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Abstract 
 
When the sampling variance of a count variable Y is significantly greater or less 
than that predicted by an expected probability distribution, Y is said to be over- or 
underdispersed, respectively. A natural way to analyze regular count data is to use 
a Poisson regression(PR) model where the Poisson mean can be modeled as a 

function of linear predictors through the log link function in a generalized linear 
model (GLM) setting. The generalized Poisson regression (GPR) model is a 
generalization of the standard (PR) model. When the dispersion parameter α = 0, 
the probability function reduces to the PR model. When  α >0, the GPR model 
represents count data with overdispersion and when α < 0, the GPR model 
represents count data with underdispersion. In this paper a random sample of 
workers selected from workers of Shebeen Alkom textile industry in Egypt, 
2007. The data in the sample has information on many variables including 
dependent variable, and nine independent variables. The Censored 
generalized Poisson regression (CGPR) model is considered for identifying the 
relationship between the dependent, and the previous independent variables. 
Based on the test for the dispersion parameter and the goodness-of-fit measure for 
the dependent variable, the (CGPR) model performs as good as or better than the 
other regression models. 
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1. Introduction  
 
The Poisson regression (PR) model has been widely used for the analysis 
count data. The Poisson distribution was first used in regression context by 
letting the mean parameter μ  in the Poisson distribution depend on some 
covariates (Frome, Kutner, and Beauchamp, 1973). When the mean and 
variance are equal, this is called equidispersion (Cameron and Trivedi, 1998 
p. 4). The assumption of equality of the mean and variance of the Poisson 
model may not hold for some real life applications as count data often show 
variations where the sample mean may be greater than or smaller than the 
sample variance. When the sample variance is greater than the sample 
mean, this is referred to as overdispersion. Underdispersion occurs when 
the sample variance is less than the sample mean. 
Famoye (1993) derived the generalized Poisson regression (GPR) model 
from the generalized Poisson distribution introduced by Consul and Jain 
(1973). These distribution can handle count data that is underdispersed, 
overdespersed and equidispersed. The (GPR) model was applied by Famoye 
(1993) to data on the number of faults in rolls of fabric studied previously 
by Hinde (1982).  
Wang & Famoye (1997) analyzed data set on fertility from Michigan Panel 
Study of income Dynamics (PSID) by using Poisson Regression (PR), 
generalized Poisson Regression (GPR) and censored generalized Poisson 
Regression (CGPR) model. From set of 5500 household they selected 
married women aged between 18 and 40 who are not head of households 
and with nonnegative family income. In this paper the dependent variable, 
the total number of children up to 17 years old in family, is nonnegative 
integer ranging from zero to nine in the sample. Although the sample mean 
less than the sample variance of the dependent, they suggested that the data 
may be equi-dispersed and thus either the (PR) or the (GPR) model will be 
adequate for analyzing the data. The purpose of using (CGPR) model is to 
demonstrate censoring and not to show which independent variable is 
significant, such that about 4.22% of the sample have dependent variables, 
so that all values of    considered. 
Famoye & Wang (2004) suggested the use of censored generalized Poisson 
regression (CGPR) model. They applied the (CGPR) model to a data set on 
fertility from the Michigan Panel Study of Income Dynamics and compared 
it to the Poisson, truncated Poisson, (GPR), and censored Poisson 
regression models. The censored generalized Poisson regression (CGPR) 
model illustrated how estimates of parameters can be greatly improved if 
censoring is considered in data set that is overdispersed or underdispersed. 
Cameron& Trivedi (1998) were suggested models allowing for censoring 
count data. These models are required when the sample variance is different 
from the sample mean and the response Poisson variable iy  belong to 
restricted range, while the explanatory variables ),...,,( 1,21 −piii xxx are always 
observed. 
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2. Censored Generalized Poisson Regression(CGPR) Model 
 
Suppose a count dependent variable iY  is a generalized Poisson random 
variable and affected by 1−p  explanatory variables, ),...,,( 1,21 −piii xxx . The 
generalized Poisson regression (GPR) model derived by Famoye (1993) is 
that the distribution of iY , conditional on explanatory variables 

),...,,( 1,21 −piii xxx , and it is defined by 
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Where   ),...,,,1( 1,21 ′= −piiii xxxx  is a 1×p  dimensional vector, 0>iμ  is 
the conditional mean of iY  on ix .One specification that is mostly used for 
the mean parameter iμ  is the exponential specification, it is given by  

)exp()|( βxx iiiiYE ′== μ ,        (2.2) 
The conditional variance is given as  

22
| )1()|( iiXyii αμμσYVar +==x     (2.3) 

Where ),...,,( 110 ′= −pββββ  is a p -dimensional vector of regression 
parameters. The parameter α  is a measure of dispersion. When 0=α , the 
(GPR) model in (2.1) reduces to the (PR) model. For 0>α , the (GPR) 
model can used to fit overdispersed count data. When 0<α , the (GPR) 
model can used to fit underdispersed count data. 
For some observations in data set, the value of iY  may be censored. If no 
censoring occurs for the ith observation, ii yY = . However, If censoring 
occurs for the ith observation, iY  is at least equal to iy  i.e. ii yY ≥ .When 
the data are censored, the distribution that applies to the sample data is 
derived by using binary variable id , this variable is defined as: 
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then (CGPR) model introduced by Famoye and  Wang (2004) is given by 
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The (CGPR) model (2.5) includes )1( +p  parameters arrayed in the vector, 
),( ′′= αβΦ , and it can be estimated by using maximum likelihood method. 
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3. Parameter Estimation 
 
The maximum likelihood method is used to estimate the parameter vector

),( ′′= αβΦ . The likelihood function of (CGPR) model (2.5) (Famoye and 
Wang, 2004) is given by 
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and the log-likelihood function is  
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By using the probability function given by (2.1) in the log-likelihood 
function in (3.2), we obtain 
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The likelihood equations for estimating β and α  are obtained by taking the 
partial derivations of (3.3) and setting them equal to zero. Thus, we obtain 

( )4.30

)(1

)(

)1(
)1();,(

11
2 1

0

1

0 =

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
∂

∂ ∑
∑

∑
∑

==
−

=

−

=n

i i

i

i

n

i
i

i

ii
i

i
y

j

y

j

jf

jf

dydyLL β
x

β
β

αμ
μα

(3.5)0

)(1

)(

)1(
)(

1
)1(

)1(
)1(

);,(

1

1
2

1

0

1

0
=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

−
+
−

+
+
−

−=
∂

∂

∑
∑

∑

∑

=

=

−

=

−

=n

i i

i

i

n

i i

iii

i

ii

i

ii
i

i

y

j

y

j

jf

jf

d

y
y

yyy
d

yLL

α

αμ
μμ

ααμ
μ

α
αβ

       where, 

i
i

i

αμ
μj

jfjf x
β 2)1(

)(
)()(

+
−

=
∂

∂
, (3.6) 

 

(3.1) 

(3.2) 



On estimating parameters                                                                                   627 
 
 
 

)7.3(
)1(
)(

1
)1(

)1(
)()(

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
+
−

+
+

−=
∂
∂

i

ii

i

i j
j

jjjjfjf
αμ
μμ

ααμ
μ

α  

The above likelihood equations are non-linear in parametersβ and α .These 
equations are solved simultaneously by using an iterative algorithm. The 
Statistical Analysis Software (SAS9.1, 2002-2003) can be used to carry out 
Newton-Raphson method for solving these equations. The initial estimate of 
β  and α  may be taken as the corresponding final estimates of β and α  from 
fitting a generalized Poisson regression model to the data.  
On taking the second partial derivatives of (3.3), the Fisher`s information 
matrix ),( αI β  can be obtained by taking the expectations of minus the 
second derivatives. The inverse of ),( αI β  matrix will provide the 
variances of the maximum likelihood estimates. The variance of the 
maximum likelihood estimates can also be obtained from Hessian matrix, H
, which is a square matrix of order )1( +p . The entries of the Hessian 
matrix, denoted by the second order partial derivatives of (3.3), and given 
by 
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When the Hessian matrix is evaluated at maximum likelihood estimates, 
),ˆ(ˆ ˆ ′′= αβΦ , and negative of its inverse taken, then the variance-covariance 

matrix denoted by { } [ ] 12 )ˆ(ˆ,ˆ −
Φ−= HS αβ is obtained. 

 
 
4. Goodness-of-fit Statistics 
 
For testing the goodness-of-fit of (CGPR) model, we can be applied the 
likelihood ratio to test the hypothesis  

0...: 1210 ==== −pH βββ      (4.1) 
and the likelihood ratio test has the intuitive form 

( )UiRi yLLyβLLLR );ˆ,ˆ();ˆ,ˆ(2 0 αα β−−= (4.2) 
where Uik yαLL );,ˆ(β & Rik yαβLL );,ˆ( 0  are the computed log-likelihood 
function with using the unrestricted and restricted model. Under the null 
hypothesis (4.1), the test statistics LR  in (4.2) follows a 2χ  distribution 
with ( 1−p ) degrees of freedom. 
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5. Test for regression coefficients and dispersion parameter 
 
The maximum likelihood estimates ),ˆ(ˆ ˆ ′′= αβΦ maximize the log-likelihood 
function (3.3). If the (CGPR) model has been specified correctly, then 

),ˆ(ˆ ˆ ′′= αβΦ is consistent for ),( ′′= αβΦ and the asymptotic normality result 
( )[ ] ⎥⎦

⎤
⎢⎣
⎡ −→−

− 1
)ˆ,ˆ()/1(,0)ˆ( αβΦΦ InENn Thus inference on the regression 

coefficients and dispersion parameter,α , can be made. The (CGPR) model 
reduces to the censored Poisson regression model when the dispersion 
parameter 0=α . To assess the adequacy of the (CGPR) model over the 
censored Poisson model, we can test the hypothesis  

0:0 =αH    against    0: ≠αaH                          (5.1) 
This is to test for the significance of the dispersion parameter α . The 
presence of the dispersion parameter α  in the (CGPR) model is justified 
when the null hypothesis 0:0 =αH  is rejected. The test statistics for 
testing null hypothesis (4.3) is given by 

( ) )2.5();,ˆ();ˆ(2 UiRi yLLyLLLR αα ββ −−= When the null hypothesis (4.2) 
is true, the likelihood ratio test statistic, αLR ,  in (4.4) is approximately chi-
squire distributed with one degree of freedom. Also, to test the significance 
of coefficient of explanatory variable jx ,  jβ  ,  1,...,2,1 −= pj , the 
hypothesis denoted as  
  0:0 =jH β    against       0: ≠jaH β                       (5.3) 
and the test statistics for testing null hypothesis (4.5) is given by 

)ˆ(

ˆ

mle

mle

j

j

S
Z

β

β
=      (5.4)                                                                 

Where
mlejβ̂ is the maximum likelihood estimate of coefficient jβ , )ˆ(

mlejS β is 

the standard error of these estimation, determined from the estimation of the 
variance covariance matrix, )ˆ,ˆ(2 αβS . Under the null hypothesis (4.5) the test 
statistic Z is approximately standard normal distributed. 
 
 
6. Description of worker's absent days data 
 
A random sample of size 80 workers selected from workers of Shebeen 
Alkom textile industry in Egypt, 2007. A questionnaire was formed in order 
to obtain the data about dependent and independent variables. The 
dependent variable data includes the number of absent days for worker, y , 
in September month which was selected randomly. The independent 
variables data contains daily wage by Egyptian pound 1x , worker's age 2x , 
experience years 3x , family size 4x , number of rooms in worker’s house 5x , 
motivations system 6x ,{ 16 =x  if system is suitable, 06 =x  if system is not  
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suitable}, department 7x ,{ 17 =x  if worker belong to textile department, 07 =x  if 
worker belong to other department}, industry trips 8x ,{ 18 =x  if worker 
associates to industry trips, 08 =x  if worker not associate  to industry trips}, and 
the reason for working in industry 9x , { 19 =x  if there is no other source for 
income, 09 =x  if there is other source for income}.Table (1) shows the means 
and the standard deviations for quantitative variables data, 

),,,,,( 54321 xxxxxy . 
 
 
 
 
 
                                      Table (1)  
 

Quantitative Variables mean St.dev.  
Number of absent days y   2.725 1.518 
Worker's wage 1x  3.871 1.008 
Worker's age 2x  43.013 6.530 
Experience years 3x  24.525 6.882 
Family size 4x  6.375 1.694 
number of rooms in house

5x  3.338 0.967 
 
 
 
 
 
 
 
The dependent variable, the number of absent days in September month, is 
nonnegative integer ranging from zero to eight in the sample.  From table 
(1), the sample variance of number of absent days y ,2.304, is less than the 
sample mean, 2.753, then we expected that underdispersion occurs and 
dispersion parameter,α , may be negative. About 3.75% of the sample has 
dependent variable 6≥iy , and then we consider all values 6≥iy  as 
censored and applied censored Poisson regression and CGPR models to the 
data. Table (2) displays the observed frequencies and the percentiles for the 
levels of qualitative variables data, ),,,( 9876 xxxx . 
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                                          Table (2) 
 

Var.  count percentile 

6x  

Motivations system is 
suitable 35 44% 
Motivations system is not 
suitable 45 56% 

7x  Belong to textile department 43 54% 
Belong to other department 37 46% 

8x  

Worker associates to 
industry trips 15 19% 
Worker not associate to 
industry trips 65 81% 

9x  

Existing other source for 
income 60 75% 
Not Existing other source 
for income 20 25% 

 
 
 
7.Results and conclusions 
 
In comparing the sample mean 2.725 of the dependent variable to its sample 
variance 2.304, and about 3.75% of the sample has dependent variable 

6≥iy , the data suggests a case of under-dispersion and considers all 
values of 6≥iy  as censored. The parameter estimates and their standard 
errors using the CPR and the CGPR models are given in table (3). 
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   CPRM CGPRM 
Parame
ters  

Esti
m. S.E Z p. v. 

Esti
m. S.E Z p. v. 

0β  
1.16
9 

0.63
6 

1.83
9 

0.06
6 

1.17
5 

0.39
0 

3.01
6 

0.00
3 

1β -
0.33
7 

0.12
5 

-
2.70
9 

0.00
7 

-
0.33
6 

0.09
2 

-
3.66
4 

0.00
0 

2β 0.05
3 

0.02
6 

2.02
4 

0.04
3 

0.04
7 

0.01
3 

3.51
7 

0.00
0 

3β -
0.05
9 

0.02
5 

-
2.34
9 

0.01
9 

-
0.04
8 

0.01
4 

-
3.47
7 

0.00
1 

4β 0.05
0 

0.05
6 

0.89
6 

0.37
0 

0.04
5 

0.03
2 

1.39
8 

0.16
2 

5β -
0.02
1 

0.08
4 

-
0.25
4 

0.79
9 

-
0.02
9 

0.05
2 

-
0.56
1 

0.57
5 

6β -
0.08
1 

0.15
2 

-
0.53
1 

0.59
6 

-
0.06
4 

0.09
5 

-
0.68
0 

0.49
6 

7β -
0.12
5 

0.15
7 

-
0.79
2 

0.42
8 

-
0.12
1 

0.09
6 

-
1.26
1 

0.20
7 

8β -
0.03
9 

0.19
8 

-
0.19
5 

0.84
6 

-
0.04
0 

0.13
3 

-
0.30
4 

0.76
1 

9β 0.13
9 

0.17
1 

0.81
2 

0.41
7 

0.13
5 

0.11
4 

1.18
4 

0.23
7 

α  
 

-
0.12
5 

0.01
5 

-
8.21
0 

0.00
0 

LLU(H1) -123.7314 -111.7175 

LLR(H0) -140.5339 -139.2596 
2χ  33.6049 55.0842 

P_V 0.0001 0.0000 
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From table (3), the estimated dispersion parameter from the CGPR model is 
negative, which is an indication of under-dispersion. The asymptotic ’’ Z ‘‘ 
statistics for testing the null hypothesis in (4.3) is approximately -8.21. 
Thus, the dispersion parameter α  is significantly different from zero (1% 
level). The CPR model is not appropriate for this data since we reject the 
null hypothesis given in (4.3). The log-likelihood values for CPR and 
CGPR models are -123.73 and -111.72, respectively, which also indicate 
that modeling under-dispersed data using CGPR model is more appropriate 
than the CPR model. 
The three independent variables (worker's wage 1x , worker's age 2x , 
experience years 3x ) are significant under CPR model at 5%  level but they 
significant under  CGPR model at 1% level. The family size 4x , is significant 
under  CGPR model at 20% level but this is not the case under the CPR 
model. The parameters estimates from both models are very similar. The 
standard errors from the CGPR model are smaller than the standard errors 
from the CPR model, so that the standard errors from the CGPR model are 
more appropriate in this case, because these model accounts for the under-
dispersion exhibited by the data.  
From CGPR model, at 1% level, we note that, the effect of each of worker's 
wage 1x  and experience years 3x  is statistically significant and is negatively 
associated with the number of absent days. This implies that the mean of absent 
days decreases with respect to each of large wages and experience years. At 1% 
level, the effect of worker's age 2x  is statistically significant and is positively 
associated with the number of absent days, this implies that the mean of absent 
days increases with respect to the larger ages. Family size 4x , has positive effect at 
20% level, and means that, the mean of absent days increases with respect to 
the larger family size. The type of department which denoted by binary variable 

7x  has negative effect at 25% level,  and means that, the mean of worker's 
absent days in the textile department, 17 =x , is smaller than the mean of 
worker's absent days in the other departments , 07 =x . At 25% level, the reason 
for working in industry denoted by variable 9x  is positively associated with the 
number of absent days, this implies that the mean of absent days increases when 
the worker has got other source for income. The estimate of mean of days is 
given by  

)1.7()
exp(ˆ

98765

4321

139.0039.0125.0081.0021.0

05.0059.0053.0337.0169.1

xxxxx
xxxxi

+−−−−
+−+−=μ

 

For testing the goodness-of-fit of suggested (CGPR) model, we note from 
table 3 that the computed chi-square, 084.552 =χ degrees, df = 9, and

01.0<−valuep . Thus, we can reject the null hypothesis, 0...: 9210 ==== βββH , at 
1% level, and this means, the suggested (CGPR) model which has estimated 
mean denoted by equation (7.1) is more appropriate for showing the relation 
between the worker's absent days as a dependent variable and the independent 
variables under studying ,(daily wage, worker's age, experience years, family  
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size, number of rooms in worker’s house, motivations system, type of department, 
industry trips, and the reason for working in industry). 
 
 
7. Conclusions 
 
If we believe the Poisson regression (PR) model, then we have, 

)|()|( iiii YVarYE xx =  implying that the conditional mean function equals the 
conditional variance function. If )|()|( iiii YVarYE xx < ;respectively

)|()|( iiii YVarYE xx > ; then we speak about overdispersion, respectively 
underdispersion. The Poisson model does not allow for over- or underdispersion. 
A richer model is obtained by using the generalized Poisson distribution instead 
of the Poisson distribution. 
In statistics, truncation occurs when only those values which lie in a certain 
region are observed. This phenomenon is related to but differs from censoring, 
whereby particular sample values are known only to lie in a certain region. Thus, 
under censoring the number of unobserved values is known, whereas under 
truncation that number is unknown. Truncation and censoring may both be 
thought of as examples of non-ignorable non-response or more generally as 
examples of biased sampling. In the absent days data for workers in textile 
industry, the observed percentages of values ≥ 6 are, respectively, 3.75%. Also, 
the data is under-dispersed which indicates that the PR and CPR models are not 
appropriate either. To model underdispersion, the CGPR model discussed in 
section 2 is among the suitable model. We applied the CGPR model to the data 
and found that the parameters estimate more efficient than the similar to that of 
CPR model. Thus, we decided to exclude the parameter estimates of the CPR 
model to save space in the paper. 

In summary, the estimated dispersion parameter from the data is negative and 
it is significantly different from zero. Based on the goodness-of-fit measure for 
the absent days data, the CGPR model seems to perform better than the CPR 
model in identifying daily wage, worker's age, experience years, family size, 
number of rooms in worker’s house, motivations system, department, industry 
trips and the reason for working in industry use associated with the number of 
absent days for worker. Additional studies should be conducted in order to 
identify the important independent variables that may be accounted to plane the 
structural system and social factors for workers in industry.  Worker's wage, age, 
experience years are important explanatory variables. 
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