}}^{\mathrm{H}}\mathcal{Y} \mathcal{D}^{[\,8\,]}$. That is $f \circ \Omega_A = \Omega_B \circ f$ for any $f \in \mathit{Hom}(A,B)$, $A, B \in {}^H_H\mathcal{Y} \mathcal{D}$. Let

$$\Omega_1(a) = S(n) \rightarrow a$$
 and $\Omega_2(a) = \sum \beta(a^{-1})a^0$.

So $\Omega = \Omega_2 \circ \Omega_1$. By Proposition 1, we have $\Omega_2(t) = \Omega_1(t) = \beta(S(n))t$.

Proposition 2 Ω is an algebra and coalgebra map in ${}^{H}_{H}\mathcal{Y}$ \square .

Proof Since $t \in A$ satisfies (1), by (16) and (17), we have

$$h_1S(n)\beta(h_2) = \beta(h_1)S(n)h_2.$$
 (*)

We prove that Ω is a left H -module and left H -comodule map. In fact, $\forall h \in H$, $a \in A$,

$$\Omega(h \to a) = S(n) \to (h \to a)^{0} \beta((h \to a)^{-1})
= \sum S(n)h_{2} \to a^{0} \beta(h_{1})\beta(a^{-1})\beta(S(h_{3})) \text{ by (2)}
= \sum \beta(S(h_{3}))\beta(h_{2})h_{1}S(n) \to a^{0} \beta(a^{-1}) \text{ by (*)}
= \sum hS(n) \to a^{0} \beta(a^{-1}) = h \to \Omega(a)$$

and

$$\sum \Omega(a)^{-1} \otimes \Omega(a)^{0} = \sum (S(n) \to a^{0}\beta(a^{-1}))^{-1} \otimes (S(n) \to a^{0}\beta(a^{-1}))^{0}$$

$$= \sum S(n)a^{-1}n \otimes S(n) \to a^{0}\beta(a^{-2}) \text{ by } (2)$$

$$= \sum a^{-2} \otimes S(n) \to a^{0}\beta(a^{-1}) \text{ by } (*)$$

$$= \sum a^{-1} \otimes \Omega(a^{0}).$$

It is easy to prove that Ω is an algebra and coalgebra map. So the assertion follows.

Let $\overline{\psi}$ be the inverse of ψ , then $\forall a, b \in A$,

$$\bar{\psi}(ab) = \sum \bar{\psi}(b^0)(\bar{S}(b^{-1}) \rightarrow \bar{\psi}(a)).$$
 (19)

$$\Delta(\bar{\psi}(a)) = \sum_{i} \bar{\psi}(a_2^0) \otimes (\bar{S}(a_2^{-1}) \rightarrow \bar{\psi}(a_1)). \tag{20}$$

Dual basis plays an important role in Frobenius algebras. In the following, we will consider the dual basis of bi-Frobenius algebras in ${}^{H}_{H}\mathcal{Y}\mathfrak{D}$.

Proposition 3 $(\sum \Omega_2(\bar{\psi}(t_2^0)), \bar{S}(t_2^{-1}) \rightarrow t_1)$ is the dual basis of bi-Frobenius algebra (A, ϕ, t, ψ) in ${}^H_H \mathcal{YD}$.

Proof By $a = \overline{\psi} \circ \psi(a) = \sum \phi(t_1(t_2^{-1} \to a))\overline{\psi}(t_2^0)$, we have $\Omega_2^{-1}(a) = \sum a^0 \beta(\overline{S}(a^{-1}))$ $= \sum \overline{\psi}(t_2^0)\beta(\overline{S}(t_2^{-1}))\phi(t_1(t_2^{-2} \to a)) \text{ by } (7)$

So $a = \sum \Omega_2(\bar{\psi}(t_2^0))\phi((\bar{S}(t_2^{-1}) \to t_1)a)$. By $\Omega_2(a) = \sum \beta(a^{-1})a^0$, we also have $(\sum \bar{\psi}(t_2^0), \beta(t_2^{-1})\bar{S}(t_2^{-2}) \to t_1)$ is the dual basis of (A, ϕ, t, ψ) in ${}_H^H\mathcal{Y}_D$.

Take $t\phi \in \mathit{Hom}(A,A)$, then $\Omega \circ (t\phi) = (t\phi) \circ \Omega$. By Proposition 3, we have

 $= \sum_{i} \overline{\psi}(t_2^0) \phi((\overline{S}(t_2^{-1}) \rightarrow t_1)a).$

$$\sum t \otimes \beta(a^{-1})a^{0} = t \otimes \Omega_{2}(a) =$$

$$\sum t \phi(\Omega_{2}(a)\Omega_{2}(\bar{\psi}(t_{2}^{0}))) \otimes \bar{S}(t_{2}^{-1}) \rightarrow t_{1} =$$

$$\sum \Omega_{2}(t)\phi(a\bar{\psi}(t_{2}^{0})) \otimes \bar{S}(t_{2}^{-1}) \rightarrow t_{1} =$$

$$\sum t \otimes \beta(\bar{S}(n))\phi(a\bar{\psi}(t_{2}^{0}))\bar{S}(t_{2}^{-1}) \rightarrow t_{1}.$$
(21)

We recall the definition of antipode ψ : $\psi(a) = \sum \phi(t_1(t_2^{-1} \to a))t_2^{0}$. It follows that

$$\sum \phi(\ t_1(\ t_2^{-1} \to a\)\)t_2^{\ 0} \ = \ \sum \phi(\ t\) \phi(\ a_1\) \psi(\ a_2\) \ = \ \sum \phi(\ ta_1\) \psi(\ a_2\) \ \text{for} \ t \in \int_A^r, \ \phi \in \int_{A^*}^r, \ \forall \ a \in A.$$

Proposition 4 If (A, ϕ, t, ψ) is a bi-Frobenius algebra in ${}^{H}_{H}\mathcal{Y}$ \triangle , then

$$\sum \phi(a_1(a_2^{-1} \to b))a_2^{0} = \sum \phi(ab_1)\psi(b_2), \ \forall \ a, b \in A.$$
 (22)

Proof $b = \overline{\psi} \circ \psi(b) = \sum \phi(t_1(t_2^{-1} \to b))\overline{\psi}(t_2^{0})$, so

$$\Delta(b) = \sum b_{1} \otimes b_{2}$$

$$= \sum \phi(t_{1}(t_{2}^{-1} \to b)) \overline{\psi}((t_{2}^{0})_{2}^{0}) \otimes \overline{S}((t_{2}^{0})_{2}^{-1}) \to \overline{\psi}((t_{2}^{0})_{1}) \text{ by } (20)$$

$$= \sum \phi(t_{1}(t_{2}^{-1}t_{3}^{-2} \to b)) \overline{\psi}(t_{3}^{0}) \otimes \overline{S}(t_{3}^{-1}) \to \overline{\psi}(t_{2}^{0}) \text{ by } (6).$$

We only need to show that $\sum \beta (a^{-1}) \phi ((a^0)_1 (((a^0)_2)^{-1} \rightarrow b)) ((a^0)_2)^0 = \sum \beta (a^{-1}) \phi (a^0b_1) \psi (b_2)$. In fact, we have

$$\sum \beta(a^{-1})\phi((a^{0})_{1}(((a^{0})_{2})^{-1} \to b))((a^{0})_{2})^{0}$$

$$= \sum \beta(S(n))\phi(a\overline{\psi}(t_{3}^{0}))\phi((\overline{S}(t_{3}^{-1}) \to t_{1})(\overline{S}(t_{3}^{-2})t_{2}^{-1}t_{3}^{-4} \to b))$$

$$\cdot \overline{S}(t_{3}^{-3}) \to t_{2}^{0} \text{ by } (21),(2)$$

$$= \sum \beta(S(n))\phi(a\overline{\psi}(t_{3}^{0}))\beta(\overline{S}(t_{3}^{-1}))\phi(t_{1}(t_{2}^{-1}t_{3}^{-3} \to b))\overline{S}(t_{3}^{-2}) \to t_{2}^{0}$$

$$= \sum \beta(S(n))\phi(ab_{1}^{0})\beta(\overline{S}(b_{1}^{-1}))\psi(b_{2})$$

$$= \sum \beta(S(n)\overline{S}(b_{1}^{-1}))\phi(ab_{1}^{0})\psi(b_{2})$$

$$= \sum \beta (a^{-1}b_1^{-1}\overline{S}(b_1^{-2}))\phi(a^0b_1^0)\psi(b_2) \text{ by (15)}$$
$$= \sum \beta (a^{-1})\phi(a^0b_1)\psi(b_2).$$

3 Nakayama automorphisms

In this section, we give the module and comodule structures of the modular element g and the modular function α of A. We also give several automorphisms of bi-Frobenius algebras in ${}^H_H \mathcal{Y} \triangle$.

If $t \in \int_A^r$, $at \in \int_A^r$ for $\forall a \in A$. Since \int_A^r is one dimensional, it follows that $at = \alpha(a)t$ for some $\alpha \in Alg(A,k)$. That is $\phi(at) = \alpha(a)$, so $t \rightharpoonup \phi = \alpha$. Dually, there exists a group-like element $g \in A$ satisfying $f * \phi = f(g)\phi$ for $\forall f \in A^*$. $(f * \phi)(t) = f(t_1)\phi(t_2) = f(g)\phi(t)$, so $g = \phi \rightharpoonup t$. We call α the modular function of A, g the modular element of A, see [2].

For $a, b \in A$, define the Nakayama automorphism $N: A \to A$ of the bi-Frobenius algebra (A, ϕ , t, ψ) in ${}^H_H \mathcal{VD}$ by

$$\phi(aN(b)) = \sum \phi((a^{-1} \to b)a^{0}).$$
 (23)

For $t \in A$, define the coNakayama automorphism ${}^cN:A \to A$ of the bi-Frobenius algebra (A, ϕ , t, ψ) in ${}^H_H\mathcal{Y}$ D by

$$\sum t_1 \otimes^c N(t_2) = \sum t_1^{-1} \to t_2 \otimes t_1^{0}. \tag{24}$$

Proposition 5 If (A, ϕ, t, ψ) is a bi-Frobenius algebra in ${}^H_H \mathcal{Y} \mathcal{D}$, N and cN are the Nakayama automorphism and coNakayama automorphism respectively, then

- 1) N and cN are automorphisms in ${}^H_H\mathcal{Y}$ $\!\!\!\!$.
- 2) $N: A^{(op)^2} \to A$ is an algebra map in ${}^H_H \mathcal{Y} \mathfrak{D}$.
- 3) ${}^{c}N: A^{(cop)^{2}} \rightarrow A$ is a coalgebra map in ${}^{H}_{H} \mathcal{VD}$.

Proof 1) $\forall a, b \in A$, we have

$$\phi(\ a(\ h \to N(\ b\)\)\) = \sum \phi(\ h_2 \to [\ (\ \overline{S}(\ h_1\) \to a\)N(\ b\)\]\)$$

$$= \sum \beta(\ h_2\)\phi(\ (\ \overline{S}(\ h_1\) \to a\)N(\ b\)\)\ by\ (\ 14\)$$

$$= \sum \beta(\ h_1\)\phi(\ [\ (\ \overline{S}(\ h_1\) \to a\)^{-1} \to b\]\ \overline{S}(\ h_1\) \to a\]^0\)\ by\ (\ 23\)$$

$$= \sum \beta(\ h_4\)\phi(\ (\ \overline{S}(\ h_3\)a^{-1}h_1 \to b\)(\ \overline{S}(\ h_2\) \to a^0\)\)\ by\ (\ 2\)$$

$$= \sum \phi(\ (\ h_4\overline{S}(\ h_3\)a^{-1}h_1 \to b\)(\ h_5\overline{S}(\ h_2\) \to a^0\)\)\ by\ (\ 14\)$$

$$= \sum \phi(\ (\ a^{-1}h_1 \to b\)(\ h_3\overline{S}(\ h_2\) \to a^0\)\)$$

$$= \sum \phi(\ (\ a^{-1}h \to b\)a^0\)$$

$$= \phi(\ aN(\ h \to b\)\).$$

So N is a left H -module map.

Next we show N is a left H -comodule map. Firstly, it is easy to check $A^* \otimes A \to A^* : f \otimes a \mapsto f \leftarrow a$ is a left H -comodule map. Since $A^* = \phi \leftarrow A$, there exists a $b \in A$ such that $f = \phi \leftarrow b$.

We have

$$\sum (N(a))^{-1} f((N(a))^{0}) = \sum S \circ \overline{S}((N(a))^{-1}) f((N(a))^{0})$$

$$= \sum S(f^{-1}) f^{0}(N(a)) = \sum S((\phi \leftarrow b)^{-1}) (\phi \leftarrow b)^{0}(N(a))$$

$$= \sum S(\phi^{-1}b^{-1}) \phi^{0}(b^{0}N(a)) = \sum S(b^{-2}) S(n) \phi((b^{-1} \rightarrow a)b^{0}) \text{ by } (15), (23)$$

$$= \sum S(b^{-2}) ((b^{-1} \rightarrow a)b^{0})^{-1} \phi(((b^{-1} \rightarrow a)b^{0})^{0}) \text{ by } (15)$$

$$= \sum S(b^{-5}) b^{-4} a^{-1} S(b^{-2}) b^{-1} \phi((b^{-3} \rightarrow a^{0})b^{0}) \text{ by } (2)$$

$$= \sum a^{-1} \phi((b^{-1} \rightarrow a^{0})b^{0}) = \sum a^{-1} \phi(bN(a^{0}))$$

$$= \sum a^{-1} f(N(a^{0})).$$

So N is a left H -comodule map. Hence N is an automorphism in ${}_H^H\mathcal{Y}\mathcal{D}$. Next we show that cN is also a map in ${}_H^H\mathcal{Y}\mathcal{D}$. We have

$$\sum t_{1} \otimes h \to^{c} N(t_{2}) = \sum h_{2} \to [\overline{S}(h_{1}) \to t_{1} \otimes^{c} N(t_{2})]$$

$$= \sum h_{4} \to (\overline{S}(h_{3})t_{1}^{-1}h_{1} \to t_{2} \otimes \overline{S}(h_{2}) \to t_{1}^{0}) \text{ by (24)}$$

$$= \sum h_{4}\overline{S}(h_{3})t_{1}^{-1}h_{1} \to t_{2} \otimes h_{5}\overline{S}(h_{2}) \to t_{1}^{0}$$

$$= \sum t_{1}^{-1}h \to t_{2} \otimes t_{1}^{0} = \sum t_{1} \otimes^{c} N(h \to t_{2})$$

and

$$\sum_{t=0}^{n} N(t)^{-1} \phi({}^{c}N(t)^{0}) = \sum_{t=0}^{n} S(\phi^{-1}) \phi({}^{0}({}^{c}N(t)) = S(n) \phi({}^{c}N(t)) = t^{-1} \phi({}^{c}N(t^{0})).$$
 So ${}^{c}N$ is an automorphism in ${}^{H}_{H}\mathcal{Y}_{D}$.

2) We only need to check that $\sum (\bar{S}(c^{-2}) \to N(b^0))(\bar{S}(c^{-3})\bar{S}(b^{-1})\bar{S}^2(c^{-1}) \to N(c^0))$ = N(bc) for $\forall a, b, c \in A$ and N(1) = 1.

$$\sum \phi(\ a(\ \overline{S}(\ c^{-2}\) \to N(\ b^0\)\)(\ \overline{S}(\ c^{-3}\)\overline{S}(\ b^{-1}\)\overline{S}^2(\ c^{-1}\) \to N(\ c^0\)\))$$

$$= \sum \phi(\ [\ (a(\ \overline{S}(\ c^{-2}\) \to N(\ b^0\)\)\)^{-1}\overline{S}(\ c^{-3}\)\overline{S}(\ b^{-1}\)\overline{S}^2(\ c^{-1}\) \to c^0\]$$

$$\cdot [\ a(\ \overline{S}(\ c^{-2}\) \to N(\ b^0\)\)\]^0\) \ \text{by}\ (\ 23\)$$

$$= \sum \phi(\ (\ a^{-1}\overline{S}(\ c^{-2}\)b^{-1}c^{-4}\overline{S}(\ c^{-5}\)\overline{S}(\ b^{-2}\)\overline{S}^2(\ c^{-1}\) \to c^0\)a^0(\ \overline{S}(\ c^{-3}\) \to N(\ b^0\)\))$$

$$\text{by}\ (\ 5\) \ \text{and}\ (\ 2\)$$

$$= \sum \phi(\ (\ a^{-1} \to c^0\)a^0(\ \overline{S}(\ c^{-1}\) \to N(\ b\)\))$$

$$= \sum \phi(\ (\ a^{-1} \to c^0\)a^{-1}a^{-1} \to (\ \overline{S}(\ c^{-1}\) \to b\)\](\ a^{-2} \to c^0\)^0a^0\) \ \text{by}\ (\ 23\) \ \text{and}\ (\ 5\)$$

$$= \sum \phi(\ (\ a^{-4}c^{-1}S(\ a^{-2}\)a^{-1}\overline{S}(\ c^{-2}\) \to b\)\ (\ a^{-3} \to c^0\)a^0\) \ \text{by}\ (\ 2\)$$

$$= \sum \phi(\ (\ a^{-2} \to b\)(\ a^{-1} \to c\)a^0\) \ = \sum \phi(\ (\ a^{-1} \to (\ bc\)\)a^0\) \ \text{by}\ (\ 3\)$$

$$= \sum \phi(\ aN(\ bc\)\) \ \text{by}\ (\ 23\).$$

By $A^* = \phi \leftarrow A$, $\sum (\bar{S}(c^{-2}) \rightarrow N(b^0))(\bar{S}(c^{-3})\bar{S}(b^{-1})\bar{S}^2(c^{-1}) \rightarrow N(c^0)) = N(bc)$. It is

easy to see that N(1) = 1. Hence $N: A^{(op)^2} \to A$ is an algebra map in ${}_H^H \mathcal{Y}_{\Sigma}$.

3) Dualizing the proof of 2).

Proposition 6 Let α be the modular function, g be the modular element of A, then

$$h \to g = \epsilon(h)g$$

$$\sum g^{-1} \otimes g^{0} = 1 \otimes g$$

$$\alpha(h \to a) = h \to \alpha(a) = \epsilon(h)\alpha(a)$$

$$\sum a^{-1}\alpha(a^{0}) = \alpha(a)1_{H}.$$

Proof 1) We have

$$\sum (h_{1} \to g)\beta(h_{2}) = \sum (h_{1} \to t_{1}\phi(t_{2}))\beta(h_{2})$$

$$= \sum (h_{1} \to t_{1})\beta(h_{2})\phi(t_{2}) = \sum (h_{1} \to t_{1})\phi(h_{2} \to t_{2}) \text{ by (14)}$$

$$= \sum (h \to t)_{1}\phi((h \to t)_{2}) = \sum \beta(h)t_{1}\phi(t_{2}) \text{ by (16)}$$

$$= \beta(h)g.$$

So

$$\begin{split} h \to g \; &=\; \sum \left(\; h_1 \to g\; \right) \! \beta \! \left(\; h_2 \; \right) \! \beta \! \left(\; S \! \left(\; h_3 \; \right)\; \right) \; = \; \sum \beta \! \left(\; h_1 \; \right) \! g \! \beta \! \left(\; S \! \left(\; h_2 \; \right)\; \right) \; = \\ &\sum \beta \! \left(\; h_1 \; \right) \! \beta \! \left(\; S \! \left(\; h_2 \; \right)\; \right) g \; = \; \beta \! \left(\; \epsilon \! \left(\; h\; \right)\; \right) g \; = \; \epsilon \! \left(\; h\; \right) g. \end{split}$$

2) In fact, we have

$$\sum g^{-1}S(n) \otimes g^{0} = \sum (\phi \to t)^{-1}S(n) \otimes (\phi \to t)^{0}$$

$$= \sum t_{1}^{-1}S(n) \otimes t_{1}^{0}\phi(t_{2}) = \sum t_{1}^{-1}t_{2}^{-1} \otimes t_{1}^{0}\phi(t_{2}^{0}) \text{ by (15)}$$

$$= \sum t^{-1} \otimes (t^{0})_{1}\phi((t^{0})_{2}) = \sum S(n) \otimes t_{1}\phi(t_{2}) \text{ by (17)}$$

$$= S(n) \otimes g.$$

Since S(n) is the inverse of n, $\sum g^{-1} \otimes g^0 = 1 \otimes g$.

3) We have

$$\alpha(a)S(n) = (t \rightarrow \phi)(a)S(n) = \phi(at)S(n) = \sum \phi(a^{0}t^{0})a^{-1}t^{-1} = \sum \phi(a^{0}t)a^{-1}S(n) = \sum \alpha(a^{0})a^{-1}S(n).$$

So $\alpha(a)1_H = \sum a^{-1}\alpha(a^0)$.

4) Indeed,

$$\alpha(h \to a)t = (h \to a)t = \sum h_1 \to (a(S(h_2) \to t))$$

$$= \sum h_1 \to (a\beta(S(h_2))t) = \sum h_1 \to t\alpha(a)\beta((S(h_2)))$$

$$= \sum \beta(h_1)\beta(S(h_2))\alpha(a)t \text{ by} (16)$$

$$= \epsilon(h)\alpha(a)t = (h \to \alpha(a))t.$$

Proposition 7 Let N be the Nakayama automorphism, arOmega be the natural automorphism and ψ

be the antipode of the bi-Frobenius algebra (A, ϕ, t, ψ) in ${}_{H}^{H} \mathcal{V} \mathcal{D}$, then

$$N = \overline{\psi}^2 \circ \Omega \circ (\leftarrow \alpha) = \Omega \circ \overline{\psi}^2 \circ (\leftarrow \alpha)$$

Proof $\forall a \in A$, we have

$$N(a) = \overline{\psi} \circ \psi \circ N(a)$$

$$= \sum \phi(t_{1}(t_{2}^{-1} \to N(a)))\overline{\psi}(t_{2}^{0}) \text{ by } (7)$$

$$= \sum \phi((t_{1}^{-1}t_{2}^{-1} \to a)t_{1}^{0})\overline{\psi}(t_{2}^{0}) \text{ by } (23)$$

$$= \sum \phi((t^{-1} \to a)(t^{0})_{1})\overline{\psi}((t^{0})_{2}) \text{ by } (6)$$

$$= \sum \phi((t^{-1} \to a)_{1}((t^{-1} \to a)_{2}^{-1} \to t^{0}))\overline{\psi}^{2}((t^{-1} \to a)_{2}^{0}) \text{ by } (22)$$

$$= \sum \phi((S(n) \to a)_{1}((S(n) \to a)_{2}^{-1} \to t))\overline{\psi}^{2}((S(n) \to a)_{2}^{0}) \text{ by } (17)$$

$$= \sum \phi((S(n) \to a_{1})\beta(S(n)a_{2}^{-1}S^{2}(n))t)\overline{\psi}^{2}(S(n) \to a_{2}^{0})$$

$$= \sum \alpha(S(n) \to a_{1})\overline{\psi}^{2}(S(n) \to a_{2}^{0}\beta(a_{2}^{-1}))$$

$$= \sum \alpha(a_{1})\overline{\psi}^{2}(\Omega(a_{2}))$$

Since ψ is a map in ${}_{H}^{H}\mathcal{Y}$, ψ commutes with Ω . So $N = \sum \bar{\psi}^{2} \circ \Omega \circ (\angle \alpha) = \Omega \circ \bar{\psi}^{2} \circ (\angle \alpha)$.

Proposition 8 If cN is the coNakayama automorphism, then ${}^cN=\bar{\psi}^2\circ\Omega\circ(g\cdot)$.

Denote α as the inverse of α , g as the inverse of g.

 $= \sum_{\alpha} (\bar{\psi}^2 \circ \Omega \circ (\angle \alpha))(a).$

Corollary 1 $\leftarrow \alpha : A \rightarrow A$ is an algebra automorphism in ${}^H_H \mathcal{Y} \mathcal{D}$ and $\overline{\alpha} = \alpha \circ \psi = \alpha \circ \overline{\psi}$. $\overline{\alpha}$ is an algebra map in ${}^H_H \mathcal{Y} \mathcal{D}$.

Proof Since α is an algebra map, $\leftarrow \alpha$ is an algebra automorphism in ${}^H_H \mathcal{Y} \mathfrak{D}$ by Proposition 7 and $\bar{\alpha}$ is an algebra map in ${}^H_H \mathcal{Y} \mathfrak{D}$. So α is invertible in A^* under the * – multiplication. Since α is a group-like element in A^* , $\bar{\alpha} = \psi^*(\alpha) = \alpha \circ \psi$ and $\bar{\alpha} = \bar{\psi}^*(\alpha) = \alpha \circ \bar{\psi}$.

Corollary 2 $g : A \to A$, $a \mapsto ga$ is a coalgebra automorphism in ${}^H_H \mathcal{Y} \mathfrak{D}$.

By Corollary 1 and Corollary 2, we have the following two corollaries.

Corollary 3 The actions $\leftarrow \alpha$, $\leftarrow \alpha$, $\alpha \rightarrow \alpha$, $\alpha \rightarrow \alpha$ are algebra automorphisms in ${}^H_H \mathcal{Y} \mathcal{D}$. Dually, $g \cdot , g \cdot$

Corollary 4 Actions $g \cdot g : a \mapsto gag$, $\alpha = ($) $\leftarrow \alpha : a \mapsto \alpha = a \leftarrow \alpha$ are both algebra and coalgebra automorphisms in ${}^H_H \mathcal{Y} \mathcal{D}$. $g \cdot g$, $\alpha = ($) $\leftarrow \alpha$ and ψ commute with each other.

4 The ψ^4 -formula

Let $(\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D})^{\mathrm{op}}$ be the opposite category of $\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D}$, their objects are the same, and the braiding of $(\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D})^{\mathrm{op}}$ is τ^{-1} . If (A, ϕ, t, ψ) is a bi-Frobenius algebra in $\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D}$, it is easy to see that (A, ϕ, t, ψ) is also a bi-Frobenius algebra in $(\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D})^{\mathrm{op}}$. Let N' be the Nakayama automorphism of bi-Frobenius algebra (A, ϕ, t, ψ) in $(\stackrel{H}{_{H}}\mathcal{Y}\mathfrak{D})^{\mathrm{op}}$, N' is defined by $\phi(aN'(b)) = \sum \phi(b^0(\overline{S}(b^{-1}))$

 $\rightarrow a$)) for $\forall a, b \in A$.

Proposition 9 Let N be the Nakayama automorphism of the bi-Frobenius algebra (A, ϕ , t, ψ) in ${}^{\mathit{H}}_{H}\mathcal{Y}_{D}$, N' be the Nakayama automorphism of the bi-Frobenius algebra (A, ϕ , t, ψ) in (${}^{\mathit{H}}_{H}\mathcal{Y}_{D}$) ${}^{\mathrm{op}}$, then $N = N' \circ \Omega = \Omega \circ N'$.

Proof for $\forall a, b \in A$, $\phi(aN(b)) = \sum \phi((a^{-1} \to b)a^0)$ by (23). We have $\phi(tN' \circ \Omega(a)) = \sum \phi(tN'(S(n) \to a^0)\beta(a^{-1}))$ $= \sum \phi((S(n) \to a^0)(\overline{S}(S(n)a^{-1}S^2(n)) \to t)\beta(a^{-2}))$ $= \sum \phi((S(n) \to a^0)t\beta(\overline{S}(a^{-1}))\beta(a^{-2}))$ $= \sum \phi((S(n) \to a)t)$ $= \sum \phi((t^{-1} \to a)t^0)$ $= \phi(tN(a)).$

Notice that N' is a left H -module and left H -comodule map, so $N=N'\circ \Omega=\Omega\circ N'$.

Let N be the Nakayama automorphism of bi-Frobenius algebra (A, ϕ , t, ψ) in ${}^H_H\mathcal{Y}_{\Sigma}$, we have $N = \Omega \circ \bar{\psi}^2 \circ (\leftarrow \alpha)$ by Proposition 7. By Proposition 9, we get $N' = \bar{\psi}^2 \circ (\leftarrow \alpha)$. Let N'' be the Nakayama automorphism of bi-Frobenius algebra (A^{cop} , $g \rightharpoonup \phi$, t, $\bar{\psi}$) in (${}^H_H\mathcal{Y}_{\Sigma}$) op . From

$$(g \rightharpoonup \phi)(agN'(b)\overline{g}) = \phi(agN'(b)) = \sum \phi(b^{0}(\overline{S}(b^{-1}) \to (ag))$$

$$= \sum \phi(b^{0}(\overline{S}(b^{-1}) \to a)g) = \sum (g \rightharpoonup \phi)(b^{0}(\overline{S}(b^{-1}) \to a))$$

$$= (g \rightharpoonup \phi)(aN''(b))$$

for any a, $b \in A$, we get $N'' = gN'\overline{g} = g(\overline{\psi}^2 \circ (\leftarrow \alpha))\overline{g}$. On the other hand, the antipode of $(A^{cop}, g \rightharpoonup \phi, t, \overline{\psi})$ in $(H_{\underline{u}})^{op}$ is $\overline{\psi}$, modular function is $\alpha' = \alpha$, $\leftarrow \alpha' = \alpha \rightharpoonup$, and the natural automorphism Ω' is Ω^{-1} . Applying Proposition 7 to N'', we have $N'' = \Omega^{-1} \circ \psi^2 \circ (\alpha \rightharpoonup) = g(\overline{\psi}^2 \circ (\leftarrow \alpha))\overline{g}$. From the above argument, we get the following theorem as [9]:

Theorem 2 If (A, ϕ, t, ψ) is a bi-Frobenius algebra in ${}^H_H \mathcal{Y} \mathcal{D}$, α and g are the modular function and the modular element of A respectively, then

$$\psi^4 = \Omega \circ g(\bar{\alpha} \rightharpoonup () \rightharpoonup \alpha)\bar{g} = g(\bar{\alpha} \rightharpoonup () \rightharpoonup \alpha)\bar{g} \circ \Omega.$$

Remark By Corollary 4 and Ω commutes with ψ , we get that

$$\psi^{^{4m}} = \Omega^{^{n}} \circ g^{^{m}} (\stackrel{\frown}{\alpha}^{^{m}}) () - \alpha^{^{m}}) \stackrel{\frown}{g}^{^{m}} = g^{^{m}} (\stackrel{\frown}{\alpha}^{^{m}}) () - \alpha^{^{m}}) \stackrel{\frown}{g}^{^{m}} \circ \Omega^{^{m}}$$

 $\forall m \in \mathbb{N}$. Since g and α are group-like elements of A and A^* respectively and distinct group-like elements are k-independent, their orders are finite^[6]. So the order of ψ is finite if and only if the order of Ω is finite.

Dually, using the coNakayama automorphism, we can also get the ψ^4 -formula of bi-Frobenius algebra (A, ϕ , t, ψ) in ${}^H_H\mathcal{Y}$ \triangle .

Acknowledgements: The author wishes thank Professor Zhang Pu and Professor Wang Dingguo for their helpful discussions.

References

- [1] Sweedler M E. Hopf Algebras [M]. New York: Benjamin, Inc., 1969.
- [2] Kadison L. Frobenius extensions [Z], AMS. University Lecture Series. Vol. 14, Rhode Island: Providence, 1999.
- [3] Koppinen M. On algebras with two multiplications, including Hopf algebras and Bose-Mesner algebras [J]. J. Algebra, 1996, 182: 256-273.
- [4] Doi Y and Takeuchi M. Bi-Frobenius algebras [J]. Contemp. Math., 2000, 267; 67-97.
- [5] Doi Y. Hopf modules in Yetter-Drinfeld categories [J]. Comm. Algebra., 1998, 26 (9): 3057-3070.

- [6] Montgomery S. Hopf Algebras and Their Actions on Rings, CBMS Lectures [M]. RI: AMS, Providence, 1993,82.
- [7] Fischman D, Montgomery S and Schneider H
 J. Frobenius extensions of subalgebras of
 Hopf algebras [J]. Trans. AMS, 1997,349:
 4857-4895.
- [8] Bespalov Y, Kerler T, Lyubashenko V, Turaev V. Integrals for braided Hopf algebras [J]. J. Pure Appl. Algebra, 2000, 148(2):113-164.
- [9] Radford D E. The order of the antipode of a finite dimensional Hopf algebra is finite [J].

 Amer. J. Math., 1976,98: 333-355.

左 Yetter-Drinfeld 模范畴中的双 Frobenius 代数

王艳华

(中国科学技术大学数学系,安徽合肥 230026)

摘要: 考虑左 Yetter-Drinfeld 模范畴中的双 Frobenius 代数 (A, ϕ, t, ψ) . 证明了左 Yetter-Drinfeld 模范畴中的双 Frobenius 代数 (A, ϕ, t, ψ) 的对偶 (A, t, ϕ, ψ^*) 也是左 Yetter-Drinfeld 模范畴中的双 Frobenius 代数. 给出了右积分 $\phi \in \int_{A^*}, t \in \int_A^t$,模 函数 α 和模元 g 的模和余模结构,也给出了 Yetter-Drinfeld 模范畴中的双 Frobenius 代数的 Radford 的对极 ψ^4 公式.

关键词: Hopf 代数; Frobenius 代数; Yetter-Drinfeld 模范畴