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Abstract 
 
 

Operational equations can be used for the estimation of data missing from  
prismatic arrays. This paper continues the discussion of that subject. New 
interpolating equations for data in prismatic and rectangular arrays are  
illustrated. 
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1. Introduction 
 
 Operational equations are finite-difference equations that derive from the 
application of the shifting operator to the identities and approximations of trigonometry 
[1]. A representative application of operational methods is the development of 
polynomial, exponential, and trigonometric interpolating equations for eight- and nine-
point rectangular prisms [2,3]. The estimation of data missing from these designs is 
another application of operational equations.   
 
 
2. Discrete formulas for estimating a missing datum 
 
 Let a single letter such as G represent a datum at the corresponding vertex of the 
prism in Fig. 1. Let a two-letter combination such as CD represent a number at the 
midpoint of the corresponding edge of the prism, and let a four-letter combination like 
BDIG represent a number at the midpoint of the corresponding side of the prism.  Many 
operational equations can be used to estimate a datum that is missing from the prismatic 
array [4,5]. The previously published equations are invariant under rotation of the data 
and they are often invariant under data translation, too.  
 

There is another class of operational equations that are not invariant under data 
rotation. This deficiency limits their applications. Nevertheless, those equations are 
potentially useful to the experimentalist. They apply when the data can be satisfactorily 
approximated by an arbitrary function applied to monotonic numbers. The equations have 
the advantage of increased accuracy in this circumstance. They have that advantage 
because they are then numerical identities. Two examples help to clarify the preceding 
remarks. The example equations are Eqs. (1) and (2). 
 
(BD–FH)(BG–CH) – (G–C)(BDIG–ACHF) = 0            (1) 
(BD–FH)(FGIH–ABDC)(BDIG–ACHF) + (CD–FG)(BD–FH)(BG–CH) 
– (G–C)(CD–FG)(BDIG–ACHF) – (FGIH–ABDC)(G–C)(BG–CH) = 0                      (2) 
 

To illustrate the interesting property of Eqs. (1) and (2), let the data A .. I at the 
vertices of the prism in Fig. 1 be 1+t .. 9+t, respectively. The letter “t” represents a 
constant. Let Eq. (1) be rewritten as Eq. (3) in which u(x) represents an arbitrary function 
applied to its argument. 
 
[u(3+t)–u(7+t)][u(9/2+t)–u(11/2+t)] – [u(7+t)–u(3+t)][BDIG–u(9/2+t)] = 0                   (3) 
 
 When Eq. (3) is solved for BDIG, the result is BDIG=u(11/2+t). The function 
u(11/2+t) is also the number at point BDIG when the data are generated by u(1+t) .. 
u(9+t) at A .. I in Fig. 1, respectively. In this circumstance, accurate measurements at  
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points BD, FH, BG, CH, CD, FG, G, C, FGIH, ABDC and ACHF yield a reliable 
estimate of the missing datum at BDIG using either Eq. (1) or (2).  
 

The class of numbers to which Eqs. (1) and (2) apply is wider than the illustration 
suggests. If “p” is a constant, the class of numbers can be represented by u(p+t), u(2p+t) 
.. u(9p+t) as A .. I in Fig. 1. The class of monotonic numbers is narrow. On the other 
hand, the class embracing “any function” is wide. The opportunities represented by 
operational equations like Eqs. (1) and (2) are potentially useful for replacing a missing 
or a corrupted datum. Measurement errors temper the accuracies of relationships like Eqs. 
(1) and (2) but modest errors do not necessarily destroy the economy they represent.  
 
 
3. Equations for cubes and the problem of a missing datum 
 
 New methods for generating exponential equations for eight- or nine-point prisms 
have recently appeared [6]. The center point datum was estimated in the eight-point 
examples. That choice does not restrict the applications of the equations. The center point 
datum could be measured. The five basis equations are then used to estimate a datum 
missing from another vertex of the cube. To demonstrate this point, suppose corner-point 
G is the one where no measurement was made. Let the remaining data be generated by 
monotonic functions u(x) operating on the integers 1 .. 6, and 8, 9 at vertices A .. F, and 
H, I, respectively. Table 1 lists the true values of u(7) and the estimates of that number as 
obtained by the described procedure. The table illustrates that the method is satisfactory 
in cases where the data follow a simple exponential law. In other cases, the method is less 
satisfactory but still potentially useful. The five basis equations chosen for illustrating the 
example are the same ones applied in Section 3 of Ref. [6]. 
 

A remark in Section 1 of Ref. [6] indicates that the four basis equations used for 
the nine-point cube can have more than one solution containing positive, real numbers for 
J, K, and L that are needed to generate equations for the array. In the author’s experience, 
these ambiguities seldom appear. When they appear, the question turns on the choice of 
one of two possibilities. A comparison test was suggested in order to choose between the 
alternatives. Another, bigger ambiguity is how to select a set of four or five basis 
equations that determine the values of J, K, and L.  
 

A still bigger ambiguity is represented by the question of how to represent the 
eight-point cube. Should it be represented by the trilinear equation, by a polynomial 
equation containing second-order coefficients, by a polynomial equation containing 
second- and third-order coefficients, by a trigonometric equation, or by one of several 
possible exponential equations? These questions do not arise when there is tacit 
agreement that only one representation, the trilinear equation, is sanctioned. The same 
questions attend the problem of how best to represent a nine-point cube. In the case of the 
rectangle ACIG, as in Fig. 1 of Ref. [7], the situation is simpler. For example, if the data  
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are monotonic increasing in alphabetical order, and if I ≥CG/A, an exponential 
interpolating equation is indicated. Otherwise, a polynomial or an exponential form may 
suffice. In either case, the user should beware of false curvature effects.  

 
What is needed to alleviate these problems is a test that determines if eight data in 

prismatic array adhere to a polynomial, a trigonometric, or an exponential law. Ideally, 
the test will be short, easy to apply, definitive, and depend only on the numbers. An idea 
of the proposed test is afforded by the many relationships that have been proposed as 
methods for estimating one or two missing data. For example, let the data be substituted 
into Eqs. (9) and (10) in Ref. [4]. If the cited Eq. (10) yields the smaller residual, an 
exponential law is suggested. If a center point datum is available, the residual of Eq. (11) 
in Ref. [4] can be compared to the residuals of one of Eqs. (19)-(21) in Ref. [5]. The 
equation with the smaller residual suggests whether the data follow a polynomial or an 
exponential law. The examples illustrate the need for a standard. The proposed test is 
certain to be complicated by errors. That is another problem to be addressed.   
 
 
 
4. Prisms and the method of least squares  
 
 Monotonic data A .. I in the eight- or nine-point prism, as in Fig. 1, can be 
represented by Eq. (4). For the eight-point cube, the letters J, K, and L are taken as Eqs. 
(15)-(17), respectively, in Ref. [2]. For the nine-point cube, J, K, and L are taken as Eqs. 
(3)-(5), respectively, in Ref. [4], respectively. R is an interpolated number. 
 
 

R = (P)J(x+1)K(y+1)L(z+1) + T               (4) 
  

 
The unknowns P and T in Eq. (4) are estimated from the data, their coordinates, 

and Eq. (4) by the method of least squares. The resulting equations are exact on the data  
at vertices A-I if they are generated by a simple exponential function like 2x+10. In other 
cases, interpolating equations based on Eq. (4) do not reproduce the original data. The 
new method is not limited by the suggested expressions for J, K, and L. Those parameters 
can also be estimated by another method such as is illustrated in Ref. [6]. Table 2 
illustrates typical accuracies of the described methods as represented by sums of squares 
of deviations. If an exponential equation is desirable, and if the minimum of the sum of 
squares of deviations is the criterion of merit, the described approaches are potentially 
useful. They are easy to apply. Unfortunately, we have no standard prescribing the values 
of sums of squares of deviations by which to accept or reject an interpolating equation. 
This method is not recommended for non-monotonic data.  
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5. The representation of four-point rectangles 
 
 A previous paper pointed out a difficulty with the representation of a four-point 
rectangle by exponential means [7]. The data were A=70, B=180, C=90, D=75, as on face 
ABDC in Fig. 1. They rendered an exponential equation containing the square root of  
(–1). The SQRT(–1) is usually undesirable but this problem can sometimes be alleviated 
by an simple artifice. Let the same data be moved to the top of the prism in Fig. 1. They 
now appear as F=70, G=180, H=90, I=75. Let new data that mimic the numerical pattern 
of the original data be placed on the base of the prism, face ABDC. For example, let the 
new trial data be [1,16,9,4,70,180,90,75] as A .. I in the eight-point prism in Fig. 1.  
 

An exponential equation for the new eight-point prism is easily found by the 
method described in Section 3 of Ref. [6]. A second exponential equation for the same 
prism is found by means of Eq. (14) in Ref. [2]. In these equations, set z=1. The two new 
equations, both lacking the square root of (–1), apply to the formerly troublesome 
rectangle. The new equations, with rounded coefficients, appear as Eqs. (5) and (6), 
respectively. Both of them reproduce the original data. Plotting them reveals that the 
rectangles they represent do not contain unwarranted curvature effects such as spurious 
extrema.  

 
R = 225.3 – (102.0)(1.786)(x+1) – (205.6)(0.7906)(y+1) + (152.2)(1.786)(x+1)(0.7906)(y+1)     
                                                                                                                                           (5) 
 
R = 1265 – (1109)(1.176)(x+1) – (1482)(0.8754)(y+1) + (1397)(1.176)(x+1)(0.8754)(y+1)     
                                                                                                                                           (6)  

 
Several exponential representations of the four-point rectangle can be generated 

by the illustrated method. The original data can also appear at the bottom of the prism 
while the introduced numbers appear at the top of the prism. The user can change the 
magnitudes of the introduced numbers in order to change the properties of the 
interpolating equations. There are many possible choices. The many possibilities raise the 
question of how to choose among them. That is an opportunity for research.   
 
 
6. The four-point cube 
 
 Methods for interpolating the four-point cube are desirable because of the 
importance of minimizing laboratory costs. The subject has been taken up in Refs. [8,9] 
but modern software makes other methods practical. For example, four-point sections of 
cubes can sometimes be represented by the cited methods or by Eq. (7). To illustrate, let 
measurements be taken at points HI, GI, DI, and E or IE in Fig. 1. Let the figure have 1 .. 
9 placed at vertices A .. I, respectively.  
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R = (N)exp(Jx + Ky + Lz)                                                                                                 (7)  

 
 
The coordinates of the four points, and the measurements at those points, are 

often enough to estimate the unknowns N, J, K, and L. With those estimates, a missing 
datum at vertex I can be estimated. For example, let HI=f(17/2), GI=f(8), DI=f(13/2), 
E=f(5), where f(x) represents an arbitrary function of its argument. Following are simple 
functions f(x) and the estimates at vertex I as represented by [f(x), R]: [2x, 512], [x2, 88], 
[100/x, 10.6]. The true values of R are 512, 81, and 11.1, respectively. Another method 
for the same purpose turns on Eq. (8). Now let HI=u(17/2), GI=u(8), DI=u(13/2), 
IE=u(7). (IE is the midpoint of segment IE in Fig. 1.) Eq. (8) yields [x2, 80], [ln(x+1), 
2.3], [100/x, 11.2]. The true values of R are 81, 2.3, and 11.1, respectively. Four-point 
methods for cubes are interesting because of their economy.  

 
 

R = (Jx + Ky + Lz)N                                                                                                          (8) 
 
 

The standard approaches illustrated in this section, the operational methods 
described above, and other methods that appear in the references, illustrate potentially 
useful approaches to the treatment of experimental data in rectangular and prismatic 
arrays.  
 
 
 

Table 1. Estimation of the missing datum at vertex G in Fig. 1 
by an eight-point exponential method plus the center point  
datum. The basis equations are described on p. 2148 of Ref. [6]. 
 

 
Function Estimated G G = M(7) 
2M 128 128 
2M+100 228 228 
M2 50.5 49.0 
M3 379 343 
SQRT(M) 2.64 2.65 
100/M 14.4 14.3 
sinh(M/4) 2.76 2.79 
cosh(M/4) 3.03 2.96 
tan(9Mo) 2.00 1.96 
ln(M+1) 2.08 2.08 
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Table 2. Sums of squares of deviations of two least-squares 
equations from test surfaces. The equations are eight-point  
and nine-point versions of Eq. (4) as applied to Fig. 1.   

 
Function Eight-point Nine-point  
2M 0 0 
2M+100 0 0 
M2 6.87 6.60 
M3 1625 1233 
SQRT(M) 0.00198 0.00381 
100/M 68.5 68.8 
sinh(M/4) 0.00321 0.00309 
cosh(M/4) 0.00572 0.00539 
tan(9Mo) 0.434 0.435 
ln(M+1) 0.00193 0.00231 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. The eight-point cube with center point E. 
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